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Error estimates are shown for some spatially discrete Galerkin finite element methods for a non-linear heat 
equation. The approximation schemes studied are based on the introduction of the enthalpy as a new 
dependent variable, and also on the application of the Kirchhoff transformation and on interpolation of the 
non-linear coefficients into standard Lagrangian finite element spaces. 

1. Introduction 

In this paper we study semidiscrete finite element methods with interpolated 
coefficients for the non-linear heat equation 

c(u)u, - V - (a(u)Vu) =f(u), in R x (0, T), 
u=O, on aax(0, T), 

u( * ,O)=u ,  in Q (1.1) 

where R is a bounded polygonal domain in Rd with d G 3 .  For the spatial discre- 
tization of (1 . I )  we shall consider standard piecewise polynomial Lagrangian finite 
element spaces. Thus, we denote by S h  the space of continuous functions on Cl that 
reduce to polynomials of degree < r - 1 on each simplex of a triangulation of R. We 
seek approximate solutions to (1.1) in the subspace so,, consisting of those functions in 
S, that satisfy the boundary condition in (1.1). See Section 2 for the precise statements 
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of our assumptions about the initial-boundary value problem (1.1) and the finite 
element spaces to be studied. 

Consider first the standard semidiscrete Galerkin finite element method of finding 
L(h: [o, T ) + S o h  such that 

( c ( u h ) u h , f ,  x ) + ( a ( u h ) V u h ,  v x )  = (f(%~), x )  for X E S O h ,  o < t < T ,  

U h ( 0 )  = o h ,  (1.2) 
S o h  is an approximation where ( , a )  denotes the usual inner product in &(a) and 

of u. In terms of the standard Lagrangian nodal basis (+i}F;y=hl of S o h  this reads 

C(U)U + A O U  = F O ,  for 0 < t < T, 

U(0) = v, 
where U = (Ui )  and V = ( 6) are the vectors of nodal values of u h  and uh, respectively, 
and C O  is the non-linear mass matrix with entries C~ij=(c(Z,Uk+,..i, 4j). 
Similarly, the non-linear stiffness matrix A(U) is given by A(U)ij=(a(Zk V&,) 
Vq$, V + j )  and the right-hand side F O  by F(U),=(f(XC,U,4,), q5j). 

From the point of view of actually computing the solution we note two difficulties: 
(i) the system is not written in normal form Y'=f(t, Y), and (ii) the above inner 
products must be computed by numerical quadrature. The first difficulty can be 
handled by a classical transformation of the dependent variable. With H(u)= 
j:c(s)ds-the enthalpy-and G(u) = j:,"a(s)ds-the Kirchhoff transformation-the 
differential equation in the semidiscrete problem (1.2) can be written 

(H ( u h ) f ,  x ) + ( V G ( u h ) ,  v x ) = ( f ( u h ) ,  X)*  

For the numerical quadrature we shall replace the coefficients by their interpolants. 
Thus, let be the operator which associates with each continuous function g its 
interpolant I h g E  S h  defined by ( I h g ) ( P ) = g ( P )  for each of the nodes P that define the 
degrees of freedom of s h .  We are then led to consider the following interpolated 
coefficient finite element method: find u h :  [0, T ] + S o h  such that 

( l h H ( u h ) r ,  X ) + ( V I h G ( u h ) ,  V x ) = ( l h f ( u h ) ,  x),  for X E S O h , O < t < T ,  

uh(0 )  = o h .  (1.3) 

Let {4i}Fl be the nodal basis of S h .  Thus, the indices 1 < i < N h  refer to the interior 
nodes and the indices N h  + 1 f i<  M h  refer to the boundary nodes. To compute uh 
from (1.3) one has to solve the system of ordinary differential equations 

where U i  are the nodal values of u h  and Wi = H ( Ui) ,  subject to the initial conditions 

Wj(0) = H (%), j =  1, . . . , N h .  

Here we use the fact that, assuming the coefficient c to be positive, the enthalpy is a 
strictly increasing function, so that Ui = H (y) is uniquely defined. Thus, one 
actually computes an approximate enthalpy W h ( t )  = Z?'l wl:(t)4i E S o h ,  from which the 
temperature u h ( t ) = Z r i l  H-'( wi(t))4i~SOh can be retrieved. Clearly, one can com- 
pute the standard mass and stiffness matrices (4i, 4 j )  and (V4i, V 4 j )  once and for all 
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and then solve this system iteratively by some standard time-stepping procedure. We 
shall refrain from analysing this aspect of the problem. 

