Interpolation of Calderén and Ovcinnikov Pairs (*).

Per NiussoN (Lund)

Summary. — In this paper we study those Banach pairs (4,4, 4;) for which all interpolation is
described by Peetre’s K-method of interpolation. Special emphasis is given to duality and
to the case when (dy, 4,) is a pair of K-spaces.

1. - Introduction.

Our aim in thig paper will be to study two extreme cages occurring in interpola-
tion theory. Let 4 = (4,, A;) be a (compatible) pair of Banach spaces. For a¢c

g 4, -+ A, let H(i, a, A) be the K-functional. Consider the following two statements:
(X) K(t, b, A)<K(1, a, 4)
and

(B), b =_Ta for some linear operator T A — 4 with operator norm less than A.

It is wellknown (and easy to prove) that (B), implies (K). If conversely (K) implies
(B),, for some A< oo, we say that 4 is a Calderén pair.

The assumption that 4 is a Calderén pair is a rather strong condition. In faet
if 4 is Calderén then every interpolation space A with respect to 4 is a K-space.
This means that for some interpolation space E with respect to [, = (lw, lw((2—”)vez))

“ (K(2”7 @, Z))VGZHE

is an equivalent norm on A. The space # may be deseribed using extremal inter-
polation functors (cf. th. 4.1). This result due to BRUDNYI-KRUGLJAK [5] is proved
in sect. 4.2. Similarily one may in most cases describe A in terms of J-spaces. As
J- and K- are dual functors this suggest duality results for Calderén pairs. Indeed
let 4 be a reflexive pair and denote the dual pair by A* Then A is Calderén iff 4*
is Calderén. See th. 4.11.

(*) Entrata in Redazione il 30 dicembre 1982.



202 PER NiLssoN: Interpolation of Calderdn and Ovéinnikov pairs

We now specialize the situation somewhat. Let 4 be a mutually closed Banach
pair and let E,, F; be two Banach interpolation spaces with respect to .. Assume
further that E,, E, satisfy the assumptions of the classical equivalence theorem
(see [17]) and consider the pair (ZEO:K, ZEI:K) of K-spaces. Then CwikzL [8] and
DaaTRTEV-OVEINNIKOY [13] showed that the pair (dg .., Ay ) is a Calderén pair
whenever (B, F;) is Calderén. In sect. 4.4 we prove a converse. Namely, for
almost all pairs 4 holds that (A ., 4, ;) is a Calderén pair iff (E,, B,) is a Cal-
derén pair. This extends some partial results due to OvéixNIKOV [19].

Let us now sum up the contents of this paper briefly. In section 2 we introduce
our terminology. In particular we define J- and K-spaces. In section 3 we define
extremal interpolation funetors and relate them to J- and K-gspaces. Sect. 4 is
devoted to Calderén pairs. In sect. 5 we examine OVOINNIKOV pairs which are in a
sense the opposite to (relative) Calderén pairs. We describe them using extremal
interpolation funectors and derive some duality results.

Acknowledgement. — I wish to express my gratitude to J. PErTRE for his valuable
advice and interest in my work. In particular his influence is apparent in sect. 5.1-
5.3. In fact all the key results of these sections can be found in [22] and are here
reproduced with his permission.

This research was mainly done while I was visiting Indiana University, Blo-
omington, USA. 1 would like to express my deepest thanks to R. BRADLEY, G. CoN-
STANTIN, B. JAWERTH, K. JAWERTH and A. TorCcHINSKY for their hospitality.

CONVENTIONS. — The relation X C Y, where X and Y are topological vector
spaces, means that we have a continuous imbedding. The equivalence notion 4 ~ B,
where A and B are quasi-norms, means that ¢, A <B<c A for some positive con-
stants ¢;, ¢;. Two quasi-normed vector spaces are considered equal if their quasi-
norms are equivalent. We use the notation («,), for any scalar or vector valued
sequence with Z as index set. Further all sums without summation index are taken
over all of Z. Ag usual ¢ will denote any immaterial, positive constant.

2. — Preliminaries and notation.

Let 4, and 4, be two quasi-Banach spaces. We say that 4 = (4,, 4,) is a quasi-
Banach pair if both 4, and A4, are continuously embedded in some Hausdorff
topological vector space J&. We let

MA) = A4,n 4, and Z(A) = A, + 4,.

A quasi-Banach space A is called an intermediate space with respect to A iff
A(A4) € A ¢ 2(A4), continuous imbeddings. Let A and B be two quasi-Banach pairs.

Let T be a linear operator mapping X(4) into Z(B). We write T: 4 — B if the
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restrictions T'|,, are bounded linear mappings from A, into B,. We define the
operator quasi-norm of T by |T|;5= max (1714 )l4,5) where |-, 5 is the usual
operator quasi-norm. The vector space of all T: 4 — B with | T|; < co is denoted
by (4, B). B B

Let A and B be two intermediate spaces with respect to 4 and B respectively.
A and B are said to be relative inferpolation spaces between 4 and B if whenever
T: 4 -~ B it follows that | Ta|z<c|T|;zla],, acd. If A=5B and 4 =B we
simply say that 4 is an interpolation space with respect to 4.

Let A be an intermediate space with respect to 4. We denote by A9, the closure

of 4(4) in A. In particular, Z(4)° denotes the closure of A(4) in Z(4).

Let 1> 0. The K-functional is defined for a e X(4) by

K(t, 0, 4) = int ([ao]s, + t]as]s,)

a=0y+0g

and similarily the .J-functional for a € A(4) by

J (¢ a, 4) = max (al ,,, f]a],,) .

Let 4 be a pair of p-normed quasi-Banach spaces. Take a e X(A)° and write ¢ —=
= > ay where a,€ A(4) and the series converges in 2(A). The series > ay is called a

v

representation of a if in addition

(z (min (1, 2”)?](2”; Ay, Z))p) v

v

is finite. From lemma 5.1 in [10] follows that every ¢ € X(A) has a representation.
Further any representation of a is p-absolutely convergent in X(4).

A sequence o = (w,),.z is called a weight sequence if each w, is positive. Let
0 <p<oo. The space I,(w) = I,(w,) is defined to consist of all sequences o = (oo)y
such that (ww)el,, ie. (Z [ozpwv[f’)l/l’ is finite. We define ¢,(w) in a similar way.

Let [, and g, denote the pairs (1o, 1,(27)) and (e, ¢,(27)) respectively. We denote
by ¢, the sequence (8y,u)s, uc Z.

Let & denote the set of all positive functions ¢ on R, such that both g(f) and
tp(1/f) are nondecreasing. We let ¥, denote the subset of & consisting of all @ with
min (1, 1/)p(#) —~ 0 as ¢ — 0, co. Observe that for g € T then (p(2)),€ Z(l,). Simi-
lary (@(2”),€ 2(@,), whenever ped. On § we define an involution by g@*(f) =
= 1/p(1[t).

We next define J- and K-spaces. Let B be an interpolation space with respect

to lw. The K-space 4., consist of all ae X(A) with (K(2’,a, A))rc E. We put

lalzs.. = | (K(2%, a, A)),]». Assume that both 4, and A, are p-normed vector spaces
and let F be any interpolation space with respect to I,: The J-space 4 p.y 18 defined
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to congist of all e X(A)° such that there is a representation a = > a, with (J(2?,
sy A))ye F. We put v
(J(2?, av, D))s]r -

HaHZF:J ::a in%:fall

Take p€ . If B = lo(1/p(2)) and F = 1,(1/p(2")) we write 4, ., respectively
A, ... I ot) =1, 0<0<1, we get the spaces A, ... and 4, ,.;. I 0<0<1,
we may by the classical equivalence theorem omit the indices J and K (see [4], p. 44).

