Interpolation of Cosine Operator Functions (*).

Rovarp H. W. HorrE (Berlin, West Germany)

Summary. — Using basic techniques from the theory of interpolation spaces equivalence theorems
are established for the intermediate spaces between a given Banach space A and the domain
D(A7) of the r-th power of the infinitesimal generator A of a sirongly continuous cosine oper-
ator function C. The results are applied to the study of second order evolution equoctions
including regularity, order reduction and approximation by finite difference methods.

1. — Introduction.

Given a strongly continuous cosine operator funection ¢ on R* with values in
the Banach algebra J5(4) of bounded linear operators in a Banach space A and
infinitesimal generator 4, we shall be concerned with the investigation of the inter-
mediate spaces between A and the domain D(A"), r € N, as well as with the charac-
terization of the domains of fractional powers (— 4)#, 0 << & < r. Using the K-method
we shall give equivalent characterizations of these intermediate spaces by means
of moduli of continuity of C including reduection results both in the case of non-
optimal approximation and saturation. With respect to the regularity of solutions
of initial-value problems for second order evolution equations and the reduction
of well-posed second order problems to equivalent first order ones we shall study
mapping properties of ¢ and its strong integral § which are the propagators of such
problems. As applications, the results of this paper not only provide characteriza-
tions of the Besov spaces B2*¢ in lights of a cosine operator functional calculus
instead of the well-known semigroup approach via the Weierstrass singular integral
but also can be used in the approximate solution of initial-value problems for second
order hyperbolic P.D.E.’s by finite difference techniques with special emphasis on
the case of non-smooth initial data.

2. — Basic facts on cosine operator functions.
In this preliminary section we will summarize some basic facts in cosine operator

functional calculus which we will strongly need in the subsequent sections such as
the da Prato-Giusti-Sova generation theorem, expansions of the #-th Riemann dif-

(*) Entrata in Redazione il 25 gennaio 1982.
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ference of a cosine operator function and representations of fractional powers of
its infinitesimal generator. For a detailed discussion of general cosine operator
theory we refer to G. DA PraTo, E. Grusti [9], H. O. FATTORINI [11], [12] and
M. Sova [21].

In what follows A denotes a Banach space over K (K = R or K = C) with norm
[ -4, C(4, B) the set of all densely defined closed linear operators /A with domain
D{A) in A and range R(A) in another Banach space B over K and $(4, B) the Ba-
nach space of bounded linear operators /: A — B with norm |A] = sup [Aalz/lal 4,

a0

Ae B4, B) (if B=A we simply write C(A) resp. B(4) instead of C(4, 4) resp.
B(4, A)). The resolvent set and the spectrum of A e C(4) will be denoted by o(A)
resp. a(A) while R(4; A), A€ (), refers to the resolvent (Af — A)-*

A transformation C: Rt — $(A4), where R* := [0, co), is called a cosine operator
function if C(0) = I and C(-) satisfies d’Alembert’s functional equation, i.e.

(2.1) Ot +s) + Ct—s) =20()0(s), t,seR™ t>s5,

A cosine operator function C is called strongly continuous or simply a C,-cosine
operator function if O(-)a is continnous on R* for each a € A [or equivalently, if
s—lim C(t)a = o where s —lim means convergence in the norm topology of A).

>0

REMARK 1. - It is clear that a C,-cosine operator function € can be continuously
extended to the whole real line R by setting C(f) = C(—1) for t < 0. For notational
convenience that extension will be still denoted by C.

Every C,-cosine operator function € is quasi-bounded in the sense that there
are nonnegative constants M and o such that

(2.2) [O)] < M cosh (wt), teRT
(ef. [21]; Thm. 2.5]). We shall then say that ¢ is of type (M, w). In particular,

if w = 0 then ( is called equibounded. .
The operators C(+) commute for different arguments, i.e.

(2~3) O(tl) O(t2) = O(tz)a(tl) ’ ty € R—+ ’
and if ¢ is of type (M, w) and eR*, v=1,...,d, then

a4
<M [] cosh (wty)

y=1

T ¢

r=1

(2.4)

(ef. [21]; Thms. 2.9, 2.10).
In the sequel we shall frequently use the following simple expansion of the »-th
Riemann difference [C(f) — I, r€ N:
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LemMA 2.1. — Let ¢ be a cosine operator function and r € IN. Then there holds

&

(2.5) [0(t) — I =2~ [2 ;1 (=1 (1 ~ j) o+ = 1)(277) I] '

Proo¥. — The proof of (2.5) is easily done via induction on r € N making repeated
use of d’Alembert’s functional equation (2.1).

As in the case of semigroups of operators there is the important notion of the
infinitesimal generator: Given a cosine operator function ¢ we associate with C a
linear operator A: D{4)c A — A4 as the operator given by

(2.6) Ag =25 ~1limi?[0(F)— e, aecD(A),

t—>0+

where D(A) is the set of all @ € A for which the limit in (2.6) exists. The operator /1
is called the infinitesimal generator of ¢. Moreover, as we shall see below, the strong
integral of C as given by

(2.7) S(tya =f0(s)a ds, acd

plays a decisive role in cosine operator functional calculus.

