
Interpolation of Calder6n and Ov~innikov Pairs (*). 

P~ N~sso~, ~ (Lund) 

S u m m a r y .  - In  this paper we study those Banach pairs (Ao, A~) /or which all interpolation is 
described by Peetre's K-method o/ interpolation. Special emphasis is given to duality and 
to the case when (Ao, A1) is a pair o/ K-spaces. 

1 .  - I n t r o d u c t i o n .  

Our aim in this paper will be to study two extreme cases occurring in interpola- 

tion theory. Let Z ~ (Ao, A~) be a (compatible) pair of Banaeh spaces. For a E 

e Ao -~ A~ let K(t, a, A)  be the K-functional. Consider the following two statements : 

(K) K(t, b, A) < K(t, a, A)  

and 

(B)~ b - = T a  for some linear operator T: A -~A with operator norm less than t. 

I t  is wellknown (and easy to prove) that  (B)I implies (K). If  conversely (K) implies 

(Bh, for some 1 < c~, we say that  A is a Calder6n pair. 

The assumption that  .4 is a Calder6n pair is a rather strong condition. In fact 

if J is Calder6n then every interpolation space A with respect to A is a K-space. 

This me~ns that  for some interpolation space E with respect to i ~ =  (l~, l~((2-')~,z)) 

is an equivalent norm on A. The space E may be described using extremal inter- 

polation funetors (cf. th. 4.1). This result due to B~VD~u [5] is proved 

in sect. 4.2. Similarily one may in most cases describe A in terms of J-spaces. As 

J- and K- are dual functors this suggest duality results for Calder6n pairs. Indeed 

let .~ be a reflexive pair and denote the dual pair by ~*. Then ~ is Calder6n iff A* 

is Calder6n. See th. 4.11. 

(*) Entrata in Redazione il 30 dicembre 1982. 
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We now specialize the situation somewhat. Let  A be a mutual ly  closed Banach 

pair and let Eo, E~ be two Banach interpolation spaces with respect to i~. Assume 

further tha t  E0, E~ satisfy the assumptions of the classical equivalence theorem 

(see [17]) and consider the pair (ZX~:K , ~ : K )  of K-spaces. Then CWIK~L [8] and 

D~RIEv-OvSIN-~IKOV [13] showed tha t  the pair (Ax.:K, A~I:K) is a Calderdn pair 

whenever (Eo, E~) is Calderdn. In sect. 4.4 we prove a converse. Namely,  for 

almost all pairs .~ holds tha t  (ZI~o:K , :~E~:K) is a Calderdn pair iff (Eo, E~) is a Cal- 

derdn pair. This extends some partial  results due to OVSIX~IKOV [19]. 

Let  us now sum up the contents of this paper briefly. In section 2 we introduce 

our terminology. In particular we define J-  and K-spaces. In section 3 we define 

extrema.1 interpolation functors and relate them to J- and K-spaces. Sect. 4 is 

devoted to Calderdn pairs. In  sect. 5 we examine O V 6 I ~ K o v  pairs which are in a 

sense the opposite to (relative) Calderdn pairs. We describe them using extremal 

interpolation functors and derive some dual i ty  results. 

Acknowledgement. - I wish to express my grat i tude to J. PEETRE for his valuable 

advice and interest in my work. In particular his influence is apparent  in sect. 5.1- 

5.3. In  fact  all the key results of these sections can be found in [22] and are here 

reproduced with his permission. 

This research was mainly done while I was visiting Indiana University, Blo- 

omington, USA. I would like to express my deepest thanks to R. BRADLEY, G. CON- 

STAR'TIN, B. JAWERTH~ K. JAWE~TK and A. TORCItINSKY for their hospitality. 

CO~VE~TI0~S. - The relation X c !7, where X and J/ are topological vector 

spaces, means tha t  we have a continuous imbedding. The equivalence notion A ~ B, 

where A and B are quasi-norms, means tha t  c~A<B<c2A for some positive con- 

stants  c~, c~. Two quasi-normed vector spaces are considered equal if their quasi- 

norms are equivalent. We use the notation (~)~ for any  scalar or vector valued 

sequence with Z as index set. Fm'ther  all sums without  summation index are taken 

over all of Z. As usual C will denote any  immaterial ,  positive constant. 

2. - P r e l i m i n a r i e s  and  n o t a t i o n .  

Let  Ao and A~ be two quasi-Banach spaces. We say tha t  .4 = (Ao, A~) is a quasi- 

Banach pair if both Ao and A~ are continuously embedded in some Itausdorff 

topological vector space JG. We let 

A(Z)=Ao~A1  and Z ( A ) = A o + A I .  

A quasi-Banach space A is called an intermediate space with respect to A iff 

d(A) _c A c Z(A), continuous imbeddings. Let  A and /~ be two quasi-]3anach pairs. 

Let  T be a. linear operator mapping Z(_~) into Z(/?). ~Ve write T: Z -~/~ if the 
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restrictions TIA , are bounded linear mappings from A~ into B/. lVe define the 

operator quasi-norm oe T by [ ITIL~= max  (IITLII,,~,), where II "l l~a,,a, is the usual 
i = 1 , 0  

operator quasi-norm. The vector space of all T: _~-+/~ with I[TlI2.~<oois denoted 

by E(A, B). 

Let  A and B be two intermediate  spaces with respect to _~ a n d / ~  respectively. 

A and B are said to be relative interpolation spaces between -d and /~ if whenever 

T: A -->1~ it  follows tha t  [l:Ta[[~<clI:Ti!_g,a![a]]_~, a~A.  If  ..4 = / ~  and A = B we 

simply say tha t  A is an interpolation space with respect to _~. 

Le t  A be an intermediate space with respect to _~. We denote by A o, the closure 

of A(.4) in A. In particular, Z(_d) o denotes the closure of A(_~) in X(_~). 

Let  * > 0. The K-functional  is defined for a ~ X(_d) by 

.~(t, a, .~) inf  (Ilaoll~ ~ + tlla~:L) 
a=ao+ai 

and similarily the J-funct ional  for a ~ z](.4) by  

J(t, a, :~) = ~ a ~  (I]<l~o, t l ]<L) �9 

Let  -d be a pair of p-normed quasi-Bauach spaces. Take a ~ X(_4) o and write a = 

= ~ a, where a~e A(zl) and the series converges in 2~(.4). The series ~ a~ is called a 

representation of a if in addition 

(g (m n 

is finite. ~'rom lemma 5.1 in [10] follows tha t  every a ~ X(-~) ~ has a representation. 

Fur ther  any  representation of a is p-absolutely convergent in 2:(A). 

A sequence o) ~ (o~)~z is called a weight sequence ii each ~o, is positive. Le t  

0 < p < ee. The space l~(co) = l,((o@ is defined to consist of all sequences c~ = (~), 

such that  (~o~/,e ~, i.e. ( Z  t~,~,l')  1" is finite. W e  define ~o(~/ in a similar way .  

Let  l~ and go denote the pairs (l~,/,(2-~)) and (Co, co(2-')) respectively. We denote 

by e~ the  sequence (&,,),, # e Z. 

Let  ff denote the set of all positive functions ~ on R+ such tha t  both 9(t) and 

tp(1/t) are nondeereasing. We let fro denote the subset of ff consisting of all ~ with 

min (1, 1/ t )p( t)-> 0 as t - +  0, c~. Observe tha t  for ~ e  ff then (~0(2')),eZ'(lo~). 8imi- 

lary (q0(2')),~X(go), whenever 9af ro ,  On ff we define an involution by ~ * ( t ) =  
= 1 / ~ ( 1 / t ) .  

We next  define J- and K-spaces. Let  E be an interpolation space with respect 

to i~. The K-space -~E:Ic consist of all aeX(.A) with (K(2~,a,])),eE. We put  

Ilab~:~ = I](K(>, ~, A)),]I~. ~tssume that both do and A 1 a r e  p-normed vector spaces 

and let ~v be any  interpolation space with respect to l,: The J-space-~B:# is defined 
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to consist of all a e Z(A) ~ such tha t  there is a representation a = ~ av with (J(2~, 

a~, ~))~c/~. We put 

Take ~0 e ft. I f  E =/oo(1/~(2v)) and F =/~(1/~0(2~)) we write 2~, ~:~: respectively 

Ar If  ~(t)-----t o , 0~<0<~1~ we get the spaces -~0,~:K ~nd Ao,v:s. If  0 < 0 < 1, 

we may  by  the classical equivalence theorem omit the indices J ~nd K (see [4], p. 44). 