A quasi-Banach pair 4 is called mutually closed iff 4,= A4, ..., ¢ =0,1. A is
named a regular pair if A(4) is dense in both A4, and 4,. For a regular Banach
pair 4 one may form the dual pair A" = (45, A7) (see [4], p. 32). The duality
for the sequence spaces occuring in this paper is with respect to the form

oy pp = Z%B:—,,-

Let 4 be a mutually closed Banach pair and take € X(4)°. One may then
find a representation ¢ = Y @, such that for all ¢> 0 holds

v

(2.1) S min (1, 1/29) J(2, a», A) <18K(1, a, 4) .

This is a.consequence of th. 4 in [5]. See also [9], th. 4, [17], th. 3.2.

Let 4 be a Banach pair and take a € X(4). Pick linear functionals 4, on X(4)
such that A,(a) = K(2,a, A) and for all be X(4) holds |4,(b)|<K(2,b, A). The
(first) fundamental operator

To: A 5 I
is defined by

Te(b) = (4:(b))y -

Clearly 7' is a norm one linear operator with 7(e) = (K(2*, a, A4)),.
Take ae X(4)* and let a = Y a, be a representation of . The (second) fun-
damental operator v

T(a,),: il —¥ A_

is defined by

Ay

Toanly) = S
(@) aéoy 7@, @, d)
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It follows that T(au)v((J (2%, a,, Z))v) = @. Thege operators made their first explicit
appearance in Cwikel’s paper [8]. See also [6] and [13].

For results concerning real interpolation spaces we refer to [4], [b], [6], {7], [8],
[9], [10], [13], [15], [17], [22].

3. — Extremal interpolation functors.

In a now classical paper, ARoNszAJN and GAGLIAEDO [1] introduced extremal
interpolation funetors. Let us recall their constructions. We take two fixed Banach
pairs 4 and B. Let A and B be two intermediate spaces with respect to 4 and B
respectively. Assume further that A4 is p-normed. We define the orbit functor
Orbs (4, -) as follows. Let X be a Banach pair. Then x e Orby (4, X) iff we may
write # = 3 T,a, (convergence in X(X)), where T.e £(4, X), a,€ A and the sum

> Tiﬂz,;?i”iz” 4)? is convergent. Put

=0

elosa = inf( 3 (12axlela))

(=

where the infimum is taken over all admissible representations of . We now turn
to define the eoorbit functor Corbz (-, B). The space Corby (X, B) consists of all
» e X(X) such that Tz e B for any T e £(X, B). We put

(@] corboiz,m) = sup [Tz|s.

35S

The choice of the term « extremal interpolation functors » alludes to the follow-

ing simple results. Let F be any inferpolation functor with F(4)2A4. Then it
follows that

Orb; (4, X) ¢ 5(X)

for any Banach pair X such that F(X) is p-normed. Similary if F(B)C B we may
infer that

F(X) ¢ Corb; (X, B) .

For proofs we refer to [1] or [4], pp. 29-33. The extension to the quasi-Banach
case is straightforward.

Two more interpolation methods are of importance in our investigation. Take
a € X(A4). The space O(a, X), the orbit of o in X, consists of all z € X(X) that may
be written as @ = Ta, where T € £(4, X). Put

1#lozam=nf {|T]75: Ta = a} .
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This functor has been studied extensively by OvInNIKOV [18], [19]. Let B be a
regular pair and take b*e X(B*). Consider the following norm on A(X). For ze

e A(X) put

l2lcoger,®) = Sup (T, 5% .

I xX,B

We let Cojz (b%, X), the ecoorbit of b* in X, be the completion of A(X) in this norm.
The following proposition relates our various funectors to each other.

PROPORITION 3.1. — Oj(a, X) = Orb; (0;(a, A), X) and
Cojz (b*, X) = Corbj (X, Coz (b*, B))°.

The proof of these simple facts is left for the reader.

It turns out that most interpolation methods occuring in analysis can be de-
seribed in terms of extremal interpolation functors. Let us recall the most important
examples.

ExAMPLE 3.2. — Let B and F be two interpolation spaces with respeet to I, and I,
respectively. Then holds for any Banaeh pair X

and

Xy.;=Orb; (F, X).

These results are due to BRUDNYI-KRUGLIAK [5], th. 2 and JAnsoN [15], th. 14.
The proof depends mainly on a clever use of the two fundamental operators. In
this connection we also refer to [13].

ExAMPLE 3.3. — As an example of a coorbit functor let us investigate the funetor
Co; (@, *), where ¢ = (@(2")y, p € §. We claim that for any Banach pair X holds

Co;, (¢, X) = Corby, (X, ll((p(Z—")))“ .

Indeed take e A(X) and let T e (X, ;) be any norm one operator. Then Ty =
= ({w, @), for some sequence z, € X'(X)*. We have

T, @) = Z p(277) {a, wf>
and consequently holds

Kva ) ‘ < Z P(27) [ (w, m:>| = H Tw“ll(tp(Z“')) .

v
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This shows the inclusion 2. If we compose T with diagonal operators of norm one
it follows that '

[T2]1 gy <  sup  [K8z, g>].

%7,<1

Consequently Co; (g, X)c Corb;, (X, ll(tp(2—V)))°.

The functor Corb, (-, % (p(2-))) plays a central role in OVIINNIKOV’s work [18],
[19], and is there denoted by g¢,(:). See also JANSON [15], th. 5.

We remark that explicit descriptions of the funetors O; (,*), ¢ €T, may be
found in JANsON [15], chap. 4. By th. 4 of [15], O i (@) equals the ¢,(-) funector
of Ovéinnikov [18]. If g€, we may consnier the orbit funetor O- ((p, ). From
th. 5 of [15] follows that this funetor coincides with the 4 method of 1nterpolat10n
introduced in [14].

From the characterization of K- and J-interpolation as extremal interpolation
methods we may infer that for any interpolation functor & and for any Banach

pair A holds
(3.1) Ay F(A) C Agq yix -

In particular holds that

(3.2) BOtbA(A 1) J_ COrbj; (4, B) c BOrbA(A To)i K
and
(3.3) Acl)rb,,(z1 B): e C Corbj (4, B) < ACorbE(lm,B) ‘K

whenever A and B are intermediate spaces with respect to 4 and B respectively.
A natural question is to find conditions on 4 and B such that equality holds in (3.2)
and (3.3). As we will see equality in (ii) and (iii) characterizes relative Calderdén
pairs. Further whenever 4 and B are of type (0), see chap. 5 below, there is equality
in (i) and (iv).

For later reference we state here also the following ineclusions. For ae X(4)
holds with () = K(t, a, A)
(3.4) B, ,.;€04(a,B)C B
Lei B be a regular pair. Take b*e X(B*) and put ¢(f) = K*(¢, b*, B*¥). Then sim-
ilary
(3.5) 4, ,.5€ Cog (b, 4) C A2

@, 00K *

Proofs of these formulas will be given below. See also [7], [19].

13 = dnnali di Matematica
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4. — Calderdn pairs.

4.1, Definitions.

Let 4 and B be two quasi-Banach pairs. Let acX(4) and be X(B) be two
elements such that for all ¢ > 0 holds

(41) E(, b, B)<K(t 0, 4).

If b is any norm one element in O;(a, B), clearly (4.1) is satisfied. If conversely (4.1)
implies that b = Ta for some 7: 4 — B we say that the orbit 0z(a, B) is described
by the K-method. One may then choose 7' such that the norm of 7 is bounded by a
constant not depending on ». This is a easy consequence of the open mapping the-
orem. Thus the orbit is described by the K-method iff

(4.2) Ozla, B) = B, ..x

where @(t) = K(t, a, 4).