LeMMA 2.2. — Let C be a Cj-cosine operator function with infinitesimal gener-
ator A. Then there holds for » e N:

(i) Are C(4);

(ii) If a € D(Ar), so does C(t)a, tc R*, and

)2.8) j;:: Ct)a = Ar8(t)a = 8(t) Ara,
(2.8b) g;; Ot)ya= A"Ct)ya = C@t) A a;

(iii) If e € A then

v=1

(2.9) [C@#)—1ITra = Afff... ﬁ (t—s8,)0(s,) a0 ds, ds, ... ds, .

PROOF. — The assertion (i), (ii) and (iii) are obvious generalizatiouns of the cor-
responding relations in case » = 1 which have been proved in [11; Lemma 5.4],
[21; Lemma 2.14].
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The 2r-th Taylor operator B of a Cy-cosine operator function ¢ with domain
D(B?r)c D(A1) and range R(B*)c A is defined by

B*q = s —lim B"a
>0+
where

B = (27) 1472 [C(t) “31 (;;; 'A’] a
=0 .

LEMMA 2.3. — Let C be a Cp-covine operator function with infinitesimal gener-
ator A and let B, re N, be its Taylor operator of order 2. Then there holds
(i) If a e D(A") then s —1lim Bi"a = A"a;

>0+
(ii) If @ e D(A™*) and s e R then

(2.10) s—lim{ (s—1)0(x) B e dr = [O(s) — I]A™a.

t=>6+

Proor. - In view of Lemma 2.2 (ii) the Taylor theorem for vector-valued func-

tions gives
£

r—1 tﬂf 1
—— — A — —— — g)2r—1 ) r
OH)e % (2?,)!/1 a (erl)!f(t 8)¥10(s) Ara ds
1]
(cf. also [19; Thm. 7]). It follows that
. - . 1 .
BYa = 2rt f (t— 8)10(8) Ara ds
a

and
t

|B¥ra — Ara] ,<2rt- f (1 — 5)¥-1|[C(s) — I1A7a] 4 ds = o(1)

]

whence D(A7) ¢ D(B*) and B¥q = A’ a.
On the other hand, using Lemma 2.2 (iii) we get
j(s —1)C(z)B¥a dv = 2r(2r — 1)t‘“f(t — 1)V BEU[((s) — Ia dv
0 0
which yields
H f (s — 7) C(z) B¥a dz — [0(z) — [14"a
0 :

_ HZr(Zr 1) f (t — 7)72I[0(s) — I][B2 V0 — A*a] dr‘ 14

'

4

thus proving part (ii) of the assertion.
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Equations (2.8a4), (2.8b) in Lemma 2.2 (ii) show that Cj-cosine operator fune-
tions are intimately connected with the Cauchy problem for second order evolution
equations

(2.11a) dﬁ;a(t) = Aa(t), teR",
(2.11b) a(0) = av, d%a(O) =al.

Indeed, as has been shown by H. O. FATTORINI (ef. [11]) the initial-value prob-
lem (2.11a), (2.115) is uniformly well posed in R* if and only if the operator A is
the infinitesimal generator of a Cy-cosine operator function (here uniform well-
posedness means that, if (a,)y, a,€ C*(R", A), a,(t)e D(4),7e R*, ne N, is a sequence
of solutions of (2.11a) such that (d’v’/dtk)a“(0+) -0 (n —>o00), k= 0,1, then (a_(-))y
converges to zero uniformly on compact subsets of R*).

In this case the operators ¢ and § are the propagators of (2.11a), (2.11b) in the
sense that, if a°, a’e D(A), then the unique solutioa a(t), t € R*, of (2.11a), (2.115)
is given by

(2.12) a(t) = C(t)a® + S(t)al .

Using this property along with (2.8a), (2.80) and the fact that D(A) is dense in 4
one can derive the following two functional equations for C resp. § which we shall
strongly need later on (cf. [11; Lemma 2.3])

(2.13a) C(s +1) = C(s)0@) + A8(s)8(%), s,teR+
(2.13b) S(s +t) = C(8)8(t) + 8(s)C(®), s, te R,

Obviously, cosine operator functions play the same role for second order evolu-
tion equations as do semigroups of operators for first order ones. Moreover, with
regard to the generation of (j-cosine operator functions of type (M, w) there is the
following result which is analogous to the Hille-Phillips-Yosida generation theorem
for semigroups:

THEOREM 2.4 (da Prato-Giusti-Sova generation theorem). — An operator A e C(4)
is the infinitesimal generator of a Cy-cosine operator function of type (M, w) if and
only if

(2.14) (i) Tf A> w® then 2 e g(d);
(il s —lim AR(A; A)a = a, a € D(A) (i > w?);

A~>c0
an
di»

(iii)

AR(A%; /1)“ < % Mnl[(A + @)D 4 (A — o) 1P,  i>w,nelV.
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Proor. - Cf. e.g. [9], [21; Thms. 3.1, 3.2].