In Section 4 below we estimate the L, and H' norms of the error in the approximate 
solution u h  given by (1.3). We first show, for r 2 3, d 6 3, the error estimate 

I l u h ( t ) - u ( t ) I I  -k ( ~ I , v ( u h ( ~ ~ - u ( ~ ) ~ , , , d ~ ~ ' '  < ch'-', for O<t<T, 

where II 11 denotes the norm in L,(R). Note that the mean square average of the 
gradient of the error is of optimal order, whereas we have only been able to show a 
suboptimal error estimate pointwise in time. For the special case where c = l  we 
obtain, for r23, dS3, a similar result, where again the L, norm of the error is one 
order less thanJoptimal, pointwise in time, but where now the mean square average of 
the error is shown to be of optimal order O(K). The case r=2 ,  d =  1 is somewhat 
particular and we obtain for general c = c(u) an O(hz) error bound, pointwise in time. 

The difficulty in this analysis stems from the way the interpolation is camed out 
under the gradient in the second term on the left-hand side. We therefore consider also 
the following method, where the coefficient &,) is interpolated directly: find u h :  

[o, T ] - + S , ) h  such that 
( I h H ( u h ) t ,  X ) + ( ( l h a ( u h ) ) V u h ,  v X ) = ( l h f ( u h ) ,  for X E S O h ,  O < t <  T, 

u h ( O ) = u h .  

In matrix form this reads 

j=l,. . . , N h ,  

Wj(0) = H( V;.), j = 1, . . . , N h ,  

and the above remark about solvability applies to this system as well. We analyse this 
method in Section 3 and find that, provided that the initial approximation v h  is chosen 
as an elliptic projection of u, the L2 norm of the error is of optimal order pointwise in 
time for r 2 2 .  For the special case, where c(u)= 1, we show an optimal order error 
estimate without this restriction on Oh. 

Several authors have considered numerical quadrature in finite element methods. 
The effect of quadrature in linear parabolic problems was analysed by Raviart.." 
Christie et aL3 coined the term product approximation to refer to finite element 
techniques based on interpolation. Douglas and Dupont' studied approximate pro- 
blems of the type (1.4) with +)= 1 and f(~)=.. In their work 1, is allowed to be a 
more general projection. Nie and Thornkeg, again with c(u)= 1, considered the middle 
term in (1.4) in conjunction with the lumped mass method for the first term in a 
piecewise linear, two-dimensional setting. Khalsa' analysed a finite element method 
with product approximation for a semilinear parabolic problem with a cubic non- 
linearity in one space dimension. 

The present work was inspired by the papers of termak and Z1Sma12 and 
Borshukova and Konovski,' in which the method (1.3) was applied to various heat 
conduction problems with and without phase change. These papers report on 
numerical computations and contain no error analysis. Our analysis does not allow 
phase change, i.e. we do not allow H(u)  and G(u) to be non-smooth functions of u. 
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Such a problem was, however, analysed by Elliott.6 He assumed that H(u) has a jump 
discontinuity and that G(u)= u andf=f(x, t). For a completely discrete version of (1.3), 
using a piecewise linear finite element method for the spatial discretization, he 
obtained an 0(h1l2) estimate for the mean square average in time of the L, norm of 
the error. 

The product approximation for semilinear elliptic problems was analysed by Sanz- 
Serna and Abia." Their analysis is based on inverse inequalities and a continuation 
argument, an approach that we have adopted here, too. 

2. Notation and preliminaries 

In this section we state our general assumptions about the non-linear initial- 
boundary value problem (1.1) and the finite element methods to be analysed. We also 
collect some notation and preliminary results. 

Let R be a bounded polygonal domain in R" with d 6 3. We shall assume that the 
coefficients c(u), a(u) andf(u) of (1.1) are smooth functions of u E R and that c and a are 
uniformly positive: 

c(u)2co>0, a(u)>a,>O for all U E R .  (2.1) 

We further assume that (1.1) has a unique solution u, which is sufficiently smooth for 
our purposes. Throughout this paper we thus make the somewhat unrealistic-but 
commonplace-assumption that the solution of problem (1.1) is very smooth, in spite 
of the polygonal character of the domain $2. 