A quasi-Banach pair A is culled mutual ly  closed iff A~ ~ A~, **:K, i ~ 0, 1. A is 

named a regular pair if A(A) is dense in both  Ao and A~. For a regular Ban~ch 

pair ~ one may  form the dual pair ~* ~- (Ao,* A1)* (see [4], p. 32). The duali ty 

for the sequence spaces occuring in this p~per is with respect  to the  form 

Let  A be a mutual ly  closed Banach pair and take  a ~ Z(A) ~ One may  then 

find a representat ion a = ~ a, such that  for all t > 0 holds 
y 

(2.1) ~ rain (1, t/2~)J(2 ", a,, A) < 18K(t, a, A ) .  
y 

This is a consequence of th. 4 in [5]. See also [9], th. 4, [17], th. 3.2. 

Let  ~ be a Banach pair and take  a e Z(A). P i ck  linear functionals A~ on Z(A) 

such tha t  A~(a) -~ K(2~, a, ~)  and for all b ~ Z(A) holds [A~(b)] <K(2~, b, A). The 

(first) fundamenta l  operator 

is defined by  

~o(b) = (A~(b))~. 

Clearly T is a norm one linear operator with T~ -~ (K(2 ~, a, A))~. 

Take a e X(~) ~ alld let a - ~  ~ a~ be a representat ion of a. The (second) fun- 

damentul  operator 

is defined by  

ay 

T(~')'(7) ----- ~ ?" J(2~, a,, ~ )  " 
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I t  follows that T(~,),((J(2', a ,  A ) ) , ) =  a. These operators made their first explicit 

appearance in Cwikel's paper [8]. See also [6] and [13]. 

For results concerning real interpolation spaces we refer to [4], [5], [6], [7], [8], 

[9], [10], [13], [15], [17], [22]. 

3. - E x t r e m a l  i n t e r p o l a t i o n  func tors .  

In a now classical paper, A~oNszA5~- and GAGLIARDO [1] introduced extremal 

interpolation functors. Let us recall their constructions. We ~ake two fixed Banach 

pairs A and / ] .  Let A and B be two intermediate spaces with respect to _4 a n d / ]  

respectively. Assume further that  A is p-normed. We define the orbit functor 

Orba (A, . )  as follows. Let X be a Banach pair. Then x e Orb~ (A, X) iff we may 

write x = ~ T,a~ (convergence in X(X)), where Tie  s X), a, z A  and the sum 
i~>o 

(ilT& II &) is convergent. Put 
g~>o 

inf(X (Ilr, 
\ i~>o 

where the infimum is taken over all admissible representations of x. We now turn 

to define the coorbit functor Corb~ (., B). The space Corb~ (X', B) consists of all 

x e X(2) such that  Tx e B for any T e s B). We put 

II Z]l~ "~< 1 

The choice of the term (~ extremaI interpolation functors ~ alludes to the follow- 

ing simple results. Let 9- be any interpolation funetor with ~-(.4)~_ A. Then it 

follows that 

Orb~ (A, X) c ~(X) 

for any Banach pair X such that ~(X) is p-normed. Similary if ~-(B) _c B we may 

infer that  

~-(2) c Corb~ (X, B) 

For proofs we refer to [1] or [4], pp. 29-33. The extension to the quasi-Banach 

ease is straightforward. 

Two more interpolation methods are of importance in our investigation. Take 

a e 2J(•). The space 02(a , X),  the orbit of a in X, consists of all x ~ X(2) that  may 

be written as x = Ta, where T e s X). Put  
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This lunctor has been studied extensively by Ou [ 1 8 ] ,  [19]. Le t  /~ be a 

regular pair and take  b*eX(B*). Consider the following norm on 3(.Y). For x e 

/~(X) put 

]X t , -  I r sup t<~x,b*>]. 
i[ T]I:7.~< 1 

We let Co~ (b*, .Y), the coorbit of b* in X, be the completion of A(2~) in this norm. 

The following proposition relates our various functors to each other. 

P~orosI~Io~r 3.1. - O_~(a, 2~) = Orb~ (O~(a, Z), X) and 

Co~ (b*, 2~) : Corb~ (_~, Co~ (b*, ~))o. 

The proof of these simple facts is left for the reader. 

I t  turns out t ha t  most  interpolation methods occuring in analysis can be de- 

scribed in terms of extremal  interpolation funetors. Let  us recall the most impor tant  

examples. 

EXA!Vi:PL]~ 3.2. - Le t  E and E be two interpolation spaces with respect to 1r and i~ 

respectively. Then holds for any Banaeh pair 

and 

X f : j  = Orb~ (F, X) . 

These results are due to BnU])~-K~YGLJAK [5], th. 2 and JA~SO~ [15], th. 14. 

The proof depends mainly on a clever use of the two fundamenta l  operators. In  

this connection we also refer to [13]. 

EXAMPLE 3.3. - As an example of a coorbit functor let us investigate the lunetor 

C%(~, .), where ~ = (~(2~))~, ~ ~ fi~. We claim tha t  for any  Banach pair X holds 

Co~, (V, X) = Corb~, (2 ,  1@(2-~))) ~ . 

Indeed take x ~ A(X) and let T ~ ~(X, l~) be any  norm one operator. Then Tx = 

(<x, x~}), for some sequence * = x, z X(X)*. We have 

and consequently holds 

v 

t<Tx, ~>l< Z ~(2-~)t < x, x:>l = LI ~xll~l(~(2-~)) �9 
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This shows the inclusion D_. If  we compose !r with diagonal operators of norm one 

it follows tha t  

llsll~.Z<l 

Consequently Co~ (q), X) _c Corbi, (2,/~(cf(2-~))) ~ 

The iunctor  Corbt~ (-,/~(V(2-'))) plays a central role in OV~INNIKOV'S work [18], 

[19J, and is there denoted by  ~*(.). See also JA~SO~ [15], th. 5. 

We remark tha t  explicit descriptions of the functors Oil(of,.), q~e if, may be 

found in J ~ s o ~  [15], chap. 4. By  th. 4 of [15], 0~(%.) equals the  T~(.) hmetor  

of O v ~ I ~ : O V  [18]. I f  ~0 ~ if0 we may  consider the  orbit  functor  0%(%.). From 

th. 5 of [15] follows tha t  this funetor coincides with the  4- method of interpolation 

introduced in [1~]. 

F rom the characterization of K- and J- interpolat ion as extremal interpolation 

methods we may  infer tha t  for any interpolation functor  ~- and for any Banach 

pair A holds 

(3.1) 

In  part icular  holds tha t  

(3.2) 

and 

(3.3) 

(i) (li) 

A'-Corb~0~,/~): J C Corb~ (-4, B) c ~Corb~(~,~):K 
( i i i )  ( i v )  

whenever  A and B are intermediate  spaces with respect  to _4 and /~ respectively. 

A natural  question is to find conditions on .d and B such tha t  equal i ty  holds in (3.2) 

and (3.3). As we will see equal i ty  in (ii) and (iii) characterizes relative Calderdn 

pairs. Fur ther  whenever  .4 and B are of type  (0), see chap. 5 below, there is equal i ty  

in (i) and (iv). 

For  later reference we s ta te  here also the following inclusions. For a ~ Z(.4) 

holds with ~o(t) ---- K(t, a, A) 

(3.4) B~,I:j  c- Oz(a, B) C- Bq,,~:K . 

Let  /~ be a regular pair. Take b*eX(/~*) and pu t  ~0(t) = K*(t, b*,B*). Then sim- 

i lary 

(3.5) A%,1:j_c (b*, Z) c 

Proofs of these formulas will be given below. See also [7], [19]. 

1 3  - ~tnnalt di MatemaNca 



208 pv.~ NILSSO~: interpolation o] CalderSn and OvSinnikov pairs 

4.  - Calder~in pairs .  

4.1. De/initions. 

Let  .~ and /~ be two qnasi-Banach pairs. Le t  a e Z(.~) and b e Z(/~) be two 

elements such tha t  for all t > 0 holds 

( ~ . 1 )  �9 K(t, b, B) < K(t, a, _~) . 

If  b is any norm one element in Ox(a, B), clearly (4.1) is satisfied. I f  conversely (4.1) 

implies t ha t  b = Ta for some T: .~ -+ J~ we say tha t  the orbit O~(a, B) is described 

by the K-method.  One may  then choose T such tha t  the norm of T is bounded by a 

constant  not depending on b. This is a easy consequence of the open mapping the- 

orem. Thus the orbit is described by the K-method iff 

(4.2) O2(a, B) --= B,, ~:~ 

where ~0(t) ---- K(t, a, ~). 