The coincidence with semigroup theory is stretched by the fact that AR(A%; A)
resp. R(A%; A), 1 > o, can be shown to be the operational Laplace transforms of ¢
resp. 8 (cf. [11; Lemma 5.6]), i.e.

(2.15a) AR(A*; Aya = f exp (— M) C(t)a dt
c: (;» > w, & € A)
(2.15b) R(J2; Aya = f exp (— At) S(t)a dt .

Conversely, assume that A e C(4) with 1eg(4) if 2> w, and that O(-) is a
B(A)-valued strongly continuous function satisfying €(0) = I and an inequality of
type (2.2). Then if (2.15a) holds true, C(-) is a Cy-cosine operator function and A
is its infinitesimal generator (cf.[11; Lemma 5.8]).

It is an immediate consequence of (2.14) (i), (ii), (iii) that, if A is the infinitesimal
generator of a C,-cosine operator function of type (M, w), then /A also generates a
COy-semigroup of operators of type (M, w®). However, the converse is not always
true, take e.g. A =4 in A = L»(R%, p# 2, d>1 (cf. [17], [18]).

If O is an equibounded C,-cosine operator funection, then we may define frac-
tional powers (— A)¥ xe R, of its infinitesimal generator. In the next section
we will treat D((— 4)*), 0 < & <7, r € N, equipped in the usual way with the graph
norm, as intermediate spaces between 4 and D(A7). Preparatory we shall now
derive a representation of (— A)* by means of the »-th Riemann difference of C a3
well as an inverse formula for the operator (— A)*. In the case of semigroups and
groups of operators such an approch has been used by H. BErRENs, P. L. BUTZER,
U. WrsTPHAL in [4] and by U. WESTPHAL in [23] and [24].

We introduce p, ,(¢), i€ R, 0 <a<n,n€ N, as the function whose Fourier trans-
form 3§, ,(s), s€ R is given by

(2.16) Ba(8) = |8]*{(cos s —1)".

Furthermore, let g, .(t), t € R, be defined by

12
g, (0) = f P,.(5) ds.
0
In view of (2.16) the Fourier transform ¢, (s), s e R, turns out to be

r it
247 Guia(8) :f —2%(cost — 1)"—t—, 0<a<n,

The functions p, () and ¢, () can be shown to be even functions belonging
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to LY(R) with

+o @
dt
(2.18a) Cpp 1= fgm(t) dt = |t-2*(cost — 1)"—t- ,
— ) 0
l 0 O<a<n
1) dt = ’
(2.18d) f e (8) dE {(_ o), a=n

—0

(for details and explicit representations of ?,,(1) resp. g, (1) see [15] and [24]).
The following Lemma serves as a useful tool in the characterization of fractional
powers of the infinitesimal generator A:

Lemma 2.5. — Let ¢ be an equibounded Oy -cosine operator funetion with in-
finitesimal generator A and let %, n e N.
Then there holds:

(i) It 0 < o< min (k, n) and & 7 > 0, then for ae A4

w0 ool

LN 00— (o — 0% o (%) tsra .
as) [t -1 | qw,,.(g)msms = [t-2100) — 13- fqa,k(n)a(smn,

7 0 € 0

(ii) If k<m, 0 <a<k and & >0, then for ac 4

(2.20) [O@) — ITF f (g) 0O(s) a% = t“fr”w(r) —1I % Do (%) 0(s) a%s :

& (1}

PrOOF. — The identity (2 19) has been proved in [15; Lemma 2.2]. Since (2.20)
can be shown in an analogous manner, we will only sketch the proof. For notational
convenience we set

2n

(2.21) = (— 2)%( N

2 .
), @ 2= (— 1)"""2‘"+l(njj), j=1,..,m neN

and

s [0 e
V] e, pse. €70

Then, using the expansion of the %-th resp. the n-th Riemann difference of ¢
given by (2.5) the left-hand side of (2.20) can be transformed into

40

g »
(2.22) [[E L metea(E)] 0wraas,

—a0
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while the right-hand side can be written as

+o ©
1 (3 —
(2.23) J. [§t2°“1 S a5 j“fb,-a(r)pm (%) d-z:] Cs)ads.
i=0
s p

Therefore, in order to show that (2.20) holds true it is sufficient to establish the
identity of the bracketed terms in (2.22) and (2.23). For this purpose we may
choose C(?) = cos (At), Ae R, and 4 = C, since the assertion then follows from the
uniqueness of the inverse cosine transform,

For our special choice of € (2.22) and (2.23) can be easily computed giving

(cos (Af) — 1)¥q, ,(le)a  resp.

[N

(2.25) —;—tz“fr“(eos (Ar)y—1) dgﬁm(ﬁ) a.