For the approximation of (1.1) we shall consider standard piecewise polynomial 
Lagrangian finite element spaces. Thus, we assume that we have a quasi-uniform 
family { f h } h , O  of simplicial triangulations of R with the parameter h being the 
maximal diameter of any simplex K in t h .  Further, for some integer r 2 2, we denote by 
Sh the space of continuous functions that reduce to polynomials of degree 6 r - 1 on 
each simplex K E q,, and we let soh = { x E s h :  x I = O}. Thus, we have S h  c H (R) and 

We shall use the notation (e;) and 11 * 11 for the inner product and norm of L, =L2(R) 
and 11 * I l m , p  for the norms of the Sobolev spaces c= c ( R ) .  For p = 2  we write 
H" = H"(R) and 11 * 11". These norms should be interpreted in the piecewise sense, when 
applied to functions that are only piecewise differentiable with respect to t h .  Further, 
we write 

HA(R)* 

I I ~ I I L , ~ o , ~ x ~ = (  [ 11 ~(r)ll2dr)liP3 

with the usual modification for p =  00 and where X could be any of the Banach spaces 
mentioned above. 

We define the interpolation operator 1,: C(fi)+, by the condition that ( Ihu)(P)= 
u ( P )  for any of the nodes P that define the degrees of freedom of S h .  From the theory 
of finite elements we quote the following error estimate: for 0 < m  < r and 1 Q p Q co we 
have 

11 I h U - O  ~~m,p~Ch'-" 11 ullr,p, (2.2) 
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if u belongs to C(a) and W‘,(K) for all K E T , , ,  (see, for instance, Reference 4, 
Theorem 3.1.6). 

We shall often need to be able to estimate high order norms of the error in terms of 
lower order norms. This can be done by an inverse inequality argument, which we 
state in the following lemma. 

Lemma 1. Let Od l<m,<r ,  1 <q<pdco .  Then for XESh and U E  W’, we have 

II X - 0  II m , p  \ < Ch-(mm-/)-[(d/q)-(d/p)]( 11 x - u  11 I , q +  h‘-’Il Y I l r , p ) .  (2.3) 
ProoJ: Using (2.2) and an inverse inequality (Reference 4, Theorem 3.2.6) we obtain 

11 x -  11 m. p d 11 x -  I h U  11 m.p + 11 I h u  - 0 11,. p 

\ < Ch-(m-r)-‘(d’q)-(d’p)’J I( x-lhv + (1 I h l ) - U  1Im.p 

< Ch-cm-”-Ecd’9)-cd’p)1( 11 x - 0 11 1, + 11 I h 0 - 0  (1 1, 4) 

+ IIIh’-u~~m.p 
d Ch - ( m - / ) - C ( d / q ) - ( d / p ) ] (  11 x - u 11 1 ,  + Ch‘-‘(I 0 11,. q )  

+ C h r - m l l ~ l l r , p ,  

which proves the lemma. 

In our error analysis we shall also use a Ritz projection Ul,, = fh(t) E S o h  of the exact 
solution u of (1.1). For fixed t E [ O ,  TI,  we define this to be the solution of the linear 
problem 

(4u(t))V(iih(t)-  ~ ( t ) ) ,  V x )  =0, for all X E S O h .  (2.4) 

To discuss this definition (and for later reference) we consider the linear elliptic 
problem 

V.(a(u)Vw)=g,  in R x (0, T), 

w = 0, on aR x (0, T). 

We may define the solution operator T= T(u(t)): L,(R)+HA(R) n H2(R) (not to be 
mistaken for the length of the time interval) by 

( 4 4 V  Tg, V x )  = (g, X I ,  x E mw 
The corresponding approximate solution operator Th = Th(u(t)): L2(R)+Soh is given 
by 

(a(u)V Thg, v x ) = ( g *  x),  x E Soh. (2.5) 
In order to be able to perform the duality argument of standard error analysis, we 
need to assume that R is such that 

II Tg 112 GC Ilg 11, 9 E L2(W, (2.6) 

11 ( Th - T)g 11 1 d ch 11 g 11, g E L2(a), (2.7) 

so that 

It is well known that this holds, for instance, for convex polygonal domains (see 
Theorem 3.2.1.2 of Reference 7 and its proof). 
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In our next lemma we collect some error estimates and maximum norm bounds 
for ii,,. 