Let 1< 1< co. We say that 4 and B are of type 1 — (C) iff whenever (4.1) holds
and A'> A one may find T: A — B, of norm less than ', such that Ta = b. If for
some A< oo, 4 and B are of type 4 — (C) we simply say that 4 and B are of type
(0). Alternatively we say that 4 and B are relative Calderén. If 4 = B we call 4 a
Calderén pair.

The known concrete Calderén pairs in the literature fall into two classes. The
first concern weighted I, spaces. Let 1<po, Py, fo, gz <00. Put A = (1, (@), 1, (;))
and B = (1,(00) 1,(01)), Where o, 0y, © = 0,1, are weight sequences. Then if 1<
<p;<g;<oo, i = 0,1, A and B are of type (0) by a theorem of DmrrrREV [11],
cor. 1. The diagonal case, p;=¢;, ¢ = 0,1, may be found in [7] and [25]. See
also [23], [24]. If however p,> ¢, or p,>¢,, A and B are not relative Calderén.
See [19], th. 4. The other type of Calderén pairs are those who are covered by
th. 4.15 and th. 4.17 below. See also [8], th. 1, [13], th. 2 and [19], th. 7.

Let 4 be a Banach pair. Then A and [, are of type (C). Similarly I, and 4 are
of type 18 — (C) whenever 4 is mutually closed (see [10], sect. 4).

4.2. Calderén pairs and extremal interpolation functors.
We now extend (4.2) to general orbit funecfors.

TaEOREM 4.1. — Let 4 and B be two Banach pairs and A any intermediate
space with respect to 4. If 4 and B are of type (C) then

(4.3) Orby (4, B) = Bogza7 )k -
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Proo¥F. — Choose p such that A is a p-normed. Take be Boﬂ,;( ATy Ey 1O _(K(21’,
b, B)),e Orbj; (4, l.). By the definition of norm of (K(2% b, B)), in Orby (4, l.) We
may write
(K(2*,b, B))y= 2. T;a,

=0

where T.e £(4, 1), a;€ A and the series

(3 (miantaior)”

220

converges. Thus

E(2,b,B)< < 2T, K (2%, @i, 4)

=0

The series converges since 4 CX(4). ¥rom the BRUDNYI-KRUGLJAK theorem on
K-divisibility [5], th. 4 (see also [9], th. 1, [17], th. 3.1) now follows that there exists
b, X(B) such that b = Y b, and for all ¢> 0 holds

=0

(4.4) K(t,b;, B)<28| T 1;_K(t, a:;, 4) .

As A and B are of type 4 — (C), for some A< oo, (4.4) implies that &, = S, where
8:€ &4, B and |8 15<294| Ty 15 -
Consequently b = > b, = Z 8.0, Whele( > (I|&-H£,§”%H.4)”)M is finite, ie. be

0 iz0
€ Orbj (4, B). The converse mclusmn follows from (3.2).

Let A and B be two intermediate spaces between 4 and B. They are called
relative K-monotone if whenever ac 4, be X(B) and (4.1) holds it follows that
lo]s<ela . If this holds with 4 = B, 4 = B we say that A4 is a K-monotone.
Our next results are related to cor. 3 and cor. 4 in [5]. See also [12].

COROLLARY 4.2. — Let 4 and B be two K-monotone p-normed intermediate
spaces with respect to 4 and B. Then

B2 Bom;(A,fm):K
ang
4c AOrb;?(A,fm):K .

PROOF. — We argue as in th. 4.1 up to (4.4). The estimate (4.4) implies that
15l s <e] Til 23, @]+ and eonsequently

Iola< (igoﬂb,-]{g)/ (DO( 3 i) )1,1,

Thus BOTDZ(AJOQ)'.K .C_. B.
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As A COrbg (4, 4) it follows from (3.2) that 4 gZOrbI(A,-lm):K'
COROLLARY 4.3. — Let A be a Banach pair. Then holds for any K-monotone
intermediate space A with respect to A that

A4 = AOrbZ(A:lm):K .

In particular if 4 is Calderén then every interpolation space with respect to 4 is a
K-gpace.

PrROOF. — Apply cor. 4.2 with A = B, 4 = B.

Let A be a Banach pair. In the fundamental paper [5], BRUDNYI and KRUGLJAK
proved that if 4 is a Calderén pair and 4 is an interpolation space with respect to 4
then for some interpolation space B with respect to I holds 4 = ZE: z- See [b],
cor. 4. The point we wish to emphasize here is the use of extremal interpolation
functors, as it provides us with an explicit description of space E. Further our
approach connects this deep result of BRUDNYI-KRUGLJAK with the elementary
formula (4.2).

We now prove a dual version of th. 4.1.

THREOREM 4.4. ~ Let 4 and B be two Banach pairs. Assume further that 4 is

mutually closed and that 4 and B are of type (€). Then holds for every interme-
diate space B with respect to B

ZCorb;(.ll,B):J = Oorbz (4, B)n Z(A4)".

Proor. — Take a e Corbg (4, B) N Z(4)°. Choose aye A(4) such that & = 3 ay
and such that for all £ > 0 holds v

(4.5) K(t, (J(27, ay, A))s, ;) <18K(?, a, ) .

See (2.1). We claim that (J(27, a», 4)),€ Corbz (/;, B).
Indeed take T e £(I,, B) of norm one. Put b = T((J(z", ay, Z))y)- Then b = Y b,

where b, = J(2% av, A)Te,. Clearly b, A(B) and
(4.6) J(2*, by, B)<J (2%, av, 4) .
From (4.5) and (4.6) we infer that

K(t, b, B)<18K(t, a, 4) .
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Consequently we may find §: 4 — B with |[§];3<¢ and Sa = b. Now

HT((J(Q”, ay, Z))v)”zr: 18] 5 = ”S“Hs<0”vﬁlly< [Vals= e|acond,z)
i.e. (J(2% ay, 4))ye Corb; (I, B).
The converse inclusion is a consequence of (3.3).

COROLLARY 4.5. — Let A be a Banach pair of type (C). For any interpolation
space A4 with respect to 4 then holds

AN DAY = Agzi -

ProoF. — By lemma 3 in [7] every pair of type (C) is mutually closed. As 4 =
= Corby (4, A) the cor. now follows from th. 4.4.
We also have the following result, dual to (4.2).

PROPOSITION 4.6. — Let 4 and B be two Banach pairs with 4 mutually cloged, B
regular and assume in addition that they are of type (C). Let b*e X(B*). Then
holds

Ay 1.r= Coz (b*, 4)
with @(f) = K*(t, b*, B¥).

PrROOF. — By prop. 3.1 and th. 4.4 we only need to show that Cojz (b%, ) =
= [,(1/p(2?)). Let T:1I, - B be any norm one operator. Observe that 7 has norm
not exceeding one iff J(2%, Te,, B)<1, ve Z. Consider any sequence oc A(l,) of
finite support. Then

KT, b*y| =

2 ow{Tey, 3| < 3 | K(277, b*, B*)J (27, Tes, B) < I |oto|1/p(27) .