&

The identity of (2.24) and (2.25) is immediately verified in view of (2.16)
resp. (2.17).

As apparent consequences of the identities (2.19) and (2.20) in the preceding
Lemma we have:

LEMMA 2.6. — Under the hypotheses of Lemma 2.5 there holds:
(i) If re N and 0 << ¢ <7 then for any a € 4 the integral

f 0, C(M)a dt

belongs to D((— 4)*) and for any &> 0

w© -]

d
(2.26) (— Ay f q(é) owae% = %frww(t) —1ra¥;

(ii) Let re N and 0 << a<r. Then for any o€ A and ¢ e R* the integral

[ee]

[res(3) 010

0

belongs to D((— A)%) and

(2.27) [O(t) — ITPa — 2t2e(— A)“f (ft) C’(s)a%—s )
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Moreover, if a € D{(— A)*) then there holds the inversion formula

(2.28) [O(t) — ITra = 22 f pw(%) C(s)(— A)aa%f.

0

ProoF. ~ Part (i) of the assertion can be eagily established by means of
Lemma 2.5 (i) and [15; Lemma 2.1] while part (ii) follows from Lemma 2.5 (ii)
and {15; Lemma 2.1] for ¢ — 0+ if we take k=r and n>r.

Using the preceding results we finally arrive at the following characterization
of fractional powers of the infinitesimal generator A:

THEOREM 2.7. — Suppose that the assumptions of Lemma 2.5 are met. Then an
element @ € A belongs to D((— A)%), 0 <o <, re N, if and only if the strong limit

@

(2.29) 8 — lim O;th‘“[O(t) —I]'on%Zj
e—>0+

exigts in which case it is equal to (— A)»a.
If A is reflexive, then condition (2.29) may be replaced by

(2.30) sup

>0

ft—m[O(t)-I]rad—t <oo.
tla

Proor. — In the general case the assertion can be easgily verified by Lemma 2.6 (i)
(¢f. [15; Thm. 2.4]). If 4 is reflexive, let (¢,)y be a sequence of positive real numbers
with &, >0 (n —o0) and define

(=]

- t dt
Ay, i— Ga},.f a,,(s—n)O(t)da, nelN.
0 .

Obviously, a,€ D{(— A)*) and s —lim a, == a. Then, if (2.30) holds true it fol-
lows from (2.26) that the sequence ((— .)*a, )y is uniformly bounded in 4. Con-
sequently a belongs to the completion of D((— A)%) relative to 4. But in the
reflexive case that completion is equal to D((— A4)*) (cf. [3; pg. 15]) which proves
the sufficiency of (2.30). Since the necessity of (2.30) is evident, this concludes the
proof of the assertion.

3. — Interpolation of cosine operator functions.
The characterization of interpolation spaces via C,-semigroups of operators as

initiated by J. L. Lions [16] and systematically treated by J. PEETRE [20] and
P. L. Burzer, H. BERENS [7] will be adapted to the case of (j-cosine operator fune-

12 - dnnali di Malemalica
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tions. In particular, we will identify interpolation spaces by moduli of continuity
of cosine operator functions in the framework of the well-known K-method. For
background material on the theory of interpolation spaces the reader is referred to
the excellent textbooks by J. BERGH, J. LOFSTROM [5] and H. TRIEBEL [22] where
also an extensive bibliography is given.

Let ¢: Rt - $(A) be a C,-cosine operator function with infinitesimal genera-
tor A. In the sequel D(A7), r e N, will always be equipped with the graph norm
thus becoming a Banach space itself. Qur first result gives an equivalent charac-
terization of the intermediate spaces (4, D(A")),,, @ =afr, 0 <a<r, 1<g< oo
(0<a<r, ¢ = oc0) by means of the r-th order modulus of continuity of ¢ which is
given by

(3.1) w(t7y @) = sup [[O(s) —IT"ajs, acd.
|

HE

REMARK 1. — In (3.1) we have tacitly used the fact that C can be continuously
extended to the whole real line R (cf. Remark 1 in Section 2).
Preparatory we will show the following:

LemmA 3.1. — Let € be a Cy-cosine operator function of type (M, w) with infini-
tesimal generator /. For r e N and 0<<¢<d< co there exist constants C, = Cy(M,
w, 7, 0), v =1, 2, such that for ac 4

(3.2) O, K(t*r, a; A, D(A)) <w,(t7, @) + min (1, t*)]|a] < O, K(t*, a; A, D(A7)) .

If ¢ is equibounded then we may take & = oco.

ProoF. — Using (2.4) and the basic equation (2.9) we find that

(cosh (ws) — 1)

(3.3) [[C(s) —ITa|<M s stldrally, aeD(Ar).
On the other hand
(3.4) I[C(s) —ITa|.<(M cosh (ws) + 1)'falls, a€4d.

Hence, if we set a = a, 4 a;, where a,€ A and a,& D(A") we get

(1", d)ﬁsllip ILC(s) — L] ao] 4 +ISIEP ILO(s) — ITras]u<
< (M cosh (wt) 4 1) a4+ M(Cm%;—;%ﬂt”][/lmlﬂ,i .