Let  1~<~ < oo. We say tha t  .~ and /~  are of type  2 -  (C) iff whenever (4.1) holds 

and ~ ' >  2 one may  find T: .~ -+/~, of norm less than  ~', such tha t  Ta = b. I f  for 

some 2 < o% .~ and 1~ are of type  ~ -  (C) we simply say tha t  -4 and 1~ are of type  

(C). Alternatively we say tha t  _~ and /~  are relative Calder6n. If  .~ ----/~ we call .~ a 

CMder6n pair. 

The known concrete Calder6n pairs in the literature fall into two classes. The 

first concern weighted l~ spaces. ]bet l < p 0 ,  Pl, qo, q l~  ~176 Pu t  .~ = (/~o(o4) , I~1(col) ) 

and /~ = (40(ao),/q,(al)), where w,, a~, i -- 0, 1, are weight sequences. Then if 1 < 

<p,<~q,<c% i = 0, 1, .~ and B are of type  (C) by a theorem of DmT~IEV [11], 

cot. 1. The diagonal case, p ~ =  q~, i = 0,1,  may  be found in [7] and [25]. See 

also [23], [24]. I f  however Po > qo or pl > ql, _~ and /~ are not  relative Calder6n. 

See [19], th. 4. The other type  of CMder6n pairs are those who are covered by 

th. 4.15 and th. 4.17 below. See also [8], th. 1, [13], th. 2 and [19], th. 7. 

Let  ~ be a Banach pair. Then .~ and l~ are of type  (C). Similarly il and .~ are 

of type  1 8 -  (C) whenever .~ is mutua l ly  closed (see [10], sect. 4). 

4.2. Calderdn pairs and extremal interpolation ]unetors. 

We now extend (4.2) to general orbit functors. 

T~EORE~ 4.1. -- Le t  _4 and B be two Banach pairs and A any intermediate  

space with respect to ~ .  I f  ~ a n d / ~  are of type  (C) then  

(4.3) Orb~ (A,/]) =/~o~b2~,~:~ �9 
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P~oo~.  - Choose p such tha~ A is a p-normed. Take b e Bor~x(~.f~):~, i.e. (K(25 

b, B))~e Orb 2 (A, i~). B y  the definition of norm of (K(25 b, B))~ in Orb2 (A, l~) we 

may  write  

(K(2~, b, B))~ = $. r , a ,  

where T,~ ~(A, l~), a ~  A and the series 

converges. Thus 

K(2 ~, b,/~) < Z ]I Tii]~,~ K(25 a,, A ) .  
i ~ 0  

The series converges since A _c X(.4). F rom the B~VD~u theorem on 

K-divisibility [5], th. 4 (see also [9], th. 1, [17], th. 3.1) now follows tha t  there exists 

b~eX(/~) such tha t  b = ~b~  and for all t >  0 holds 
{>0 

(4.4) g(t ,  b~, B)<2811TiIIs a~, A) . 

As A a n d / ~  are of t ype  ~ -- (C), for some )~ < c% (4.4) implies tha t  b~ = &a~ where 

s , e  e(X, ~) ~nd II<II~,~ <2941t T & - , .  
Consequently b = ~ bi = ~ ~gia~ where ( Z ( l ls&.~ll<iA? '~ is finite, i.e. b a 

Orb 2 (A, B}. The converse inclusion follows from (3.2}. 

Let  A and B be two intermediate  spaces between A and B. They are called 

relat ive K-monotone  if whenever  a e A ,  b e Z(B) and (4.i) holds it follows tha t  

[lbI[~<c[IaIIA. I f  this holds with A = B, A = / ~  we say tha t  A is a K-monotone.  

Our next  results are related to cor. 3 and c o l  r in [5]. See also [12]. 

CO~OLL&I~u 4.2. - Let  A and B be  two K-monotone p-normed intermediate  

spaces with respect  to A and /~. Then 

and 

A _c Aorb~(~,~'~):K �9 

P R O O F .  - -  We argue as in th. 4.1 up to (4.4). The est imate (4.4) implies tha t  

II bell ~ < ~ll r, lt~,~ I1 <I,, and consequently 

w~ (IIT&a~II<l,O') �9 

Thus /~o,b~(.~j~):K d B. 
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As A _r Orb~ (A, ~)  it  follows from (3.2) t ha t  A c ~Z~Orb~(.4~co):K" 

COROLLA~Y 4.3. - Let  .4 be a Banach pair. Then holds for any  K-monotone 

intermediate space A with respect to A tha t  

A ~ ~ O r b i ( A , ~ c o ) : K  " 

In  particular if .~ is Culder6n then every interpolation space with respect to _~ is a 

K-space. 

P~ooP. - Apply cot. 4.2 with A = B, .~ = / ~ .  

Let  A be a Banach puir. In the fundamental  paper [5], BRUD~u and K~UGLJAK 

proved tha t  if A is a Calder6n pair and A is an interpolation space with respect to .~ 

then for some interpolation space E with respect to i~ holds A = A--~: g. See [5], 

cor. 4. The point we wish to emphasize here is the use of extremal interpolation 

flmctors, as it  provides us with an explicit description of space E. Fur ther  our 

approach connects this deep result of BRUD~YI-KRuGLSAK with the elementary 

formula (4.2). 

We now prove a dual  version of th. 4.1. 

THEORE~ 4.4. - Let  .4 and 1~ be two Banach pairs. Assume further tha t  .4 is 

mutual ly  closed and tha t  .4 a n d / ~  are of type  (C). Then holds for every interme- 

diate space B with respect to /~ 

"4Co,b~(~,B):J = Corb~ (-4, B) (~ X(-~) ~ . 

PROOF. - Take a ~  Corb~ (~, B)(~ Z(•) ~ Choose ave z](_~) such tha t  a = ~ a, 

and such tha t  for all t > 0 holds 

(4.5) K(t, (J(2 v, av, -4))v, i~) <18K(t,  a, .~). 

See (2.1). We claim tha t  (J(2 v, a~, .~))ve Corb~ (il, B). 

Indeed take T e s B) of norm one. Pu t  b = T((J(2~, av, ]))v). Then b ---- ~ b~ 

where by = J(2 ~, a~, .'4)Tev. Clearly b~e d(/~) and 

(4.6) J(2 ~, by, B ) < J ( 2  v, a~,-~). 

From (4.5) and (4.6) we infer tha t  

K(t, b, .B) <18K(t, a, .~) . 
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Consequently we may  find S: .4 ->/~ with llS[12,~<e and Sa = b. 2r 

[1I'((J(2~', a,,, X))~, ) I I .=  ilbil, = ! laa i l .<~ sup llVa H, =  ll lloo  a,,) 

i.e. (J(2 ~, a~, -4)),e Corb~ (/1, B). 

The converse inclusion is a consequence of (3.3). 

COROLLARu 4.5. -- Let  A be a Banach pair of type  (C). For any interpolation 

space A with respect to X then  holds 

A n ZT(X) ~ = -4corbZG,a):J �9 

PgOOF. - By  lemma 3 in [7] every pair of type  (C) is mutua l ly  closed. 

= Corb,/(A, A) the cor. now follows from th. 4.4. 

We also have the following result, dual to (4.2). 

AS A =  

PROPOSITION 4.6. - Le t  X a n d / 3  be two Banach pairs with A mutual ly  closed,/~ 

regular and assume in addition tha t  they  are of type  (C). Let  b*EZ(B*). Then 

holds 

X+,I: + = Co~ (b*, X) 

with ~0(t) = K*(t, b*,/~*). 

PROOF. - By prop. 3.1 and th. 4.4 we only need to show tha t  Co~ (b*, i l )=  

~- [1(1/~(2~)). Let  T: i l -+ /~  be any  norm one operator. Observe tha t  T has norm 

not  exceeding one iff J(2 ~, Te, , /~)<1, r e  Z. Consider any  sequence = e  d(il) of 

finite support. Then 

!<To:, b*>I ---- i ~ ' ocv<Te,, b*) < ~, I=,IK(2-', b*, /~*)J(2 ~, Te~, /~) < ~ ;~r 

This shows the inclusion D_. But  the argument  m a y  be reversed. Indeed let e > 0 

and choose b,G 4(/~) such tha t  

(b~, b*)> (1 -- e)K(2-~, b*,/~*) 

and J(2 ~, b,,/~) <1.  Define T: /1 -+/~ by T(e~) = G. I t  follows tha t  

- sup b*>l 
llslt;1.-~<.l 

and the inclusion c follows. 

Similary (4.2) follows from th. 4.1 by choosing A = Od(a , 4).  