This shows the inclusion 2. But the argument may be reversed. Indeed let ¢ > 0

and choose b, A(B) such that
by, 0%) > (1 — &) K(27, b*, B¥)
and J(2’, b,, B)<1. Define T:[,— B by T(¢,) = bs. It follows that

(1—6)Ziavl/¢(2”)<‘ sup (S, 5%
and the inclusion C follows.
Similary (4.2) follows from th. 4.1 by choosing 4 = 0;(a, 4).
We now give some examples of applications of th. 4.1 and 4.4.
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EXAMPLE 4.7. — i) Put 4 =1[,. Let B be any Banach pair such that [, and B
are of type (C). This is the ease whenever B is mutually closed (combine (2.1) with
th. 4.4 of [10]). Let F be any interpolation space with respect to I,. From th. 4.1
and ex. 3.2 now follows that

BFZJ = B(iw)F:J:K :

See also [5], th. 5, [17], th. 3.17.
ii) Let A4 be any mutually closed Banach pair and put B =1, By th. 4.1
in [10], 4 and I, are of type (0). Using ex. 3.2 and th. 4.4 we conclude that
ZEZK N E(Z)O = Z(—lx)E:K:J ‘

Here E is any interpolation space with respect to l,. See also [3], th. 6, [10], th. 4.6,
[17], th. 3.19.

Let w = (wy)» be a weight sequence. The space FL?(w), L<p<oo, is defined
to consist of all sequences (y,), such that > ¢*“y,,€ L?[0, 27). Similary we define

FM(w), where A denotes the space of all bounded measures on [0, 2x].
Put FIp = (FL*(2"), FLP(27"%" ")) and FL»= FILz(1). We denote by [ ], and
[ 1° Calderén’s two methods of interpolation. See [4], chap. 4.

PROPOSITION 4.8. — i) Let B be a Banach pair such that FL' and B are of
type (C). If 0 << <1 then

[E]a = Eg,oo
and
[BY = B,...
ii) Let B be a mutually closed Banach pair such that B and FL* are of
type (C0). Then ‘
[Bly= By,

where 0 <6 < 1.

PROOF, — i) By th. 22 of [15] holds [B),= Orbzz(F L', B) and [BY’ = Orbz5(F M,
B). From th. 4.1 we now infer that
[B]e = Eﬁm}e:z{ = Ecu(z-ve):zz = Eg,oo
and

[Bly= Bflm]‘;:K = Dy _(2-ey. g = Be,oo -
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ii) From th. 24 of [15] follows
[B], = Corbzs=(B, FL®)° .
Now ii) follows from th. 4.4 as [[,],=,(27").

EXAMPLE 4.9. — i) Let A be a Banach pair such that I, and 4 are of type (0).
Th. 4.1 implies that for any interpolation space E with respect to l, holds

Orb; (B, A) = Ay, .

In particular we have for every pe T

Oi (@A) = Ay, o -

!

See [10], th. 4.2, [2], lemma 6.

ii) Let 4 be a mutually closed Banach pair. Assume further that 4 and A
are relative Calderén (see [10], th. 4.5). Then holds

Ay, = Corb; (4, F)n Z(4)

whenever F is an interpolation space with respect to [,. Just apply th. 4.4. Further
whenever ¢ € § holds

4, 1., = Co (g% 4) .
This example will be of some interest later in sect. 5.3.

4.3. Duality.

This section is devoted to duality theorems for relative Calderén pairs.
The key theorem of this section is

TuEoREM 4.10. — Let A and B be two regular Banach pairs. Assume further
that B* is regular. Take bye 2(B). Then holds isometrically

005.(by, A)* = 03(b,, A%) .

PROOF. — Take a*€ 03(b,, A*) and write a* = Th, where T e (B, A*). Then
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T#|;: A — B* TFor ac A(A) we now have

|<a'9 a*>l = |<b0’ T*lﬁa'>i<

< | T*5) 5,3

“”mg-(ba,j) <

< |7} ~,Z*”a”00§'(bo,5) .

Consequently a*e Coz. (by, 4)*.
Conversely let a* be any norm one, linear functional on Cogz.(d,, 4). For ac
€ A(4) we then have

@7 Kaye®y|< ” sup  |<by, Ta)| = sup <&, T*bd|< sup |{a, Sby)]|.

a5 St 174500 g1 Slg ze <t

Consider the set B = {8by: | 8]z 5. <1} of Z(4*). We claim that E is o(Z(4*),
A(A))-closed. Indeed the unit ball U of £(B, A*) is compact in the topology gen-
erated by all seminorms of the form |{a, 8b)| where a € 4(4) and b € X(B). Thus E
is the image of the compact set U under the continuous map Us8 — 8he H
Hence FE is cloged.

We claim that e*e E. If not then we may find, using Hahn-Banach a con-
tinuous linear functional that strictly separates the elosed convex set E from the
set {a*} (see [16], p. 244). Hence for some a € 4(4)

sup <@, 8byy << {a, a*> .

155 0 <1

By (4.7) this is a contradiction, hence [a*,z, 7<1. The proof is complete.
In [15] one may find further duality results for extremal interpolation funetors.
In partieular th. 2 of [15] is closely related to our th. 4.10. Infact our proof was
partly extracted from the proof of th. 2 in [15].
We may now pass to one of our main results in this section.

THEOREM 4.11. — Let 4 and B be two Banach pairs. Assume further that 4 is
regular and mutually closed and that both B and B* are regular. Then if 4 and B*
are of type (C) it follows that B and A* are of type (0).

PrOOF. — Take b e X(B)c XZ(B**). By prop. 4.6 we infer that

Go_ﬁt(b, Z) = Z‘P',l:J
where ¢(t) = K(t, b, B). If we take duals we may conclude that

(4.8) Ay oz = 05(b, 4%) .
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Here we used our th. 4.10 and th. 3.2 in [10]. Further the equality (4.8) holds
uniformly in b. From (4.2) we conclude that B and A* are of type (C).
We note some corollaries.

COROLLARY 4.12. — Let B be a Banach pair such that both B and B* are regular,
Then if B* is of type (0) it follows that B and B** are of type (C). In particular,
if B is a reflexive pair B is of type (C) iff B* is of type (C).

COROLLARY 4.13. — Let the assumptions of th. 4.11 be fulfilled. Take b € X(B).
Then the orbit
O5..(b, A%)

is described by the K-method.

Proor. — The cor. will follow once we have proven that
(4.9) O3..(b, A*) = 05(b, A*) .

To show this it suffices to show that every mapping T: B — A* may be extended
to B** As is easily seen (T*|,)* is such an extension.

REMARK. — The arguments leading to (4.9) were extracted from the proof of
th. 6 in [15]. See also [14], th. 3.3.
Our next corollary is related to ex. 4.9.

COROLLARY 4.14. — Let A4 be a regular, mutually closed Banach pair. Then if 4
and [, are of type (C) it follows that ¢, and 4* are of type (0).

Proor. — Apply th. 4.11 with B = ¢,.
Let A be a regular Banach pair. Take ¢ € §,. From ex. 3.3 and th. 4.10 it now
follows that

(Corbr, (4, 1,(p(2))°)* = 0 (¢, A%) -

This relation has previously been proven by both Janson and OvOINNIKOV. See [15],
th. 12 and [20].

4.4. Calderén pairs of K-spaces.

Let A be a Banach pair. In [8] CWIKEL proved that the pair (Zeo,w zﬂ,,m) is
of type (C) provided 0<C6,, ;<1 and 1<p,, p;<oco. This result was later ex-
tended by DMITRIEV and OVCINNIKOV in [13]. Our next theorem further refines
these results. Throughout this section let £ and F denote two Banach pairs which
arc pairs of interpolation spaces with respect to I; and I, respectively.
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TaEOREM 4.15. — Let 4 and B be two Banach pairs. Assume further that the
pair (By,.;, By,.,) is mutually closed. Assume that for all #> 0 holds

K¢, b, BF,,:J? BFIIJ) <K(i, a, ZE,,:K? Z.E’I:K)

where beZ’(EFO:J,EFI:J)". Then if £ and F are of type A— (C) it follows that
b = Ta for some linear operator

T: (A Z .x) > (Bp,.5s Bz«a:.))
A

of norm less that ¢A. (Thus (Ag ..,
ed— (0).)