Since (cosh (wt) —1)"= O((wt)*) and min (1,1¥)]|a] <K@, a; 4, D(Ar)), this
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gives the second inequality in (3.2). In order to prove the first one, we set for
notational convenience @, ,:=a;’a, ,j=0,1,...,7, where ¢, is given by (2.21).

Further we note that by means of d’Alembert’s functional equation

(3.5) [[CG) =2+ 3 G(z (— 1) sv)
(G4 400; GF)EPL

=1 »=1

where s,e R, » =1, ..., 7 and P,:= {(o4, ..., 0,)|5,= 0, 0,€ {0, 1}, » = 2, ..., r}. Then,
if ae A it follows by (2.5) and (3.5) that :

t/r tir  ilr
(3.6) a=2(tfr)* > d,-,,f f [1@/r—s,)C(js,) a ds, ds, ... ds,—
=0 vy . »=1
t/r tlr  t/r
—27(tfr)=2r Y dﬁ,f ff [T/ —s) Cliss)a ds, ds, ... ds, =
i=1 gy : p=1
tlr tlr  tlr

— 2N S f f f T] () —s,) [C(z (— 1)%)_1]r a ds, ds, ... ds,—

(G1y 00y Op)EP, y=1 y=1
0 0

itlr stfr it/r
—27(t[r)yEr Y f‘”lij,rf ff [1Gtr — ) C(ss)a ds, ds, ... ds, .

=1 =1
¢ o o

Denoting by a, and a, the first resp. the second term on the right-hand side of
(3.6), we obviously have a,e€ A while a,e D(A") which follows easily from Lem-
ma 2.2 (iii). Moreover, applying (2.4) and (2.9) we get

'
lao] 42~ émw,w, a),

Jonba2 3 3 {1 |itfr)+Teosh (jtfr) =17 Hal 1,
[ralas2 5 (i)l o).

This gives the desired inequality

K (1, a; 4, D(AY) < g4+ min (1, #7)]6,] 0, < Ol (7, @) + min (1, )] a] 1]

As an immediate consequence of the preceding Lemma we have:

THEOREM 3.2. —~ Under the assumptions of Lemma 3.1 let A, o 0<a<r
1<g<oo (resp. 0<a<r, ¢ =o0), r€ N, be the intermediate spaces (4, D(A"),,,
0 = afr, and let 0 < <oco. Then for 4 . there are the following equivalent
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0 (f [ (s a 4, D)1 5) "

Q) Jo)at (fﬁﬂaw(ﬂ P—) ’
(i) o]+ (f[[t‘g“ll[O(t) — ITa]J @;) -

with the usual modification in case ¢ =co

%% REMARK 1. — Note that 6 == 00 i8 an admissible value in (3.7) (i), (ii) and (iii)
if the Cjy-cosine operator functlon O is supposed to be equibounded.

CoROLIARY 3.3. — Under the same assumptions and with the same notations
a5 in Theorem 3.2 there holds

(3.8) 0wm4,,.c4 teRY, 0<a<r, 1<g<oo (0<agr, g =o00);

a,ria !
(3'9) S(t)Azx,r;aC'Aoc-i‘llz,r;a’
teRY, 0<a<r—1/2, 1<g<oco (0<a<r—1/2,¢=o0c0).

PROOF. — The asserted relations (3.8) and (3.9) follow immediately from (3.7) (iii).

REMARK 2. — Note that (3.8) is nothing else but the interpolation space property
of 4, ..

Next we shall give a characterization of D((— 4)*), 0<a <7, r€ N, as inter-
mediate spaces of A and D(Ar), and we shall derive some reduction results both
in the case of non-optimal approximation and saturation.

LeEMMA 3.4. — Let A e C(4) be the infinitesimal generator of an equibounded
C,-cosine operator function. Then there holds:

(i) If re N and 0 <a <<r then

(3.10) A, CcD((—A¥)c4, .-

(ii) If re N and 0 <a < f<r, 1<g<oo, then

(3.11) (4, D((— 4))),,,= 4 6 = afr

o,ria !

while the Favard space (A, D((— /1)"‘))1,00 is the space of all a € A such that (2.30)
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holds true normed by

oz e — 1y

e

la].4+ sup
>0 4

In particular, D((— 4)%), 0 <& < <7, is a dense subspace of 4, .., 1<q<oo.

Proor. — The inclusions (3.10) can be easily verified by means of Lemma 2.6 (ii)
resp. Theorem 2.7. As an immediate consequence we have that D((— A4)%), 0 < o < 7,
is of class C(0; 4, D(A"), 0 = afr (cf. [3; Def. 3.5.1], [7; Def. 3.2.15]). This also
holds true for o = 0 and « = r as follows directly from the theory of intermediate
spaces (cf. [5; pg. 49], [7; pg. 192]). Then (3.11) is readily established applying
the reiteration theorem (cf. [5; Thm. 3.5.3], [7; Thm. 3.2.20]). The characterization
of the Favard space can be deduced from Lemma 2.6 (i) (cf. [3; Thm. 4.5] in the
semigroup case).