We now give some examples of applicat ions of th. 4.1 and 4.4. 
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ExA~eLE r - i) Pu t  A = i,. Let  /~ be any Banach pair such tha t  i, and 

are of type  (C). This is the c~se whenever B is mutual ly  closed (combine (2.1) with 

th. 4.4 of [10]). Let  i~ be any interpolation sp~ce with respect  to l~. F rom th. 4.1 

and ex. 3.2 now follows tha t  

See also [5], th. 5, [17], th. 3.17. 

ii) Let  ~ be any mutual ly  closed Banach pair and pu t  B ---- l~. B y  th. 4.1 

in [10], A and loo are of type  (C). Using ex. 3.2 and th. 4.4 we conclude tha t  

Here  E is any interpolation space with respect  to ioo. See ~lso [5], th. 6, [10], th. 4.6, 

[17], th. 3.19. 

Let  ~o----(~,), be a weight sequence. The space ~L,(co), l : < p < o o ,  is defined 

to consist of a l l  sequences (y~), such tha t  ~ e~"y, co~ Z~[0, 2z]. Similary we define 
v 

5~o(co), where ~L denotes the  space of ~11 bounded measures on [0, 2u]. 

]Put ~-Z~ ---- (:FZ~(2"~ ~L~(2-'(~-~ and Y L  ~ ---- ~FL~(1). We denote by  [ ]0 ~nd 

[ ]0 Calder6n's two methods of interpolation. See [4], chap. 4. 

Pl~O~OSI~:IO~ 4.8. - i) Let  /~ be a Banaeh pair such tha t  $-L ~ and /]  ure of 

type  (C). I f  0 < 0 < 1  then 

and 

0 ~ o o  

[/~]0 = & , ~ .  

ii) Let  /~ be a mutual ly  closed B~nach pail' such tha t  B ~nd (V~ - - -~  are of 

type  (C). Then 

where 0 < 0 < 1 .  

[B]0 = Boa 

PI~OOF. - i) By  th. 22 oi [15] holds [B]0 -~ O r b s (  ~L1,/~) and [~]0 _-- Orb~-~(~-~,  

/~). F rom th. 4.1 we now infer tha t  

and 

. - -  O s o o  
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ii) F rom th. 24 of [15] follows 

[/~]0-~ Corb~-~(B,  ~Z~)  ~ . 

Now ii) follows from th. 4.4 as [il] 0 ----11(2-~~ 

EXA~n~E 4.9. - i) Let  A be a Banach pair such that  i~ and A are of type  (C). 

Th. 4.1 implies tha t  for any interpolation space E with respect  to l~ holds 

Orb~(E ,  A) = -4~:g �9 

In part icular  we have for every ~o e i~ 

] )  = 

See [10], th. 4.2, [2], lcmma 6. 

ii) Let  A be a mutual ly  closed Ban~ch pair. Assume further tha t  ~ and l~ 

are relative CMder6n (see [10], th. 4.5). Then holds 

~ : j  ~- Corb~(~, ~)  (5 Z(A) ~ 

whenever F is an interpolation space with respect  to i~. Just app]y th. 4.4. Fur ther  

whenever ~p ~ 0 TM holds 

= X ) .  

This example will be of some interest  later in sect. 5.3. 

4.3. Duality. 

This section is devoted to dual i ty  theorems for relative Calderdn pairs. 

The key theorem of this section is 

THEO~E~ 4.10. - Let  .4 and /~ be two regular Banaeh pairs. Assume far ther  

tha t  /~* is regular. Take boe X(/~). Then holds isometrically 

Co .(bo, = O (bo, 

P~OOl~. - Take a*e O~(bo,-4") and write a*~-Tbo where T e s _~*). Then 
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/ '* [2: _A --*/~*. For a E A (4) we now have 

I<a, a*>] = I<bo, T*I~a>l< 

< 11 Z*l~ii~,s.iia[loo~.(~o,~> < 

< II TlI~,~.II"lfoo~.<~~ �9 

Consequently a*e Cos. (bo, 4)*. 

Conversely let a* be any  norm one, linear functional on C%.(b0, 4) .  

e A(.~) we then  have 

For a 

(4.7) I<a,a*>l< sup i<bo, ra>I = sup I<~,T*bo>]< sup I<a, Sbo>I. 
IITII~~, <1 Iil'*ll~** x, <1 Ils]]~,.~, <x 

Consider the  set E = {Sb0: I]S[IE~.<I} of I(A*).  We claim tha t  E is a(l(A*),  

fl(A))-closed. Indeed the uni t  ball U of s A*) is compact in the topology gen- 

erated by all seminorms of the form ](a, Sb>l where a e LJ(X) and b a !(/~). Thus E 

is the image of the compact set U under the continuous map U~ ~ ~ Sboe E 

Hence E is closed. 

We claim tha t  a*e E. If  not then we m a y  find, using Hahn-Banach a con- 

tinuous linear functional t ha t  strictly separates the closed convex set E from the 

set {a*} (see [16], p. 214). Hence for some a e J (A)  

sup <a, Sbo) < <a, a*> . 

By (4.7) this is a contradiction, hence Ila*[[o~(bo,],)<l. The proof is complete. 

In [15] one may  find further dual i ty  results for extremal interpolation funetors. 

In particular th. 2 of [15] is closely related to our th.  4.10. In tac t  our proof was 

par t ly  extracted from the proof of th. 2 in [15]. 

We may  now pass to one of our main results in this section. 

Tm~ORE~ 4.11. - Le t  A a n d / ~  be two Banach pairs. Assume further tha t  ~ is 

regular and mutual ly  closed and tha t  bo th /~  and B* are regular. Then if .~ and/~* 

are of type  (C) i t  follows tha t  B and .4" are of type  (C). 

P~oo~. - Take b e X(B)_c I(B**). By prop. 4.6 we infer tha t  

Co~.(b, 4 )  = ~.,l:j 

where ~ ( t ) =  K(t, b, B). If  we take duals we may  conclude tha t  

(4.s) ~ ,  ~:~ = Os(b, Z*) .  
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Here we used our th. 4.10 and th. 3.2 in [10]. Fur ther  the equali ty (4.8) holds 

uniformly in b. From (4.2) we conclude tha t  /~ and ~* are of type  (C). 

We note some corollaries. 

COROLLARY 4.12. - Le t  B be a Banach pair such tha t  both 1~ and/~:'~ are regular. 

Then if /~* is of ~ype (C) i t  follows tha t  /~ and/~** are of type  (C). In  particular, 

if B is a reflexive pair /~ is of type  (C) iff /~* is of type  (C). 

CO~OLLAI~u 4.13. -- Let  the assumptions of th. 4.11 be fulfilled. Take b e Z(/]). 

Then the orbit 

O~..(b, _~*) 

is described by the K-method.  

PI~OOF. - The cot. will follow once we have proven tha t  

(4.9) O~**(b, _4") -~ O~(b, A*) . 

To show this i t  suffices to show tha t  every mapping T: B -+ A* may  be extended 

to /~**. As is easily seen (T*IA)* is such an extension. 

RE~A~K. -- The arguments leading to (4.9) were extracted from the proof of 

th. 6 in [15]. See ~lso [14]~ th. 3.3. 

Our next  corollary is related to ex. 4.9. 

COROLLARY 4.14. -- Let  ~ be a regular, mutua l ly  closed Banach pair. Then if 

und il axe of type  (C) it follows tha t  Co and .4" are of type  (C). 

P~ooF. - Apply th. 4.11 with /~ = ~o. 

Let  A be a regular Banach pair. Ta.ke 9 e ~o. From ex. 3.3 and th. 4.10 it now 

follows tha t  

= %(% Z*) 

This relation has previously been proven by both JA~-so~ and OV~I~NIKOV. See [15], 

th.  12 and [20]. 

4.4. Calderdn pairs o] K-spaces. 

Let  A be a Banach pair. In [8] CWlKEL proved tha t  the pair (A0,,~,, -40,,~) is 

of type  (C) provided 0 < 0 o ,  0 1 < 1  and l<po,  pl<oo.  This result was later ex- 

tended by Dz-VIITIr and OV~I~-~IKOV in [13]. Our next  theorem far ther  refines 

these results. Throughout. this section let E and  P denote t w o  Banach pairs which 

are pairs of interpolation spaces with respect to  i~  and il respectively. 
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Tm~onE)[ 4.15. - Let ~ and /~ be two Banach pairs. Assume further that  the 

pair ( /~ , : j~ /~ :z )  is mutually closed. Assume that for all t ) 0  holds 

K(t, b, B2o:z,/]~:z) <K(t ,  a, ~0 :~ ,  ~ : K )  

where b eX(/~F.:Z , / ~ : z )  ~ Then if /~ and J~ are of type 2 - - (C)  it follows that  

b = Ta for some linear operator 

of norm less that  e~. 

c ~ -  (e).)  