PrROOF. — By lemma 3.16 of [17] we may pick bye A(B) such that b= Y b,
and for all ¢ > 0 holds v

.g) and (Bg,.;, By .;) are «almost» of type

E(t, (J(2, by, B))s, F) <cK(t, b, By,.5, By,.,) -

Similary by th. 3.6 of [17] (see also [5], th. 6.1) holds

E(t, (B2, a, A))y, B) ~ K(ty ay gz, Ay,.50) -
Our assumptions now imply that
K(t, (72, by, B))y, F) <0, E(t, (K(2, 0, A))», B) .
Consequently we may find U: E — F, of norm less than 2¢,4, satisfying
(J(2%, by, B))y= U((E(2" a, A))s) -
Notice that we fur‘ther have

% (ZE‘,:K! ZE’,:K) — (E,, E)
and
T(bv)v (Fo’ F ) (BF.,:J’ BF,:J) .

Thus the operator 7' = T\, , UT* has the desired properties. The proof is complete.

REMARK. — The pair (Bj,.,, By,.;) is mutnally closed whenever both B and
((l)g,.s» (o)p,.;) are mutually closed. Indeed By.,= Bg ,, .,.p ¢=0,1. If we
apply the reiteration theorem for K-spaces (see [5], th. 6.1, [17], cor. 3.9) we find
that (Bp,.,, BF1 i, co:g = Bp,.g Where D, = (('w)Fﬂ s (o) p )i, o .x- By assumptions
holds D; = (lw)z,, and thus we infer that (B .;, By ;)i coix = = Bp.;, 1 =0,1.
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REMARK. — Assume that F is a regular pair. Then th. 4.15 implies that (4 By K)
Ay .x) and (By,.;, By,.;) are of type (0). (See [17]).

REMARK 4.16. — Assume that for ¢ = 0, 1, holds F, = (Ix)y.;: Then if E and F
are of type (0) it follows that (A .., Ay .z) and (Bp.x, By.g) are of type (0).
Indeed our assumptions implies that By .= Bp.;, i = 0,1 (see [17], lemma 2.8).
Take b € Z(B)* and let b = Y b, be the representation provided by the fundamental
lemma ([4], p. 33). Then °*

E(t, (J(2%, by, B))», F) <cE(t, b, By, ., Br,.)

The rest is as in the proof of th. 4.15.

As we remarked above this result is an extension of th. 2 in [13)]. If one in addi-
tion to the assumptions in remark 4.16 assumes that for 4 = 0, 1, holds &, = (21)&: %
one gets DMITRIEV-OVOINNIKOV’S theorem ([13], th. 2).

In order to obtain a partial converse of th. 415 we need to introduce some
further terminology.

A Banach pair 4 is called K-surjective iff for every ¢ € 9 one may find a € X(4)

such that for some positive constants ¢, and ¢, holds
(4.10) oKty a, ) <o)<, K(t, a, A) .

We further require that ¢, and ¢, may be chosen independently of . A4 is called
K,-surjective iff for every g e T, one may find ¢ € Z(4)* satisfying (4.10).

We note that I, is K-surjective. Examples of K,-surjective pairs are I,, 1<p<oo
and (LY(R"), L*(R"). See also [19], lemma 1.

The main result of this section is the following converse to th. 4.15.

THEOREM 4.17. — Let 4 and B be two Banach pairs. Assume further that 4 is a
mutually elosed K, surjective pair and that B is K-surjeetive. Then if (dy,.;, A5 .;)
and (EEQ:K, EEI:K) are of type (C) it follows that F and I are of type (C).

Proor. — Assume that for all > 0 holds

Kt b, E)<K(t,a,F).
Choose @, Z(B) such that

E@,b,le) ~ K(t,»,, B) .

As B and [, are of type (C) we may find 8¢ L(B, lo) with b = 8;»,. Interpolating
we find 8;: (Bg,.x, Bg.x) = (Ho, By). From [17], th. 3.6 (see also [5], th. 6.a) we
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infer that

K(t, b, E) ~ K(t, x,, BE.,:K? BE,:K) .
Pick «, € X(A) satisfying
K(t, a, il) ~ K(t, q, Z) .

As I, and 4 are relative Calderén we may construct 8,: [, — 4 satisfying S,a = ..
Further 8,: (Fy, F,) — (Ag,.;y Ayp,.;). We claim that

Kty a, F) ~ K(t, 2,, Ag..g ZFI:J) .

Indeed noticing that Ap.; = A, Where D= (lo)y,.5» ¢ = 0,1 (see ex. 4.7) we
infer that

K(t,z,, Ap.;, Ay, )wK(t,ma,ADOK,Z ) ~

‘We now have
K, ”b’BE,,K?BE x) <cK(t, mwAF., J:AF, DK

Choose S: (AF J,AF ) = (BE K,BE ) with Sz, = x,. Put T = 8, 88,. It follows
that T: F — B and Ta = b. As all estimates are uniform we conclude that ¥ and E
are of type (0).

REMARK. — If the pair E is regular it suffices to assume that B is Ky-surjective.
If we combine remark 4.16 and th. 4.17 we get the following corollary.

COROLLARY 4.18. — Let A4 be a mutually closed, K,-surjective Banach pair.
Assume further that for ¢ == 0,1, holds B, = (lo)z.,;. Then (dg.p, Ap.x) is Cal-
derén iff (B, E,) is Calderdn.

In [19] Ov&INNIKOV constructed a pair of sequence spaces E which are not of
type (C). In fact

By=15L(27"°) N 1L(27%p])  and  H=1027"") + l(27°P]) ,
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where 0 < 0 <1, will do. As this ¥ satisfies the assumptions of cor. 4.18 it follows
that (Ay,.;, g .x) is never of type (C) provided 4 is mutually elosed and K,-surjec-
tive. This is th. 7 of [19]. Let us remark that this was part of the motivation for
our th. 4.17.

5. — Oveinnikov pairs.

5.1. Definitions.

Let T be a linear operator from /, into /;,. By a fundamental theorem of Ov&Ix-
NIKOV [18], th. 1, we infer that

T: 1(Lip(2) > b(1/p(27)
for any @ e d, or equivalently
T: (Zm)q,’ ik (Zl)%I:J .
Further [T, o) neen) <2Eg| Tlr, 5, Where K, is the Grothendieck constant.
The purpose of this chapter is to generalize Oveinnikov?’s theorem to other pairs
besides I, and I;. As in [22] we make the following definitions. Let 4 and B be two

Banach pairs. We say that 4 and B are of type (0) if whenever 7: A — B it follows
that

(5.1) T: 4, wx—~By1y
for any ¢ € §. We further require that for some 1 << oo holds
(5-2) 17

lA—qJ,co:K, E(p, 17 < ;"” T“A_,.ﬁ *

Alternatively we say that 4 and B are relative Oveinnikov. A and B are of type
(0), if T e (A4, B) implies that

(5.3) T: A oz~ B, 1.5,
whenever ¢ € §,, and for some 4 << oo holds
(5.4) 11} 330280 Bpunss <2 Tl -

By Ovéinnikov’s theorem I, and I, are of type (0) (with A = 2K_). More ex-
amples may be found in PERTRE [22].
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5.2, Nuclearity.