Lemn.a 2. There is a constant C = C(u) such that for 0 d t d T we have 

ProoJ With the Ritz projection operator R, = Rh(u(t)): HA(f+S,,h defined by 

we have t jh = Rhu. The case j = 0 of (2.8) now follows from the standard error analysis 
for linear elliptic problems with variable coefficients. The case j =  1 follows in a 
straightforward way after differentiation of (2.4) with respect to time, 

(av(fih,t-ut), Vx)+(a,V(ch-u), vx)=o, for d l  X E S O h ,  (2.11) 

where we have written a for a@) and a, for a(u),=a'(u)u,. We refer to Reference 13 
(Lemmas 2 and 3 in Chapter 5)  for the details. 

For the proof of (2.9) we shall use the maximum norm stability of RAY 

11 Rhw 110, m dCflog(l/h))'ll 110, a) (2.12) 

where f=  1 ifr=2, ?=O otherwise, (cf. (5.9)' in Reference 12). (Although the results of 
Reference 12 are formulated for a model problem with constant coefficients, the 
authors remark that their methods work in our more general situation, as well.) Let 
p = i ih  - u. An application of (2.12) with w = u(t) - x ,  x E Soh arbitrary, shows 

(2.13) II ~ ( t )  110. m dCh'(log(l/h))F, 
so that, by Lemma 1, 11 p(t) 11 1, d C and the case j =  0 of (2.9) follows. 

Next we note that (2.11) can be written 

This means that i i h ,  t-RhU, + &((a,/a)p)=tj is an element of S o h ,  which satisfies 

(2.14) 

By the same token as for iih=Rhu, we have 11 Rhu,(t)II 1, g) 9C.  By (2.12) and (2.13), we 
next obtain 

which implies 11 Rh((a,/a)p) ( t )  11 1, < C in view of an inverse inequality. 
Finally, setting x=q in (2.141, we obtain 
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and an inverse inequality and (2.8) show 

IItl(t)111,,<Ch'-d'2~C. 

Since r?h, = Rhu, - Rh((a,/a) p)  + q, this proves the remaining case j = 1 of (2.9) and the 
proof of the lemma is complete. 

3. Analysis of the second metbod 

In this section we shall analyse the following interpolated coefficient finite element 
method for the non-linear heat equation (1.1): find uh: [O, n-+SOh such that 

( lhH(uh) t ,  X)+((lha(uh))Vuh, vx)=(lhf(uh), X) ,  for XESOh, o<t< T, 

uh(o)= oh. (3.1) 
We shall show an error estimate, which is of optimal order, provided that the initial 
approximation is chosen as the Ritz projection i?h=ii,,(o) of o defined in Section 2. 

Theorem 1. Let l (h and u be the solutions of (3.1) and (M), respectioely, and assume that 
oh = i?h = iih(0). Then there are positive numbers h, = h,(u, T )  and C = C(u, T )  such that, 
for h < h,, we haoe 

11 Uh(t)-U(f) 11 + h 11 Uh(t)-U(t) 11 1.g Ch', for o<t< T. 
In the proof of Theorem 1 we shall follow the standard method of splitting the error 
into two parts, 

e= uh -u  = ( u h  - Gh) + ( ch -  u)  

where iih is the Ritz projection of u defined in Section 2. In Lemma 2 we found that iih 
- u satisfies the desired error estimate and so it remains to estimate 0 = l (h - i ih .  This 
will be done in the following lemma. The proof of the theorem will then be completed 
by means of a continuation argument. 