(Thus (~Zo:K, A~,:~) and (/~0:~, B~:~) are (~ almost )~ of type 

PROOF. - By lemma 3.16 of [17] we may pick b~e A(/~) such that  b-~ ~ by 

and for all t > 0 holds 

Similary by th. 3.6 of [17] (see also [5], th. 6.1) holds 

K(t, (K(2~, ~, ]))~, Z) ~ K(t, a, ~,:~, ]~:~). 

Our assumptions now imply that  

K(t, (,r(~, b~, ~))~, ~)<~K(~, (K(2~, a, ~))~, ~). 

Consequently we may find U:/~ -->/7, of norm less than 2 c ~  satisfying 

(J(2~, b~, ~))~= ~((K(2~, a, ~))~). 

~otice that  we further have 

and 

T(~,) : (F o, F~) -~ (B~~ BF,:j) �9 

Thus the operator T ~ T(b,) ,UT:  has the desired properties. The proof is complete. 

I~E~iAI~K. -- The pair (BFo:J,/~r~:J) is mutually closed whenever both /~ and 

((/~)ro:J, (l~)~:z) are mutually closed. Indeed /~• i----0, 1. If w e  

apply the reiteration theorem for K-spaces (see [5], th. 6.1, [17], cot. 3.9) we find 

~h~t (/~Fo:J, B~:J)~,~:K = / ~ : ~  where D~ = ((l~)~.:z, (l~)F~:J)~,~:~- By ~ssumptions 

holds D~ = (l~)~i:~ and thus we infer that  (/~o:j, B~:j)~. ~:~::/~F,:Z~ i = 0~1. 
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RE~L~RK. -- Assume tha t  F is a regular pair. Then th. 4.15 implies tha t  (Azo:K, 

A~.:K) and (B~o:z, BF.:~) are of type  (C). (See [17]). 

R]~HA~K 4.16. - Assume tha t  for i =- 0, 1, holds F ,  ~ (l~)~,:], Then if E and 

are of type  (C) i t  follows tha t  (-4~0:K,-~.:K) and (/~~ B~.:K) are of type  (C). 

Indeed our assumptions implies t ha t  BF,:K --~ /~ , : J '  i ~-- 0, 1 (see [17], lemma 2.8). 

T~ke b e X(/~) ~ ~nd let b ~- ~ b, be the representation provided by the ~undamental 

lemma ([4], p. 33). Then 

The rest is as in the proof of th. 4.15. 

As we remarked above this result is an extension of th. 2 in [13]. I i  one in addi- 

t ion to the assumptions in remark 4.16 assumes tha t  for i = 0, 1, holds J~ ~ (il)E,:g 

one gets D ~ ] ~ V - O V 6 I ~ o v ' s  theorem ([13], th. 2). 

In order to obtain a part ial  converse of th.  4.15 we need to introduce some 

fur ther  terminology. 

A Banach pair A is called K-surjective iff for every r e ~ one may  find a e X(~) 

such tha t  for some positive constants c~ and c~ holds 

(4 .lO) e~K(t, a, ~) <~(t)< c2K(t, a, A) . 

We further  require tha t  el and e~ may  be chosen independently of ~. ,~ is called 

Ko-surjective iff for every ~ ~ ~o one may  find a ~ Z(-4) ~ satisfying (4.10). 

We note t ha t  i~ is K-surjective. Examples of K0-surjective pairs are i~, 1 < p  < c~ 

and (LI(R"),L~(R~)). See also [19], lemma 1. 

The main result of this section is the following converse to th.  4.15. 

Tm~ORE)~ 4.17. - Le t  _~ a n d / ~  be two Banach pairs. Assume further tha t  Z is a 

mutua l ly  closed Ko:surjective pair and t h a t / ~  is K-surjectivc. Then if (A~o:z, A~'~:J) 

and (/~o:g,/~E~:E) are of type  (C) it follows tha t  _~ and E are of type  (C). 

PROOF. - Assume tha t  for all t>  0 holds 

K(t, b, E) <K(t, a, F) .  

Choose xb~Z(/~ ) such tha t  

K(t, b, i~) ~ K(t, xb, B).  

As /~ and ir are of type  (C) we may  find $1~ s l~) with b ~- S1x~. Interpolating 

we find $1: (/~0:K, B~:K) -~ (Eo, El). From [t7], th. 3.6 (see also [5], th. 6. a) we 
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infer tha t  

K(t, b, F,) ~ K(t, x~, /~0:K, /~ :~ )  �9 

Pick x~ ~ ~(_~) satisfying 

K(t, a, i~) ~ K(t, x,, A ) .  

As i~ and .4 are relative Calderdn we may  construct  S~: i~-->-4 satisfying S~a = x~. 

Fur ther  S~: (F0 , /7 )  -+ ( ~ 0 : j ,  -~ :z ) "  We claim tha t  

K(t, a, F) ~ K(t, Xa, .4~0:a, -4~.:j) �9 

Indeed noticing tha t  A2~:] =- ~9,:K, where D~ = (Io~)~,,,:z, i = 0, 1 (see ex. 4.7) we 

infer tha t  

K(t, x,, -~Fo:J, -~r~:s) ~ K(t, x~, -~Do:K,-4,~:K) ~ 

We now have 

K(t, xb, BEd:t:,/~:K) < vK(t, Xa, -4F0:s, A~:J)  �9 

Choose S: (.4~.:j, .4~,:j) --> (/~Eo:K, /~E~:K) with Sxa-~ x b. Put  T - ~  SISSy. I t  follows 

tha t  T: _F -+/~ and Ta -- b. As all estimates are uniform we conclude tha t  F and 

are of type  (C). 

RE~AR];. - If  the  pair E is regular it suffices to assume tha t  ]~ is Ko-surjective. 

I f  we combine remark 4.16 and th. 4.17 we get  the following corollary. 

COROLLARY 4.18. -- Let  .4 be a mutuMly closed, Ko-surjeetive Banach pair. 

Assume further  tha t  for i -= 0, 1, holds E~ = (i~)E~:z. Then (-4~.:K, -4E~:K) is Cal- 

der6n iff (Eo, El) is Calder6a. 
In [19] OV6IN~IKOV constructed a pair of sequence spaces E which are not of 

t ype  (C). In fact  



~EIr ~ILsso%: interpoiation o/ CaIderdn and Ov5innikov pa~rs 210 

where 0 < 0 < 1~ will do. As this E satisfies the assumptions of cor. 4.18 i t  follows 

tha t  (-~o:K, ~ : K )  is never of type  (C) provided ,~ is mutua l ly  closed and Ko-surjee- 

t i re .  This is th.  7 of [19]. Le t  us remark tha t  this was par t  of the motivat ion for 

our th. 4.17. 

5. - Ov~innikov pairs. 

5.1. De]initions. 

Let  T be a linear operator from i~ into 11. By a fundamenta l  theorem of OvSI~-- 

~IKov [18], th. 1, we infer t ha t  

for any V e ~, or equivalently 

~': (i~)~, ~ : ~  - >  (/~)~,~:~. 

Fur ther  II Tll~(~/~(e,)),~,(1/v(~,))<2gall T]I~r where K a is the Grothendieek constant. 

The purpose of this chapter is to generalize Ovcinnikov~s theorem to other pairs 

besides leo and 11. As in [22] we make the following definitions. Let  A a n d / ~  be two 

Banaeh pairs. We say tha t  .4 and /~  are of type  (0) if w h e n e v e r / ' :  ~ --~ B it follows 

tha t  

(5.1) 

for any  ~ e $ .  