Let 4 and B be two Banach pairs. We say that '€ £(4, B) is a nuclear operator
from A4 into B if there exist (by),e A(B) and (a) € Z(4)* with

(3.8) gmax (1951 45101z, 191 4308,05,) <0

such that Ta = > <a,a,>b, for any aeX(d). We write T: A-"> B. We define

the nuclear normv of T, denoted by || 7|5, as the infimum of all expressions appe-
aring in (5.5). It is clear that if 7: 4 - B then each map 7: 4,—~ B,, ¢ = 0,1,
is nuclear in the usual sense. The converse is in general not true. One instance
when it is true is when B =1,. Indeed if T: A,—1,(2), i = 0,1, are nuclear
we may write T(-) = 3 <+, a pe, Where > 2~a; 4; <90, 4= 0,1. Consequently
T: 4-5%1,. v 4

Let A be a regular pair. We observe that if 7: 4 2 B then there exist two
pairs of weights @ = (0% w!) and & = (¢°, ¢!) 80 that we have a commutative
diagram of the form

A = B

(5.6) l S T

(Teol1/0), lao(Lf0®)) 55 (L(0®), Lu(a?)) -

Here 8, and 8, are norm one linear operators. S, is a multiplier transform defined
by a sequence oo = (o), such that

(5.7 S o, | max (w?6?, wlol) <oo.

v !
13

Further the infimum of (5.7) over all possible factorisations equals [T3;.

To gee that T: A4 - B implies that we have the factorisation (5.6) choose
(by)ve A(B) and (a7),€ Z(A)* such that (5.5) is fulfilled. Put B = {»: a5 0}. For
ve B put of = |a)ls, ¢¢=[b,[5, ¢ =0,1. If we take op=1 for v€ F, &y = 0 for
y ¢ B it is a matter of routine to construct 8, and 8, such that (5.6) is satisfied.
Conversely (5.6) implies that T': A % B, A regular or not.

We may now construet nuelear orbit functors. Take aeX(4d). We denote by
0%(a, B) the space of all b X(B) that may be written as b = Ta where T': A% B.
We put

[ 5= 08 1715 57 0 = 7).

We similary define OrbZ(4,-), Corb; (-, B) and Cog (b%,+) where b* e X(B*).
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A description of our nuclear orbit functors is provided by the following

PROPOSITION 5.1. — Let A and B be two Banach pairs. Take a € 2(4), a0,
and put ¢() = K(, a, A). Then holds uniformly in a

(5.8) 0;‘(0" B) = sz,l.’J :
Further for any intermediate space A with respect to A holds

Orb% (4, B) = B

orbZ(4,1):
PROOF. — Take be B, ., and choose b,€ A(B) such that

B J (2", by, B)
b~;b, and ZK(2"aA)<OO

Define the multiplier transform 7: I, —1[, by

J(2 by, B)

and put 8 = T\, TT% Clearly (5. 6) is fulfilled and we conclude that §: 4 % B.
As b = Sa it follows that bec 02 (@, B).
Assume now that b= Ta where T: A" B. Write T(-) = 3 <-,a’>b, such

that (5.5) is fulfilled. Let I, be the subset of Z defined by the condition: y € I iff

18,15, <2518,z < 2[2,]3, -

The sets I, K ¢ Z, constitute a disjoint union of the set {»: by5= 0}. Further for
vy Iz holds

J(27F, a3, A*)T (2%, by, B)<2 max ([a, | 43]bs]5,) -

i=0,
Put b% = Y (a, a;>h,. As
yelx
(5.9)  J(2% b5 B)< 3 J(2°%, af, A*)J (25, by, B)K(2E, a, A) <

velx

<2( 3 max (1at10.10) ) (2%, 2

velg i=0,1

it follows that »®e A(B). Clearly b =  b*. From our estimates, (5.9), we now
K
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infer that

@4 ¥ B’ 223 S max (Jatalbla) <oo.

K velgi=0,1

3 Te o

Congequently b eB 1
By (3.1) we certamly have Bg," 24 © Orb= (4, B) so it suffices to show the

converse inclusion. Take be OrbA (4, B) and v&mte b= T,a; where T 45 B,
i
a;€ A and (2 (17 AﬁillaillA)P)l/P< co. From (5.8) follows that b, = T,a.€ By o 40 iy.1:5+
i ’ e
Choose (b}),€ 4(B) such that b,= Y b} and

J(2", b, B)

2 R, 0 1) VT

4B

It follows that
3 3 min (1,27)7(2, b, By <e(iS (115 5lal )7}
Thus if we put b,= X b then b,e A(B) and b = > b,. Further
i »

(5.10) (J(2, by, B))o< 3 (J (2%, B, B))s

i

where the series converges in X(I,). Define multiplier transforms §,: I, — [, by

(7@, b, B)
80 = (g 7).
and put V,= 8,7 Clearly V;: 4 1, with |V,[; <3|T;;. From (5.10) now

follows that
(J(2”, by, B))v‘\< Z Vias)

where (3 (| V35 e )7) < eo.
11
Consequently (J(2”, by, B))»€ OrbZ (4, 1), i.e. b€ Bog?(s3,.7- The proof is com-
plete.

REMARK 5.2. — From the proof of (5.8) follows that
(5'11) ” b”B_qa,liJ <~2“buog(a,§) <2Hbﬂf5(p, 17"

REMARK 5.3. — BERGH [3], (cf. [4], p. 31) showed that if for some v & Z holds
J(2%, b, By<K(2, a, A) then be 0z(a, B). Bergh’s result apparently is a special case
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f (5.8). Just write b = 3 by where b, =0 if g+ v and by=b. OWIKEL in [7] on
the other hand proved, if we have K(2’,b, B)<¢K(2’, a, A) with Y ¢, < co then
b 0j(a, B). This follows from (5.8) by writing b = z b, where the representation

is the one that is provided by the fundamental lemma (4], - 45). See also [19],
sect. 1. If in (5.8) one puts B =, one gets prop. 4 in [18].
We now turn to nuclear eoorbit functors.

PRrOPOSITION 5.4. — Let 4 and B be two Banach pairs. For every intermediate
space B with respect to B holds

Corb% (4, B) = Zcmg(zm,B):lif .

PrOOF. - Take a € Ay, py:xc, 16 (K(2% a, A))se Corby (I, B). Take T: 4 % B.
We claim that b = TacB. From (5.8) we infer that be Bgy , 51,5 Choose
bye A(B) such that b = Y b, and

J(2%, by, B)

ZK 2, a, A) <3”TI

48 *

It follows that b = T(,,,)VS((K(QV, a, H))p), where S:l,—1[, is a suitable multiplier
transform. Consequently

|Tals = [T S((E2*, a, D)) 5<

<3“ sup | V((E(2% 4, D))= 3] (K@, a, D)s]con2iun, 5)
vIE s<t

i.e. a € CorbZ (4, B). The converse inclusion follows from (3.1).

PROPOSITION 5.5. — Let 4 and B be two Banach pairs. Assume that B is regular
and take b*e X(B*). Then holds uniformly in b*

Col (b*, A) = 4 .k

where @(f) = K*(t, b*, B*).

AN

PROOF - Take ¢ € A(4) and let T: A -% B be any nuclear map of finite rank.
Write T(- z (-, &> b, where a, € (A0* N (4)*, bye 4(B) and the series is finite.

Choose sets I, as in the proof of prop. 5.1. Then
KTa, 5% —12 S <a,a

| I velg

v

2 szx a, A)J (275, af, A*)J (2%, by, B) K (27X, b*, B*) <

ve€lg

<2 S};-p (K(2K7 &y Z) (27F, b*, B*)) Z max (”a:HA:”b””Bi) .
v ¢=0,1

Consequently A¢ wo:x & C0% (b%, A4).