Lemma 3. In  addition to the assumptions of Theorem 1, assume that, for some tl with 
O<t, < T, we haoe 

< h'- 114. I1 e II L,(O,t,; Lz) + II et II L,(O,t I ; L2) 

Then it follows that 

II e IILm(O,fl;Lz)+ h II e IlL,(O,t,;H')+ II et IIL,(O,t,;L,)~Ch', 
where C= C(u, T )  does not depend on t ,  . 
Proof. Let us first note that, by the inverse inequality argument of Lemma 1, and since 
r 2 2 and d < 3, the hypothesis (3.2) implies 

II e II L,(O,t,; Ivy)<  c, II e II L,(O,t,; w:z)gc 

II et IlL,(O,t,; Ivy)<  c, II et II L,(O,t,; WZZ)Q c, 
and 

so that, in particular, since u is smooth, 
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and 

Using these bounds we shall next show that 
11 uh,I 11 Lz(o , f l ;  WL-')Q c, 11 uh. 111 Lz(O,fl; W r z )  c. (3.4) 

(3.9) 
. - ,  
h # O  

which, since 11 uh II Lm(o , f l ;Lm)<  C by (3.3), implies 

11 D a f ( u h )  11 < c 1 
Z',P,=a 

B 1 7 4  

11 DB'Uh 11 0.q' * * * 11 D B ' u h  11 0.q'' (3.10) 

where Z\ l/q,= 1/2. Now note that-elementwise-any rth order derivative of uh is 
identically zero and that factors DBluh with l f l j l  = r -  1 can occur at most twice in any 
of the products in equation (3.9)-in fact, they occur twice only if r = 2. Thus, we may 
take q,=2 or 4 if lfljl=r-l and qj=m otherwise and (3.5) follows in view of the 
bounds in (3.3). 

For (3.7) we have in a similar. manner 

so 

(3.1 1 )  

where Zh l/qj= lj2 and (3.7) follows by the same argument as above. The bounds (3.6) 
and (3.8) are proved in the same way as (3.5) and (3.7). 

Next we shall bound 8= u h -  &. Consider first the case r>2 .  Using (3.1), (2.4) and 
the weak form of equation (l.l), we have, for K E S O ~  and O < t  < t l ,  

(3.12) 
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where I denotes the identity operator and with the obvious definitions of the terms Ri .  
Taking x=B, ,  we obtain 

where &= 1/2a(uh),V8. Integration with respect to t, using (2.1) and the fact that 
e(0) = 0, yields 

so that, after trivial estimates and a simple kick-back argument, 

Here we have to bound the various terms on the right-hand side. To begin with, using 
(2.2), (3.5) and (3.7), we have 

Next, since uh is bounded by (3.9, using (2.8) we obtain 

and 

II R5 l I L , ( O . I ; L , ) G ~ I l ~ ~ , t - ~ I I I L , ( O , r ; L ~ ) G ~ ~ ' .  

To obtain bounds of R6 and R6,1 we note that, by (3.3) and (3.4) and since t23, u h  and 
Uh.1 are bounded in Lm(O, t; Wf) and L2(0, t; Wf), respectively. We find 
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by (3.6), and 

by (3.8) and (3.6). To estimate R, and R,,r we shall use the bounds of iih and 
(2.9). First we obtain 

in 

where, for some ZE [O, t ] ,  

since e(O)=O. Thus, for any E > 0, we can select C such that 

Similarly, 

Finally, from (3.4) it follows that 
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Summing up, choosing E appropriately, we now have 

which, by Gronwall's inequality, shows 

Together with the appropriate estimates oft& - u from Lemma 2 this proves the case 
r > 2 of the lemma. 

If r = 2 (and d = 3), then (3.3) and (3.4) no longer imply WL bounds for uh and uh,t. 
But, on the other hand, (2.1) now implies that Iha(uh) 2 a, > 0 and we shall use the 
following variant of equation (3.12): 

(c(uh)et ,  x )  + (zha(uh)Ve, vx) = ( ( f h - z ) f ( u h ) *  x )  + ( f ( U h )  -f(u), 1) 
- ( ( I ,  - I )  (uh) t ,  x )  - ((dub) - c(u))ut, x )  - (c(uh) (fih,r - UI), x )  
- ((( I h  - ('h )) 'ih 9 vx) - ( (a(uh)  - a (u)) Vch 9 vx )* (3.13) 

Thus, all terms involving a(u,,) can now be estimated using the maximum norm 
bounds of ' i h  and iih.1 in Lemma 2. This completes the proof. 