(5.2) 

T:~,co:K--~'Bqj, I:j 

We further  require tha t  for some 2 < c~ holds 

Alternatively we say tha t  A a n d / ~  are relative Ovcinnikov. ,~ a n d / ~  are of type  

(0)o if T ~ s  implies tha t  

(5.3) ~:  ~ , ~ : ~ - ~ , ~ : ~ ,  

whenever ~ E ~0~ and for some )~ < c~ holds 

(5.4) I[ TlJ~,~:~, ~, ~:~ < ;.II TtS,~ �9 

By OvSinnikov's theorem i~ and i~ are of type  (0) (with 2 = 2Ka). More ex- 

amples may  be found in 1Jv, ET~E [22]. 
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5.2. s 

Let  ~ and B be two Banach pairs. We say tha t  T e ~(A~ B) is a nuclear operator 

from .~ into /~ if there exist (b~)~e A(/~) and (a*)e X(~)* with 

(5.5) max ( f l ; & a l l b & o ,  II * * ~ l l < l l b & = )  < oo  

such that Ta = ~(a,a*>b for any  aeS(A). We write T: A - ~ / ~ .  We define 

the nuclear norm of Z, denoted by llrits ~s the infimum of all expressions appe- 

aring in (5.5). I t  is clear t ha t  if T: A _Z> B then each map T: A~ --> B~ i = O~ I,  

is nuclear in the usual sense. The converse is in general not true. One instance 

when it  is true is when /~ = ix. Indeed i f  T: A~ --> l~(2-v~), i = 0~ 1, are nuclear 

we m a y  write T( ' )  = ~( ' ,G>G where ~ 2-~IIGIIA~* * < 0% i = 0,1. consequent ly 

T :  X - ~  i~. ~ " 

Let  ~ be a regular pair. ~ge observe tha t  if T: ~ - ~ > / ~  then there exist two 

pairs of weights & = (@, ~ )  and ~ = (~,  ~*) so tha t  we have a commutat ive  

diagram of the form 

(z=O/o~o), t| Lv (zd~o), ~(~)). 

Here 81 and Ss are norm one linear operators. S~ is a multiplier t ransform defined 

by  a sequence ~ = (~)~ such tha t  

[0)00.0 0)1 ~1~ (5.7) ~ l G [ m a x ,  ~ , ,  ~ % ) < c r  
y 

Fur ther  the infimum of (5.7) over all possible factorisations equals [[T[[~. x. 

To see tha t  T:  ~ - ~  B implies tha t  we have the factorisation (5.6) choose 

(G),r and (a+)eS(A) such tha t  (5.5) is fulfilled. Pu t  E-----{v: a #  0}. For  

+ ~ p n t  ~ ,  = I > : [ l < ,  , i l 0 G , ,  r = o ,  1. i f  w e  t a k e  ~.~ = 1 *or ~ ~ ~ ,  ~. = 0 ~or 

v ~ E it  is a mat te r  of routine to consDnct S~ and Sz such tha t  (5.6) is satisfied. 

Conversely (5.6) implies t ha t  T: ~_2~ ~ ~ regular or not. 

We m a y  now construct nuclear orbit functors. Take a ~ X(~). We denote by 

0~(% B) the space of all b e X(/3) t ha t  m a y  be writ ten as b = Ta where T: e~ _2> ~.  

We pu t  

l lbflo:<a,~)= in f  {ll ~ll~,~= b = T ~ } .  
A 

We similary define Orb} (A,.), Corb~- (., B) and Co} (b*,.) where b* s Z(/3*). 
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A description of our nuclear orbit functors is provided by ~he following 

P u o P o s ~ o ~  5.1. - Let A and /~ be two Banach pairs. Take a e X(A), a r 0, 

and put q0(t)= K(t, a, ~). Then holds uniformly in a 

(5.s) O~(a,B) = B~,~:~. 

Further for any intermediate space A with respect to A holds 

Orb]- (A,/~) -~/~o~ ~(a,~,):j. 

P~ooF. - Take b ~ /~ , l : J  and choose b ~  A(/~) such that 

N" J(2~, b~, ft) 

Define the multiplier transform T: io~--> t~ by 

(J(25 b~,/~) 

and put S ~ T(b,)TT a. Clearly (5.6) is fulfilled and we conclude that  S: -~-%/~. 

As b : Sa it follows that  b e OYi(a , B). 
Assume now that  b ~  Ta where T :~ -L>/~ .  Write T( ')  -= ~ , ( . , a ~ b  such 

that  (5.5) is fulfilled. Let I~ be the subset of Z defined by the condition: v~ I~  iff 

II b, rf,. < b li,. < 2 tl b, II,.. 

The sets IK, K e Z ,  constitute a disjoint union of the set (v: b~r 0}. Further for 

v e I~ holds 

J(2 -~, a*, z~*) J(2 ~, b~, ]J)~<2 max (lla, II~*Hb~II~) �9 
~=0,I 

l~ut b ~ :  ~ (a, a* )b .  As 

(5.9) J(2 K, b ~, B)<~ ~ J(2 -~, a*, ~*) J(2 ~, b~,/~) K(2 K, a, ~)~< 

a, ~) 

it follows that  b~reA(B). Clearly b = ~ b  z. From our estimates, (5.9), we now 
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infer that 

~K J(2~' b~' B) a* ' " ~ 
K--~, a, ~ <2 ~ ,,~• max (I/ ,]1-4, I b~]I~,) < oo. 

Consequently b ~/~ ,~:~. 
By (3.1) we certainly have /~ ~ - c Orb~ (A,/2) so it suffices to show the 

0 r b ~ ( A , h )  : J  - 

converse inclusion. Take b e OrbS- (A, B) and write b -- ~, Tiai, where T~: _~_2> 1~, 

) ~,e A and (ll T~ll~.tla~II,)" */~< ~o. F rom ( 5 . 8 ) f o l l o w s  tha t  b~ = T~(l,+BK(e%a,,.g),l: J. 

Choose " ~ (b~)~ A(B) such that  b~ = ~ b~ and 

~ K(~ ,  a~, A) <311r~l~,~. 

I t  follows that  

4 

Thus if we put b ~ = ~ b ~  then b~zl(B) and b = ~ b , .  Further 

(5.10) (J(2 ~, b,,/~)), < 2 (J( 2~, b~, B))~ 
i 

where the series converges in Z(i~). Define multiplier transforms S~: l~-+ i~ by 

b,, B) \ { j ( ~ ,  ~ - 

V l!n and put V~= S~T ~'. Clearly V ~ : X ~ > i l  with ~tl ~IIZL<3ilT~IIZ~ �9 From (5.10)now 

follows that, 

(J(2 ~, b,, B))~< X V,(a~) 
i 

n io 

Consequently (J(25 b,,/~)),e OrbS- (A, il), i.e. b e/~O~b:-(A,~):J" The proof is com- 

plete. 

R~)~ARX 5.2. - From the proof of (5.8) follows that  

(5,11) 11 bll ~ ,  1:, < 211bllo;o,~)< 211bil~. 1:,. 

RESIARK 5.3. -- BE~GH [3], (Cf. [4], p. 31) showed that if for some ~ ~ Z holds 

J(2 5 b, B) <K(2 5 a, .~) then b e 021(a, B). Bergh's result apparently is a special case 
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of (5.8). Just  write b----~b~ where b ~ = 0  if / t ~ v  and b~=b.  CWI~E~ in [7] on 

the other hand proved, if we have K(2", b~B)~e~K(2~,a,A) with ~ e ~ < c ~  then 
v 

b ~ Oi(a, B). This follows from (5.8) by writing b ---- ~ b~ where the representation 

is the one that  is provided by the fundamental lemma ([4], p. 45). See also [19], 

sect. 1. If in (5.8) one puts B --/1 one gets prop. 4 in [18]. 

We now turn to nuclear coorbit functors. 

P~oPosI~Io~ 5A. - Let Z and ]~ be two Banach pMrs. For every intermediate 

space B with respect to J~ holds 

Corb~- (-4, B) ---- A C o r b ~ ( ~ , B )  : K " 

e~oo~ .  - Take a ~ A-~o~(~.,):~,  i.e. (K(2~, ~, ~)),~ Corb~ ( 4 ,  B). Take T: ~ ~ ~. 

We claim that  b- - - -TaeB.  From (5.8) we infer that  b~/~K(2~,s J. Choose 

b, ~ A(/3) such that  b = ~ b, and 

J(2 ~, b~,/~) .~, 

I t  follows that  b = T(~,)S((K(2 ~, a, A)),), where S: l~-~ l~ is a suitable multiplier 

transform. Consequently 

< 3 sup [iV((K(25 a,_4))~)l],= 3II(K(2~, a,~))~][co,~0~.~), 

i.e. a ~ Corb~ (A, B). The converse inclusion follows from (3.1). 

PROPOSitiON 5.5. - Let A and B be two Banach pai~'s. Assume that  ]~ is regular 

and take b*~ X(B*). Then holds uniformly in b* 

Co:- (b*, i )  = -o A~p, oo:K 

Pi~oo~. - Take a e A(A) and let T: A - ~ / ~  be any nuclear map of finite rank. 
* * 

Write T(.) ---- ~ <., a~} b~ where a~ e (Ao~ * ~ (A~ *, b~e A(/~) and the series is finite. 