Finally, the rest of the assertion is a well-known property of inferpolation spaces
(cf. [5; Thm. 3.4.2 (b)]).

We denote by 4° 0<a<r, the closure of D(A") in A

K10 !

w11 view of Corol-
lary 3.3 the restriction of C to 4 . defines an equibounded cosine operator func-
tion. Our next result shows that A} .. 1s the largest subspace of 4 such that

the mapping O(-)a: E+"‘>Aa,,;m7 a/eAg,r;m, is strongly continuous.

LAt

LeMMA 3.5. — An element ¢ € 4 belongs to A° O<a<r, re N if and only if

a,r;0 )

(3.12) lim [[C() —Ial|,,,,,= 0.
t—>0+

Proor. — For the necessary part of the proof we may assume o € D(A7). Then
it follows by (2.27) and (3.7) (iii) that

O@) = I16] 4y, < O{ILC) — TN 4+ Bup ls72#[0(s) — ITTO(t) — Ila| 4} =

= C{H[U(t) — Ials~- 2 sup fpa,r(T) O(rs)[0(t) — I} (— A)*a dx

SERT

I<
4

© 0

<0 {H[C(t) —Ia]s+ 20| |p,, ()] de{[0() — I](— /1)““|IA}

0

which immediately gives (3.12).
Conversely, assume that (3.12) holds true and set
d ‘
@y 1= (— 1)r2rt1 p,.,,(%) O(s)a;, te R™,

0
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Lemma 2.6 (ii) tells us that a,e D(A7). Moreover, using (2.185) we have

a—al,,,..<2|p, 5)Il0G0) —Ial,,,_ds.
0

By the dominated convergence theorem the right-hand side of the preceding
inequality tends to zero as ¢ — 0. Hence, a belongs to the closure of D(A’) in
4, 0 10 ac A

CA

REMARK 3. — Since D(A7) is a closed subspace of 4, ., we have in particular
Al = DA

The following result characterizes the behavior of the #-th Riemann difference
[C(#) = ITa for a€d, .  resp. a€A) as ¢ approaches zero:

Lemma 3.6, — Under the assumptions of Lemma 3.4 there holds:

() Ifacd,,  0<a<r l<g<oo (resp. 0<a<r, g =oco), r€ N, then
(3.13) [0 —ITa] = O(2), (t—0%).

Conversely, if (3.13) holds true then aed,

(iiy Let 0<a<r,re€N. Then ac A°  _ iff

(3.14) I[C(#) —IT||a=o(t?), (t—>0%).

Proor. - Ifa€d,  thenaecd, . Butacd, . if and only if (3.13) holds
true as follows directly from (3.7) (iii). If a€ 4? , then t-#"K(t, a; 4, D(A)) -0
(f > 0%) and viee-versa (cf. [6; Thm. 3.4.2 (¢)]) which implies assertion (ii) in view
of Lemma 3.1. '

We shall now derive some special mapping properties of § which will prove to
be a useful tool in the reduction of second order evolution equations to first order
systems,

Lemua 3.7. — Let 4 be a reflexive Banach space and let € be an equibounded
Cy-cosine operator function with infinitesimal generator 4. Then there holds for
te R,

(3.15) S(t) 4,y 1.0 € D(A) .

PROOF. ~ Let a€ 4 ), and t € R". Then, using (2.1) it is easy to show that for
0<s<t

[C(s) —I1S(t)a = %—f[()(t + 1) —0@®)]adr — | [C(E 4 7) — C(t)]a dx

s
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whence
I[0(s) — I18(t)a]a<s sup [[O(F + ) — O(t)]a] 4.

lzl<s

But in view of (3.13) we have

0@ + 7)) — C®)]aja= O([z]), (2] =0)
and thus :
I[Cs) —I18(ta .= O(s*), (s—>0%).

Hence, Lemma 3.6 (1) implies that S(f)a € 4, .. Finally, since 4 is reflexive,
Ay 10= D(A) which gives the assertion.
In the special case 4 = L?(), 1 < p < oo, we can show:

LEMMA 3.8. — Let A = L?(2), 1 < p < oo, where 2 c R% d € N, and suppose that
¢ is an equibounded C,-cosine operator function with infinitesimal generator A.
Then there holds for fe R™

(3.16) 84, .o CD{(— A,  O<a<i,

a1,
4w
(3.17)  (— Ay 28(t)a = G54 [s]‘“G(t—s)w%f, 6edl., O<a<l/2

—c0

where (7%1: —2(1 + 2a)C,,,,, and the integral in (3.17) has to be understood as

the principal value in the sense of Cauchy.