Proof of Theorem 1. Let t :  be the largest t ,  such that (3.2) holds. It is obvious that 
t :  > 0. If t: < T, then by Lemma 3 we can find h, > 0 such that, for h < h,, we have 

in contradiction to the maximality of t: . Thus t: = T and the proof is complete. 
In Theorem 1 we assumed that oh = 4 in order to be able to prove an O(h') error 

estimate for l16rl~L2(~~t;.z), which was needed because of the non-linearity in the 
coefficient c(u)-recall how the bound (3.7) was used in estimating the term R ,  in the 
proof of Lemma 3. (Clearly, it is sufficient to choose vh in such a way that II I),, - & ) I  
= 11 e(0) 11 , is of superconvergent order O(h').) In our next result we shall assume that c 
does not depend on u-for simplicity we take c(u) E 1-and we shall prove an error 
estimate without any such restriction on Uh. 

Theorem 2. Let c(u) = 1 and let uh and u be the solutions of(3.1) and (l.l), respectively, 
and assume that 

I I U h - U I (  < Ch'. (3.14) 

Then there are positive numbers h, = h,(u, T )  and C = C(u, T )  such that, for h c h,, we 
have 

IIUh(t)-U(t))I +hIluh(t)-Uu(t)II, d Ch', for 0 < t < T. 

By the above continuation argument the theorem will follow once we have proved the 
following lemma. 

Lemma 4. In addition to the assumptions of Theorem 2, assume that, for some t ,  with 
0 < t ,  c T, we have 

(3.15) 
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Then i t  follows that 

II e I I  L.JO,t ,;LJ + h I I  e II L m ( 0 , t , ; H I )  G Ch', 
where C = C(u, T )  does not depend on t,. 

Pro05 Our assumption (3.15) implies that the bounds in (3.3), (3.5) and (3.6) hold. 
Considering first the case of T > 2, we take x = 8 in equation (3.12) to obtain 

( e , , e ) + ( a ( u h ) V @ , V @  = ( R l  + R 2 + R , , 8 ) + ( R s + R , , V 8 ) ,  
now that R 3  = R, = 0. Hence, by (2.1), 

7 d 
-(IIeI12)+IIQII: C C IIRjI12+I1811:, 
dt j- 1 

j+  3.4 

so that, after integration with respect to t, 

1 1 e ( t ) l l 2  < IIWII' + c i I I R ~ I I ~ ~ ( ~ , ~ ; L ~ )  
j =  1 

j #  3 . 4  

d Ch2' + C II 8 II iz(o,r;Lz), for 0 c t < t ,  , 

where we have used the fact that 

IIe(0)II = ~ ~ ' h - f i h ~ ~  d Ilt'h-uII + I I f i h - o l l  < Ch', 

by (3.14) and (2.8), and simple modifications of the bounds of the terms Ri derived in 
the proof of Lemma 3. Now an application of Gronwall's inequality shows 

I I  B ( t )  II < Ch', for 0 d t < t ,  , 
and, by an inverse inequality, it hence follows that 

I1 8(t)I11 d Ch'-', for 0 d t d r , .  
Together with the appropriate bounds of iih - u from Lemma 2, this proves the desired 
result for r > 2. The proof for the case r = 2 is based on equation (3.13). This 
completes the proof. 

4. Analysis of the first method 

We shall now estimate the error in the approximation uh given by the semidiscrete 
problem: find uh: [0, TI --t So,  such that 

We have the following result. 

Theorem 3. Let r B 3 and let uh and u be the solutions of(4.1) and (1.1), respecrioely, and 
assume that 

I / u h - t ' l l  +hIIUh-t'II, d Ch'-'. (4.2) 
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Then there are positive numbers h, = h,(u, T) and C = C(u, T) such that, for h < h,, we 
have 

for 0 Q c Q T. 

Note that the above L,(O, T; H ) error bound is of optimal order, whereas the other 
bounds are less than optimal. The theorem will follow as before from the following 
lemma. 

Lemma 5. I n  addition to the assumptions of Theorem 3, assume that, for some t ,  with 
0 c t ,  Q T, we have 

< hr- 1 - 114 
l l~l lL,(0, t1;L2~ , 

l l~l lL,(0, t1;H~) 6 u-1-1'4 
and 

hr-2-1/4 IIet IIL,(o,~,;L,) 

Then it follows that, for h < h,  , 

(4.3) 

(4.4) 

(4.5) 

(4.7) 

where h, = h,(u, T) and C = C(u, T )  do not depend on t , .  