Choose sets IKONS in the proof of prop. 5.1. Then 

I b*> < [<Ta, b*>] = E X <a, a*><b~, 

< Z Z K( 2~, a, _4)J(2 -~, a*, %*)J(2 ~, b~,/~)K(2-~% b*,/~*)< 
K vel~ 

<2 sup (K(e~, a, ])~(2-~, ~*, ~*)) 5 max (II~*[]~;I!~&,) �9 
K v i = 0 , 1  

Consequently ~o, oo:E C Co~- (b*, ~). 

1 4  - Annal i  di Matemalica 
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To prove the converse inclusion consider rank one operators of the form T(. ) 

~- ( . ,  a*)b~ where J(2 -~, a*, .~*) <~1 and J (2  ~, b~, B)<I .  

5.3. Characterizations o] type (0). 

In  this section we will elucidate the  possibility of describing pairs of type  (0) 

using extremal  interpolation functors. F rom our results it will follow tha t  O u  

~KOV pairs are in a sense opposite to Calder6n pairs. The reader is asked to com- 

pare the results of this section with (3.4), (3.5) and sect. 4.2. Almost all our results 

will be given for pairs of t ype  (0) only. Observe tha t  t ype  (0) implies type  (0)o" 

Let  E and F be intermediate spaces with respect  to l~ and 11 respectively. 

Consider the  following condition: 

(5.12) if a : (a,)~ ~ 1~ and~,r ~ fl~ < c~ then fl---- (/~)~ e / ~ .  

Clearly (5.12) is fulfilled whenever /~ and F are relative interpolation spaces bet- 

ween i ~ and i1: Jus t  consider the  multiplier t ransform T defined by  T(y) ~- ((fl~/~)y~)~. 

Then T: i~--> [1 and Ta : ft. We now have the following extension of the  proper ty  

(5.1). See [22]. 

t)~oPosI~IO~ 5.6. - Let  E and F be interpolation spaces with respect  to i~ and 11 

respectively. Let  A a n d / ]  be two Banach pairs and assume further tha t  .~ and 

are of type  (0). Take 2 ~ e s 1~). Then 

(5.13) T: $~:~ -->/~.:j 

whenever E and F satisfy (5.12). 

PI~OO~. - Take a e -~ :K,  i.e. (K(2 ~, a, .~))~e J~. Pu t  ~(t) : K(t, a, ~) .  Then a e 

~ , ~ : ~  and by  (5.1) Ta e_~,l: J. "Write Ya : ~ b~ where b ~  A(B) satisfies 

~ J(2~, b~,/~) 

I f  we apply (5.12) with ~ -~  (K(2 ' , a , .~ ) ) ,  and fl ~--(J(2 ~, b,,/~)), it  follows tha t  

(J(2 v, b~,/~))v ~ F ,  i.e. Ta ~ B~:]. 

Let  us apply  prop. 5.6 with ~ = io~ and B = il. As E = (i~)~: K and F - ~  (ll)zv:J 

we see tha t  E and F are relative interpolation spaces with respect  to i~ and il when- 

ever (5.12) is fulfilled. We conchlde that  (5.12) characterizes relative interpolation 

spaces between l~ and 11. 

We now confront type  (0) with orbit functors. 
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PROPOSITION 5 .7 .  - -  Let  A and /~ be two Banach pairs. 

t ype  (0) iff the  relation 

Then A and ~ are of 

where ~ ( t ) =  K(t, a, A), holds uniformly in a ~Z(A).  

PRoof .  - Assume tha t  A and /~  are o2 type  (O). Take T e fi(A, B) and a ~ Z(~) .  

I f  we apply  (5.1) with ~0(t) = K(t, a, A) it  follows tha t  Ya e/]~,~:~. Thus O~(a, B)~_ 

_~ B~,I:~. The converse inclusion is a consequence of prop. 5.1. 

Conversely assume (5.14). Take ~ fi(A, B) and ~ e ft. I f  aeJA,,~: K it  follows 

from (5.14) tha t  Ya ~ /~ ,~ : j ,  ~V~'ite Ta = ~ b~ in the  usual way  and note tha t  

~ J(2 ~, b~, .B) [K(2 ~, a, ~2 J(2~, b~, B) 

Consequently Ta e/~,,l:e~ and we conclude tha t  A and /~ are of type  (0). 

Let  us give an application of prop. 5.7. Let  A be a regular Banach pair such 

tha t  _4" also is regular. Let  /~ be a dual Banach pair. We claim tha t  A a n d / ~  are 

of type  (0) whenever A** a n d / ~  are of type  (0). Indeed if a e Z(A) then holds b y  

(4.9) O$.,(a, B) = O2(a, B) (isometrically). F rom (5.1~) now follows tha t  

O~(a, ~ )  = B~:(~,~,Z..),~:J = B~:(2~, o,7~), ~:~. 

The last equal i ty  is a consequence of  the equal i ty  K(t, a~ A**) = K(t, a, A). Thus 

and /~ are of t ype  (0). I f  we apply  this argument  with A = co~ B = l~, ~ * * =  I~, 

Oveinnikov~s theorem now implies 

PROPOSITIO~ 5.8. - Co and l~ are of t ype  (0). 

R E ~ A R K .  -- Prop. 5.8 is due to JA~so~ [15]. See also [22]. 

To describe type  (0)o we use eoorbit funetors. 

PROPOSITION 5.9 .  - Let  A a n d / ~  be two Banach pairs and assume further  tha t  

they  are regular. Then A and /~ are of t ype  (0)o if[ the relation 

(5.15) r (b*, -~) - o  Aq9, cr 

where ~ ( t ) =  K*(t, b*,/~*), holds uniformly in b*e Z(/~*). 

PROOF. - Assume tha t  A and /~ are of t ype  (0)o. Take b*~Z(/~*), T E  fi(~,/~) 

and a e A ( Z ) . :  As a~A--~,~o:K (5.3) implies tha t  T a ~ / ~ , l :  J As b * ~ B ~ . , ~ : g =  

= (B~,I:J)* (see [10], th. 3.2) we infer tha t  
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(5.~8) 

where ~(t) : K(t, a, ~4). 
then holds 

Consequently ~o, ~:K-c Co~ (b*, A). The converse inclusion follows from prop. 5.5. 

Conversely assume (5.15). Take ~ E ~o and T ~  s For a ~ A(A) we now 

.~l~ve 

I(Ta, b*)[<c]l TH],~ sup K(2v' a, ] )  K(2", b*,/]*) e T r ra I b* 

By duality this inequality implies that  Ta E/~,,~:j. Thus 

: 

i.e. A ~nd B are of type (0)o. 

REMARK 5.10. - Assume further that/~* is a regular B~nach pair. By modifying 

the proof of prop. 5.9 one may show that A and/~* are of type (0)o iff the relation 

Co~. (b, A) : A~ , where ~(t) = K*(t, b,/~), holds uniformly in b ~ Z(/~). 

RE~AlCK 5.11. - Prop. 5.7 may be extended in the following way. If  ~ and 

~re of type (0) then 

(5.16) Orb~ (A,/~) =/~o,~(a,~,):J 

and 

(5.17) Corb~ (z~, B) -- -~cor~;(i~,~):~ �9 

Here A and B are intermediate spaces with respect to ~ ~nd B respectively. Cf 

(3.2) ~nd (3.3). 

We m~y now prove the principal result of this section. See ~lso [22]. 

T]~:EO~E)[ 5.12. - Let ~ and/~ be two B~nach pairs. Then .~ ~nd/~ are of type 

(0) iff for every a ~ X(-4) holds uniformly 

l%rther for ~ny intermediate space A with respect to 

Orb Z (A, B) -~ Orb~ (A, B) :/~orb~(~,~-~):J 

whenever ~ and B are of type (0). 

P~ooF. - To prove the first part  just combine prop. 5.1, (5.8) with prop. 5.7. 

The second part  will follow from prop. 5.1 once we have proven that  Orbx (A, 

~) _c OrbS- (A,/~). Take b ~ Orb~ (A,/~) and write b = ~ T,a~, where T,~ ~(~,/~), 
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we may find &: A - ~  B ~l th  &a~---- /~,a~ and IIs~ll-~x<cllT, ll~7~. Consequently 

= Z where (lIsll . II ll2 ) i .e  b Orb  The proof is 

complete. 

Similary if we combine prop. 5.5 with prop. 5.9 we obtain the following charac- 

terization of type (0)0. 