Proor. — Since for « = % assertion (3.16) follows directly from Lemma 3.7, we

may restrict ourselves to the case ae 4, ., 0<a<}.
Now, if s, te Rt there holds '
tts s |3
(3.18) [0(s) — I18(t)a — %J'C(T)a'dr T -;—fo(z)a dz —f()(f)a dr
3 -8 [}

and thus

d
= [0(s) — 118(t)a = % [C(t+s) — Ot —s)]a.

Hence, if ¢ > 0 and we formally integrate by parts we get

(3.19) C;il,z,fs‘z"‘“l[(?(s) —I]S(t)ail; =

bl
& @

= 205457 [0(s) — 118(0) als=— O [ 00 + ) — Gt — )10

&



198 Rowarp H. W. Horpr: Interpolation of cosine operator functions

iThe preceding identity (3.18) also implies
[[O(s) — I18(t)a] s<2Mta4
whenee

(3.20) lim 2577|074 |[[0(s) — I18(t)af 4= 0 .

On the other hand, using (3.18) once more we get

ite t
[Cle) — I18(t)a = %f[c’(’f) — O0(®)]a dv — }|[C(r) — C()]a dv

t—e

and thus

(8.21) e[ 0(e) — I18(f) e s<e** sup [[C(z) — O)]]4 -

lr—l<Ce

;Since aed , it follows from (3.13) and (3.21) that

a,1;0

(3.22) sup 267 |0=8]|[C(s) — T18(1) a4 < 00 .

£>0

Moreover, if ae A? then in case o = 0 the C,-property of € (note that

050 )

Af 4.0 = 4) and in case 0 < « < § relation (3.14) together with (3.21) imply that
(3.23) lim 2672274074 |1[C(e) — I18(t)al .= 0 .

s—>0+

As far as the second term on the right-hand side of {3.19) is concerned we have

(==

(3.24) — 5;}1‘[3'2“[0(15 48— Ct— s)]abd?s =

’ d
=G4l sl — s)a(—? = 04 s [0 —s) — C(t)}a?s :
lsl=e lsl=e

If we set

@,(8; @) == |t —s|22[0(s) — O(t)]e, seR,

then ¢,(+; @) € L*(R, A), since |[C(s) — O(t)la] 4= O(|s —t[**) as s —¢. Hence, if we
make use of a special L*-property of the Hilbert transform (cf. [12; Lemma 2.2])
it can be shown in the same way as in [12; Lemma 2.1] that, if & — 0%, the right-
hand side of (3.24) converges in LI, A) for any I := [—¢, + ¢], c€ R, and any
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¢>1 to the Hilbert transform of ¢,(-, ¢) except for & constant factor. Consequently,
ifaed,, ., then taking (3.19), (3.20), (3.22) and (3.24) into account, (2.30) of The-
orem 2.7 implies that (3.16) holds true for almost all ¢ € R, while in case a & Ag,l;m
by means of (3.19), (3.20), (3.23) and (3.24) it follows from (2.29) of Theorem 2.7
that for almost all e R*

4o +o

(— A (S(t)a) = G\ sl 0@t —s) — O(t)]c&—ds—S = 04| s 0@ — 8)66%—8' ,

—CD -

the integrals being principal values in the sense of Cauchy.

But using (2.13b) and the fact that S(-) is odd, it is easily shown (cf. [12;
Thm. 2.3]) that (3.16) and (3.17) are even true for all {e R. Furthermore,
(— A2 8()a, aedl ., is a strongly measurable function and hence strongly
continuous which also follows from the functional equation (2.135).

REMARK 4. — If A is the infinitesimal generator of a C,-cosine operator fumnec-
tion C of type (M, ») with w >0, then if we set A, := A — I for some ¢>w-
we have AR(A%; A ) = AR(A*+ o*; A) and it follows from Theorem 2.4 that 4,
generates an equibounded C,-cosine operator funetion C’g. Consequently, in this
case we may state the preceding results in terms of ./19 and C, instead of /A and C.

We conclude this section with reduction theorems both in the case of optimal
and non-optimal approximation. In the case of non-optimal approximation we
obtain (cf. [7; Thm. 3.4.6, Corollary 3.4.9] in the semigroup case):

THEOREM 3.9. — For given 0 <« <r, &€ N, suppose that « = % -- § for some
0<k<r—1, 0<p<1. Then ac4d, ., 1<g<oco, if and only if and only if ae
€ D(A¥7), 0<j<k, and A*-ig €4, 5,00, (0<BF<1) resp. A4, ., (F=1).