Proof. In the same way as in our previous proofs the assumption (4.3) can be used to 
show that (remember that r 2 3 and d 6 3) 

h l l u h l l ~ m ( ~ , r l ; ~ ~ - ~ )  G C, 
114 11 uh I/ Lm(o.tl; W'k-,) Q c, 

~ ~ ' h ~ ~ L , ( O , ~ l ; W ~ - z )  Q c 
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for K E S o h  and 0 < t < t ,  . Note that, except for the sixth term on the right-hand side, 
this equation is the same as (3.12). We begin with the proof of (4.7). To that end we 
take.X = 8, in (4.12) to obtain 

I d  5 d 
(c(ujj)81,8f) +z& (u(uh)v6,ve) = (Ri, e t )  + (R6, vef) +z(R7,v8) 

i =  1 

- ( R 7 , f ,  ve) + (R89 v8), 

where R ,  = 1/2a(uh),V8. Arguing similarly to the proof of Lemma 3, but applying an 
inverse inequality to the sixth term, we have 
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so that, after trivial estimates and a simple kick-back argument, 
5 

I =  1 
II'~IIE,(o,~;L,)+ II'IIZL,(O,~;H') G clle(o)ll: + C 1 llRilI%,(~,t;~~) 

+ Ch-2 I1 R6 112,(4t;L*) + Cll R ,  Ilt,(O,t;L,) 

IIR7.t11 l l ~ l l ~ d r + c [  0 IIR811 llellldr. 

For the first nine terms on the right-hand side we apply the same arguments as in the 
proof of Lemma 3. In view of (4.2), (4.9) and (4.11) these terms are thus bounded by 

Ch2' -4  -k c .I1 8 II E2(0.t;H1) + E II 6 II i , ( O . t ; H ' )  + & II 4 IlE2(0,t;L,). 

For the last term we use U h , t =  iih,t + 0, and Lemma 2 to obtain 

jl 11 R8 11 11 11 1 dT G Iliih,t 11 L,(O.t;L,) 11 I I ~ , ( O , t ; H ' )  

+ c 11 01 llL,(0,t;L2) 11 8 11 L,(O.t; WL) 11 11 L,(O,t;H') 

Q C11~112,(o,t;H~)+C~1'4 II~t1lL*(@t;L2) II~IIL,(O,$H') 

Q c II 6 II2,(O,t;H') + E II IIE,(O,t;H') + E II 01 lIZL2(O,t;L2) 

for h small. Here we have also used the fact that 

I l ~ l I ~ ~ ( o , t ; w ; )  G C~Z-~' '  I ~ ~ J ~ ~ ~ , ( o , ~ ~ )  < Ch-d'2-Chr-1-1'4 G Ch1I4, 

by an inverse inequality and (4.4). Thus, altogether we now have 

II~rIlt,(o,l;L,)+ II~112,(0.t;H~) Q Ch2'-4+ ll~lI2,(O,t;H'~ for 0 < t < tl ,  
which by Gronwall's inequality and Lemma 2 proves (4.7). 

We now turn to the proof of (4.6). Taking x = 0 in (4.12) we have 
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By (4.2) and in view of (4.8) and (4.9), the first five terms on the right-hand side can be 
bounded by 

+ c II ell i2(0,t;L,) cp-2 

just as in the proof of Lemma 3. Also, from (4.9) it follows that 

11 R6 llL2(0,t;L2) G Ch'-' 11 G ( l ( h )  l\L,(O,t;H') Q Ch'-'- 
For the seventh term we have 

and (4.6) follows, which completes the proof of the lemma. 
In the previous theorem we have presented a suboptimal order estimate for the L2 

norm of the error. Naturally, one might ask about the possibility of obtaining an 
estimate of optimal order of accuracy. We shall give a positive answer in two cases. 
The first is the case where c(u) E 1 and r 3 3, d <  3 and the error is measured in the 
L2(0, T; L2) norm. The other is the case of r = 2, d = 1, where we obtain a bound in the 
L,(O, L2) norm for general c=c(u). 
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Theorem 4. Let c(u) = 1 and r 2 3, d Q 3 and let uh and u be the solutions of(4.1) and 
(1. l), respectioely, and assume that 