Tm~ogn~ 5.13. - Let X and B be two Banach pairs and assume further that X 

and B are regular. Then X and B are of type (0)0 iff for every b*~ X(B*) holds 

uniformly 

~ 0  Cox (b*, A) = Co~- (b*, A) = Av, ~:~,  

where ~(t) = K*(t, b*, B*). 
For general coorbit functors holds: 

Tn-EOm~[ 5.14. - I~et ~ and /~ be two Banach pairs of type (0). For every in- 

termediate space B with respect to B then holds 

Corb~ (A, B) = Corb~ (.4, B) A "" Corb~(~c~,B) : K  " 

Ov~innikov~s theorem has the consequence that if T: .4--~ B then 

~: 0i~(V , A) -~ Corb~. (B, 1#/~(2~))), 

where ~ ~ ~. On the other hand it ~ollows from (3.3) and (3.4) that  

.B~, l : j - -  C Corb,, (/~, l~(1/q~(2~))) (5.19) 

and 

(5.20) 0~(% Z) c ] , ,  ~:~. 

Thus A and B will be of type (0) if there is equality in (5.19) and (5.20). From 

ex. 4.9 now follows. 

FROPOSITIOh ~ 5.15. -- Let A and/~  be two Banach pairs wi th/~ mutually closed 

and regular. If ioo and A are of type (C) and/~ and i~ are of type (C) it follows that 

and /~ are of type  (0). 

Let E and F be two pairs of Banach interpolation spaces with respect to ir 

and i~ respectively. From th. 4.15 we infer that  (/]E#~-,/~EI:K) and/1 are of type (C) 

whenever F~ and/1 are of type (C). If we in addition assumes that for i = 0, 1 i holds 

F ~ :  (Ir162 remark 4,16 implies that loo and (AFo:J, A&:j) are of type (C) if i~ 
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and _F are of type  (C). Prop. 5.15 now implies that  

(_~o:~, ~ : ~ )  and (~0:~,/~:~) 

are of type (0). 

Let ns give an example. Let 0 < 0 ~ < 1 ,  i -~ 0,1, 2, 3. Then 

(Aoo,~, Z0,,~) and (Bo,,1,/~0.,1) 

are of type (0). To prove this jttst note that  loo ~nd (/r176176176 are of type 

(C). Similary (11(2-~ 1~(2-~ and i~ are relative Calder6n. The resu]% now follows 

from the above. 

(5.2L) 

where ~(t) ~ K*(t, b~/~). 

we infer that  

5.4. D~ality. 

Tm~o~E~ 5.16. - Let A and/~  be two Banach pairs. Assume further that  A, B 

and B* axe regular pairs. Then A and/~* are of type (0)o iff/~ and A* are of type (0). 

P~ooF. - Assume that A and /~* are of type  (0)o and take b e Z(/~)c X(/~**). 

From prop. 5.9 (and remark 5.10) follows that  

Cos, (b, X) = ~o, ~:~ 

As b E X(3~) ~ i.e. K(t, b, .B) = o(max (1, t)) as t -+ O, co, 

See [4], th. 3.4.2. 

O~(b, A) -~ A~.,I:j . 

Here we used our th. 4.10 and th. 3.1 in [10]. 

type  (0). 

~ 0  
r co:K ~ "Ar �9 

If we take duals in (5.21) we conclude that 

By prop. 5,7, B and ~* ~re of 

If conversely /~ and A* are of type (0) it would follow that the two Banach 
~ 0  ~0  spaces Co~. (b, A) and Ar have the same dual. As Co~. (b, A)_c A~,~:x they 

must coincide. Now prop. 5.9 (and remark 5.10) implies that  ~ and B* are of 

type  (0)0. 

5.5. K-spaces o] type (0). 

Let E and F be two Banach pairs consisting of interpolation spaces with respect 

to Z~and il respectively. Our first result shows that if F and E are of ~ype (O) ~his 

property is transplanted to certain pairs of J- and K-spaces. Cf. th. 4.15. 
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Tm~0RE~ 5.17. - Let ~ and /~ be two Banach pairs. Assume further that  the 

pair (A2.:j, ~ : j )  is mutually closed and regular. Then if _~ and E are of type (0) 

it follows that  (A~.:z, A~.:z) and (B~o:~, B~:~) are of type (0). 

YI~OOF. - Take T: (-4F.:], -~,:J) -* (/~0:K, / ~ : ~ )  and a e Z(-4~0:j, -~)~:j. Put  

b ~ Ta. Choose a~e A(.4) such that  a ~- ~ a, and (J(2 ~, a,, A))~ ~ X(F). If we put 

S = T ~ TT(~,), then S: F -+ ~' and 

As _F and E arc of type (0) we infer that 

(5.22) T: z4(_~)cp,co:~::j ---N -B(~)~, I:j:K 

where ~ ~ ft. Using two reiteration theorems for real interpolation spaces, [17], 

th. 3.11, th. 3.15, (5.22) implies that  

The proof is complete. 

The assumption that  (AEo:J, A~:J) is mutually closed can sometimes be dispensed 

with. CL remark 4.16. 

A converse to th. 5.17 is furnished by the following theorem. 

THEO~E)I 5.18. - Let A and B be two Banach pairs. Assume further that  A is 

K-surjective and tha t /~  is mutually closed and Ko-surjective. Then if (-4~o:K, "4~:K) 

and (B~o:j , /~,:j)  are of type (0) it follows that E' and _~ are of type (0). 

P~ooF. - Take T e s  and ~e f f .  We want to show that  

T: Er oo:K--~.Fr 

Take a ~ Z(E) and put b ~- Ta. Choose xa e X(.4) satisfying 

(5.23) K(t ,  Xa• _~) ,~ K( t ,  a, io~) . 

As .4 and i~ are of type (C) we may construct Tl: (XE0:~,_4z,:~) -+(Eo, E~) with 

TlXa ~. ~. 

Pick xbe X(]~) with 

(5.14) K(t,  xo, ~)  ~ K(t ,  b, il) . 
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As /7 is mutual ly  closed we may  find T~: (F0, F~) -> (/7~.:z,/~v,:j) with T~b = x~. 

Pu t  S = T~ TT~. Then Sx ,  = xb. From om ~ assumptions we infer tha.t 

s :  (2~0:~, ~,:~)~, ~:~-~ (/7~.:~,/2~:~)~.~:~, 

where 9 e ft. B y  reiteration (see [5], th. 6, [17], th. 3.6, th. 3.14) this simplifies to 

s :  X , : ~  -~/7~:~ 

where E = E~,~:K and /~ = ff , , l :J .  Now (5.23) yields 

11<1~ ~ Ilall(e~)~:~ "~ lt~176 �9 

As /~ is mutual ly  closed (5.24) implies tha t  

So altogether we now have 

i.e. E and _~ are of type  (0). The proof is complete. 

Rv.lWAmr. - L e t / ~  be a regular pair. I t  is then only necessary to assume that  ,~ 

Ko-sUrjeetive. 

We now wish to apply  th. 5.18 in our analysis of type  (0). Let  us make the 

following assumptions. A is a K-surject ive Banach pair a n d / 7  is a mutual ly  closed, 

Ko-snrjeetive Banaeh pair. If  ~ a n d / 7  are of type  (0) it follows from the proof of 

th. 5.18 tha t  

Take 9 ~ r 

(5.25) 

Similary (5.16) implies tha t  

(5.26) 

and ix are of type  (0) and 

ioo and /3 are oi t ype  (0) .  

Remark.  5.11, (5.17) applied to A, i~ and i1(1/?(2')) yields tha t  

0~(~o, 17) =/~,1:J �9 
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Now, quite generaly,  ~ B~nach pair X is called (uniformly) t ame  if for every 

~ ~ holds 

0i~(% X) = Corb~ (2 ,  l~(1/~(2~))) 

(uniformly). This not ion is due to OVCINNIKOV [18], who showed tha t  l~ and l~ 

are tame.  

J~et us now assume tha t  both  A ~nd B ~re uniformly t~me p~irs. Then (5.25) 

implies t ha t  

] )  = ff. , 

i.e. loo ~nd A ~re of t ype  (C). Simila.ry (5.26) yields 

= Cor% = Cog, (% 

This l~st equal i ty  is fulfilled wheneve r /~  ~nd l~ are of t ype  (C) (see ex. 4.9). I f  we 

invoke prop. 5.15 we have now proven 

P~oPosI~Io~ 5.19. - Le t  A be ~ uniformly tam% K-surject ive B~nach pair  and 

let  /~ be ~ uniformly t~me, mutua l ly  closed, K0-surjeetive B~nach p~ir. Then 

a nd /~  are of type  (0) iff [o~ ~nd A ~re of type  (C) ~nd for every  ~ ~ ff holds uniformly 

/~,1:~ = C% (~, ~). 
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