14 - Annali di Matematica
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To prove the converse inclusion consider rank one operators of the form 7T(-) =
= (-, ayb, where J(277,a}, A*)<1 and J(2%, by, B)<1

5.3. Characterizations of type (O).

In this section we will elucidate the possibility of describing pairs of type (0)
using extremal interpolation functors. From our results it will follow that OveIN-
NIKOV pairs are in a sense opposite to Calderdén pairs. The reader is asked to com-
pare the results of this section with (3.4), (3.5) and sect. 4.2, Almost all our results
will be given for pairs of type (0) only. Observe that type (0) implies type (0)y

Let E and F be intermediate spaces with respect to l. and [, respectively.
Consider the following condition:

(5.12) if o = (w)y € B and 2 | <co then f = (B)sc F.

ay#0 |[Xr

Clearly (5.12) is fulfilled whenever B and ¥ are relative interpolati()n spaces bet-
ween [* and /;: Just consider the multiplier transform T defined by T(y) = ((Bs/a)ps)s-
Then 7T': lp—>I; and To = f. We now have the following extension of the property

(5.1). See [22].

PROPOSITION 5.6. — Let B and F be interpolation spaces with respeet to I, and /,
respectively. Let 4 and B be two Banach pairs and assume further that 4 and B
are of type (0). Take T e (4, B). Then
(5.13) T ZE:K "’BF:J

whenever E and F satisfy (5.12).

Proor. — Take a4y, i.e. (E(2% a,4))ye B. Put ¢(t) = K(t,a,4). Then ae

€4, ..x and by (8.1) Tae B, ;.,. Write Ta = 3 b, where b,e A(B) satisfies
J(2%, by, B)
ZK 2, a, 4)

If we apply (5.12) with « = (K(2*, a, 4)), and B = (J(2 by, B)), it follows that
(J(2, by, B))ve F, i.e. Tae By.;.

Let us apply prop. 5.6 with 4 = Iy and B=1,. As B = (lo)g.c a0d F = (I)5.;
we see that B and F are relative interpolation gpaces with respect to I, and 7, when-
ever (5.12) is fulfilled. We conclude that (5.12) characterizes relative interpolation
spaces between I, and ;.

We now confront type (0) with orbit funetors.
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PROPOSITION 5.7. — Let 4 and B be two Banach pairs. Then 4 and B are of
type (0) iff the relation

(5.14) O;la, B) = 'B(p,l:.]' )
where ¢(t) = K(t, a, 4), holds uniformly in a € X(4).

PRrRoOF. — Assume that 4 and B are of type (0). Take T e £(4, B) and a € X(A).
If we apply (5.1) with ¢(t) = K(t, a, 4) it follows that Ta€ B, ;.;. Thus O;(a, B)C
cB ,,1:s- Lhe converse inclusion is a consequence of prop. 5.1.
Conversely assume (5.14). Take T e £(4, B) and neT. If acd, ., it follows

from (5.14) that Zac B%u ;¢ Write Ta = D by in the usual way and note tha,t

v

J(27, by, B) (K(zv, a, A)) J(2, by, B)
25 <\ )R E@ e D)

Consequently Ta € B, ,.;, and we conclude that 4 and B are of type (0).

Let us give an application of prop. 5.7. Let 4 be a regular Banaech pair such
that A* also is regular. Let B be a dual Banach pair. We claim that 4 and B are
of type (0) whenever A** and B are of type (0). Indeed if a € 2(A) then holds by
(4.9) Oj.(a, B) = Oz(a, B) (isometrically). From (5.14) now follows that

04(a, E) = EK(?‘,a,Z"‘),l:J = Bx(zv,a,Z),lzJ .
The last equality is a consequence of the equality K(t, a, A**) = K(t, a, 4). Thus_Z
and B are of type (0). If we apply this argument with 4 =&, B =1,, 4** = [,
Oveinnikov’s theorem now implies

PROPOSITION 5.8. ~ €, and [, are of type (0).

REMARK. — Prop. 5.8 is due to JaNson [15]. See also [22].
To describe type (0), we use coorbit functors.

PROPOSITION 5.9. — Let A and B be two Banach pairs and assume further that
they are regular. Then 4 and B are of type (0), iff the relation

(5.15) Coz (b%, A) = A2 ...rc
where (t) = K*(t, b*, B*), holds uniformly in b*e Z(B).
PROOF. ~ Assume that 4 and B are of type (0),. Take b*e X(B*), T (4, B)

and ae A(A).. As aedy .. (6.3) implies that Tac B, ., As b*e€B ox=
= (B, 1.;)* (see [10], th. 3.2) we infer that

[<Ta, 0> | <o Tal 5,,1.,] 0] 330, < A1 71 2,5 0] gy o -
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Consequently A9 .. C Coz (b*, A). The converse inclusion follows from prop. 5.5.
Conversely assume (5.15). Take ne #, and T e £(4, B). For ac A(4) we now

have

K2, a,4) - K (27, b*, B*)
@) L @)

[<Ta, b*)|<c| T 5 sup = o[ Tf5 ;lal, . 1%

Ag,0:K E;;',m:l( '

By dunality this inequality implies that Ta EBM: 5+ Thus
T: Zf;, 0lE 7 Eﬂ,l:J ,
i.e. 4 and B are of type (0),.

REMARK 5.10. — Assume further that B* is a regular Banaeh pair. By modifying
the proof of prop. 5.9 one may show that 4 and B* are of type (0), iff the relation
Cogz. (b, 4) = Zg’w:K, where ¢(f) = K*(t, b, B), holds uniformly in b e Z(B).

REMARK 5.11. — Prop. 5.7 may be extended in the following way. If 4 and B
are of type (O) then

(5.16) Orbz (4, B) = Bowzain:
and
(6.17) Corbjz (Z, B) = ZCorbg(iw,B):K .

Here A and B are intermediate spaces with respect to 4 and B respectively. Cf
(3.2) and (3.3).
We may now prove the principal result of this section. See also [22].

THEOREM 5.12. - Let 4 and B be two Banach pairs. Then 4 and B are of type

(0) iff for every a e 2(4) holds uniformly
(5.18) 04(a, B) = 0%3(a, B) = B, ;.;,

where ¢(t) = K(t, a, A). Further for any intermediate space 4 with respect to A
then holds

Orb- (4, B) = Orb% (4, B) = Eom;(A,z',):J

whenever 4 and B are of type (0).

PROOF. ~ To prove the first part just combine prop. 5.1, (5.8) with prop. 5.7.
3 The second part will follow from prop. 5.1 once we have proven that Orb- (:/1,
B)C Orb: (4, B). Take be Orb; (4, B) and write b = X T.a;, where I';€ £(4, B),
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a,€ A and (z ( )i’) Ur< oo, As T,a,€ Oz(a, B) it follows from (5.18) that

we may find 8;: A% B with 8;a,= T,a; and I8|55<¢lT,];5- Consequently
b =2 S,a; where (z (I18.)551a,1,) )1/17< oo, ie. beOrbl(4,B). The proof is

complete.
Similary if we combine prop. 5.5 with prop. 5.9 we obtain the following charac-
terization of type (0),.