11 Uh - 0 11 Q Ch'. (4.13) 
Then there are positiue numbers ho = ho(u, T )  and C = C(u, T )  such that, for h < ho, we 
haoe 

The theorem follows as before from the following lemma, 

Lemma 6. In addition to the assumptions of Theorem 4, assume that, for some t ,  with 
0 < t l  d T, we haoe 

(4.14) II e IlL,(O,t,;L,) < h'- - lI4, 

IIeIIL2(0Jl;t2) < hr- 114. (4.15) 
Then it follows that, for h < h,, 

ll~llL,(0,t,;L2) d Ch'-', (4.16) 
l l ~ l l L 2 ( o , t ~ ; L 2 )  d Ch', (4.1 7) 

where h,  = h,(u, T )  and C = C(u, T )  do not depend on t l  . 
Proof. Just as in the proof of Lemma 5 for r > 3, d < 3 we find that the bounds (4.8) 
and (4.9) follow from the assumptions (4.14) and (4.15). Moreover, the error bound 
(4.16) was already proved in Lemma 5. 

Since c(u) = 1, the error equation (4.12) now becomes 

(ef,x)+(a(u)ve,vx) = ((zh-z)f(uh),x) -k (f(uh)-f(u),x) 

-(ch, f - uf x )  - (v(zh - l)G(uh), vx) - ((a(%) - a(u)) vuh, vx) 
(4.19) 

for x E Soh and 0 < t < t, . Note that we have, for later convenience, replaced a@,,) in 
the second term on the left by a@), which implies a modification of the fifth term on 
the right. 
To prepare for the proof of (4.1 7) we recall the operators Tand Th defined in Section 

2. It is well known that T,, is a self-adjoint, positive semidefinite bounded operator on 
L2(Q), which is positive definite on s o h .  We shall use the equivalence of norms 

( x ,  'h x)1/2 11 Th 11 1,  x E Soh, (4.20) 
which immediately follows from (2.5) in view of the positivity and boundedness of a@). 

After these preparations we now set x = The in (4.19). We have 

where s6 = 1/2 Th,,8. By integration and simple estimates, using (4.20) and the 
boundedness of Th, we obtain 
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In view of (4.13) the first term on the right is bounded by Ch". Next we have 

where we have used (2.2), (2.7), (2.6) and (4.9). 
Next we use Uh = iih + 8 to write 
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G c I1 Th~11i2(o,r;H') ,  

by (2.5) and by differentiation of (2.5) with respect to time. 
Together these estimates show 

I I T h e l l E , ( O , t ; H 1 ) +  ~ ~ e ~ ~ ~ z ( O , t ; , - z ) <  Ch2'+CIITheI12,(0,1;H'), G f l l ,  

and Gronwall's lemma yields 

11 The~l~,(O,tl;H')+ t ~ ~ ~ ~ ~ z ( 0 , r 1 ; L 2 )  G ChZ', 

which proves (4.17). The lemma is proved. 
The case r = 2, d = 1 is somewhat special, because of the well-known fact that the 

interpolation operator 1, then coincides with the standard Ritz projection R;: 
HA@) 4 Soh defined by 

( v ( R i w - w ) ,  vx)=o, X E S O h ,  

(see, for instance, p. 80 of Reference 13). In the error equation (4.12) we therefore have 
(&, Vx)=O, so that (4.12) is identical to equation (3.12) in the proof of Lemma 3 with 
the corresponding term removed. Repeating the appropriate steps of the proof of 
Theorem 1, with the term (R6, Vx)  removed, we therefore find that the second order 
convergence of the second method carries over to the present case. We thus have: 

Tbeorem 5. Let r = 2, d = 1 and t(h and u be the solutions of(4.1) and (1. l), respectively, 
and assume that vh=fi~=iih(o). Then there are positive numbers hO=hO(u, T )  and 
C = C(u, T )  such that, for h < h,, we have 

IIUh(t)-U(t) If +hlluh(f)- U(f)I11<Ch2, for O<f<T. 
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