THEOREM 5.13. — Let 4 and B be two Banach pairs and assume further that 4
and B are regular. Then 4 and B are of type (0), iff for every b*e X(B*) holds
uniformly

Co- (b*, A) = CoZ (b*, 4) = 4

P, 0 K !

where ¢(t) = K*(t, b*, B¥).
For general coorbit funectors holds:

THEOREM 5.14. — Let 4 and B be two Banach pairs of type (0). For every in-
termediate space B with respect to B then holds

Corbz (4, B) = Gorb% (4, B) = ZCorbg(lm,B):K .
Ovéinnikov’s theorem has the consequence that if T7: 4 — B then
T: 0;_(p, A) — Corby (B, L(1/p(27)),

where g € . On the other hand it follows from (3.3) and (3.4) that

(5.19) B, 1.4€ Corby (B, t(1/p(2"))
and
(520) 0200(977 Z) c Z«p, co K *

Thus A and B will be of type (0) if there is equality in (5.19) and (5.20). From
ex. 4.9 now follows.

PROPOSITION 5.15. — Let 4 and B be two Banach pairs with B mutually closed
and regular. If [, and 4 are of type (0) and B and I, are of type (0) it follows that 4
and B are of type (0).

Let £ and F be two pairs of Banach interpolation spaces W1th respect t0 I
and [, respectively, From th. 4.15 we infer that (BE T BE ) and I, are of type (C)
whenever £ and I, are of type (C). If we in addition assumes that for ¢ = 0, 1, holds
F,= (ls)g, s, remark 4.16 implies that l, and (4, ., 4p.;) are of type (C) if lo
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and F are of type (C). Prop. 5.15 now implies that

pu— o

(AF0:J7AF1:J) and (EEDZK’BEl:K)

are of type (0).
Let us give an example. Let 0 << 8,<1,4¢==20,1,2,3. Then

(Zeo,oo7 Aﬁl,oo) and (Eez,u Beag)

are of type (0). To prove this just note that lo and (1(27%), l(27 %)) are of type
(C). Similary (1,(27%"),7,(27%") and [, are relative Calderén. The result now follows
from the above.

5.4. Duality.

THEOREM 5.16. — Let 4 and B be two Banach pairs. Assume further that 4, B
and B* are regular pairs. Then 4 and B* are of type (0), iff B and A* are of type (0).

PROOF. — Assume that 4 and B* are of type (0), and take b e Z(B) C Z(B**).
From prop. 5.9 (and remark 5.10) follows that

(5.21) Coz. (b, A) = A°

@, 00K

where g(t) = K*(t,b, B). As be X(B), i.e. K(t,b, B) = o(max (1,7) as ¢ -0, oo,
we infer that

Zg, oK T Z%(lW):K :
See [4], th. 3.4.2. If we take duals in (5.21) we conclude that
03(b, A) = 4. ., .

Here we used our th. 4.10 and th. 3.1 in [10]. By prop. 5,7, B and A* are of
type (0). 3 3

If conversely B and A* are of type (0) it would follow that the two Banach
spaces Coz. (b, 4) and AY ..p have the same dual. As Coz. (b, A)c 4) .. they
must coincide. Now prop. 5.9 (and remark 5.10) implies that 4 and B* are of

type (0),.

5.5. K-spaces of type (O).

Let B and F be two Banach pairs consisting of interpolation spaces with respect
to [, and [, respectively. Our first result shows that if F and F are of type (0) this
property is transplanted to certain pairs of J- and K-spaces. Cf. th. 4.15,
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THEOREM 5.17. - Let 4 and B be two Banach pairs. Assume further that the
pair (4 Foidd A #,:y) 18 mutually closed and regular. Then if F and E are of type (0)

it follows that (4y,.;, Az .;) and (B .g, By.x) are of type (0).
PrOOF. — Take T: (Ap.;; Ayp.s) = (By,x: By,.x) and a € Z(dy,;, A,y Put

b = Ta. Choose a,€ A(A) such that ¢ = > a, and (J(2, ay, 4)), € Z(F). If we put
8 = T"TT,, then 8: F - E and v

8((J(2", @, A))s) = (E(2, b, B))s .
As F and E are of type (0) we infer that
(5.22) T: Z(f)‘p’w;K:J %E(-E")tp,ll.l:K !

where @ ¥. Using two reiteration theorems for real interpolation spaces, [17],
th. 3.11, th. 3.15, (5.22) implies that

T: (AF.,:Ja ZFIZJ)\'P,OO:K - (EE',):K’ BE;:K)W,I,J .

The proof is complete.

The assumption that (4 Foid 4 r,:s) 18 mutually closed can sometimes be dispensed
with., Cf. remark 4.16.

A converse to th. 5.17 is furnished by the following theorem.

THEOREM 5.18. — Let 4 and B be two Banach pairs. Assume further that A4 is
K-surjective and that B is mutually closed and K,-surjective. Then it (4 ., Ay .x)

and (By,.;, By, .;) are of type (0) it follows that  and F are of type (0).
PROOF. — Take T e (K, F) and pc §. We want to show that
T: E¢,OQ:K_>F 1T

Take a € 2(E) and put b = Ta. Choose z,c Z(A) satistying

(5.23) Kt ., A) ~ K(t, a, 1) .
As 4 and I, are of type (C) we may econstruct Ty: (A, .z, Ap .z) — (Bo, By) With
T2, = a. .

Pick w,e X(B) with

(5.14) K(t,z,, B) ~ E(t,b,1) .



230 PEr NInssoN: Interpolation of Calderén and Ovéinnikov pairs

As B is mutually closed we may find Ty: (Fo, F1) — (By,.;, By,.;) with T,b = a,.
Put § = T,TT,. Then Sz,= #,. From our assumptions we infer that

8: (AE“:K7 AE;:K)gp, oK T (BF.,:Ja EFl:J)tp,IZJ !

where g € §. By reiteration (see [5], th. 6, [17], th. 3.6, th. 3.14) this simplifies to

8: Ag.g— By.s
where F — E-%N:K and F = F¢,1:J- Now (5.23) yields
lalls ~ 10z ~ 1720 -
As B is mutually closed (5.24) implies that
[6ls ~ 2] 45, -
So altogether we now have
187,12 <6l @1z, 0ex -

i.e. f and F are of type (0). The proof is complete.

REMARK. — Let & be a regular pair. It is then only necessary to assume that A4
K,-surjective. ' ' ‘

We now wish to apply th. 5.18 in our analysis of type (0). Let us make the
following assumptions. 4 is a K-surjective Banach pair and B is a mutually closed,
K,-surjective Banach pair. If 4 and B are of type (0) it follows from the proof of
th. 5.18 that '

A and I, are of type (0) and

» and B are of type (0).

S~y

Take ¢ € §. Remark. 5.11, (5.17) applied to A, [, and [,(1/p(2") yields that

(5.25) - Corly, (4, L(1/p(27)) = 4, i -
Similary (5.16) implies that

(5.26) 0 @B =B, ;.
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Now, quite generaly, a Banach pair X is called (uniformly) tame if for every
pe§ holds

0;, (g, X) = Corb, (X, 1,(1/p(2%)))

(uniformly). This notion is due to OVCINNIKOV [18], who showed that I, and A
are tame.

Let us now assume that both 4 and B are uniformly tame pairs. Then (5.25)
implies that

Oim(% Z) = Aq:, K !

ie. I, and A are of type (0). Similary (3.26) yields
B,, 1.5 = Corby (B, L(1/¢(2)) = Co;, (p, B) .

This last equality is fulfilled whenever B and [, are of type (C) (see ex. 4.9). If we
invoke prop. 5.15 we have now proven

PROPOSITION 5.19. ~ Let 4 be a uniformly tame, K-surjective Banach pair and
let B_ be a uniformly tame, mutually closed, K,-surjective Banach pair. Then A
and B are of type (0) iff I, and 4 are of type (C) and for every ¢ € § holds uniformly

Btp,l:J = 0021 (¢, B).
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