Moreover, the following norms on 4, ., are equivalent to those given by (3.7)

(1)- (i)

riq

5
. . di\l/e
(3.28) (i) la] pom -+ (f[t‘z‘ﬁ'”“Bf““’ A a) 41 7) , 0< <1y
[}

G
falowan + ( [resemjom — s §) ", 0<p<a
(i1 gy

’ —2(1+9)]] — Jli+2 Ar—i th v _
1o oz 1 [t i[Ot — If+2 A OLHA]7 , pf=1

0

where again we have to use the usnal modification for ¢ = co and § = oo is ad-
migsible if ¢ is assumed to be equibounded.
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ProoF. — As we have stated in the proof of Lemma 3.4, D(A*), 0 <k <7, belongs
to the class C(0; 4, D(A7)), 0 = «fr. Hence, if a =5k +r, 0<k<r—1,0<g<1,
resp. 0<k<r—2, f = 1, we may apply the reiteration theorem to obtain

4, .= DA, D (Akﬂ))(ﬁﬂ)/(fﬂ),a resp.
Aa,r '3 ( (Ak—‘j)7 ‘D(Ak+2))(a'+1)/(i+z);a :

Since the transformation (I — A)—7, 0<j<k, provides an isomorphism between
D{A*4) and A resp. between D(A*7) and D(A#), » = 1,2, the interpolation the-
orem (cf. [7; Thm. 3.2.23]) states that the spaces (D(A*), D(A*)) 0040, 204
(Ay DAY g4, 105D (DA, DIAR) g o a0 (Ay DIAT)) 40, 8T
isomorphic. Hence, the assertions of this theorem are readily established.

In the case of saturation we get (cf. [7; Thm. 3.4.10, Corollary 3.4.11] in the
semigroup case):

THEOREM 3.10. — An clement a € 4 belongs to 4, .., 7€V, if and only if a €
€ D(A*) and A~*ae 4, ., 1<k<r.
The following norms on 4 are equivalent to those given by (3.7) (i)-(iii)

)

141500

k-1 f2i

= (2!
(i) [a]pears -+ sup (F2#][0(F) — I]°Aal 4)
0<¢<g

] Ar*a

3:26) @) lalours+ sup (t ll [Gm

(6 = oo admissible in (3.26) (i), (ii) if C is equibounded).

Proor. — Tt follows from (2.9) that for s,f€ R™ and a€ 4

5 ] 8

f(s — ) C()[0(t) — Ia dr = Af(t— %) 0<a)f(s — ) 0(v)a dv do =

[ ]

— Af(s — 1) G(T)f(t—- o) (o) a do dz =f(t~— ) 0(0)[C(s) — Ila do .

Hence, if ae 4 we gelb

TR

(3.27) [[C#) — IO(s) — ]"laiu:

= lim ‘?'rz’f f H 7 — 1) O(1)[C(t) — I[C(s) — I]1a dry dTs .. dT,y|| =
>0+ =1 4

= lim 2*j(t — Ty C’('rr)J‘... T]:I (s — 1) C(z){z~¥[0(7) — I]a dry AT, o0 dT | <
>0+ v=1 4

< Mtzs2-9 gup (v |[C(zr) — IT7a]4) .

7€R*
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From the preceding inequality we immediately coneclude that ae 4
ILO@) — I]o»ﬂAr_1 e 0 (¢ = 0%) which shows aed!
Then using (2.9) and (3.27) again it follows that

r—1, r—1;c0 a‘nd
and thus ¢ eD(A™1).

sup (1[[0(t) —I]Aa]) =

= sup (t—2 lim

teRt s—>0+

&8s Sr_i
27—1s—z<"—1’ff...f I1(s — ) Clwn)[C(t) — I1A*a dz, dv, ... dT,y
pe=1
00 i}

= sup (-2 lim (27-Ls=2r-V|[C(s) — I} C(t) — I] a]]A)) <
teR* §=>0
i : < 21 M sup (v [O() — ITal,

TeRY

whenece Af—laeALl;m. Repeating the previous steps of proof as often as necessary
we conclude that a € D(A™*) and A~*acd In order to prove the converse
we note that by (2.9)

r—k, r—k;© °

1[O(8) — ITra| s< 2~ Mtze—D| [O(t) — I+ Ar*a],

which immediately gives the assertion.
The equivalence of the norms (3.26) (i), (ii) with those in Theorem 3.2 is then
easily established. '

4. — Applications.

Let us consider the second order ordinary differential operator /A == d?/dw2. 1t
is not.hard to show that A generates an equibounded C,-cosine operator function ¢
on 4 = I’(R), 1<p < o0, given by

(4.1) (O)a) (@) = §[a(w +t) +a(z~—1)], & teR, acL?(R).

Since D(Ar), r € N, corresponds to the Sobolev space Wer»(R), the interpolation
spaces 4, ., 0<a<r,1<g<oo (resp. 0<a<r, ¢ =o0) can be identified ag the
Besov spaces B;*? and hence, the norms given in Theorems 3.2, 3.9 and 3.10 define
equivalent norms on these spaces. In particular, using the explicit representation
(4.1) of ¢ we can easily compute the 7-th Riemann difference [C(t) — ITa

+r

([00) = ITra)(@) = (Afa)w) = 3 (—1)~ (7.21?-) a(x + jt)

j=-r

and via (3.7) (ii), (ili) we thus obtain the well-known characterizations of B2 by
means of the 2r-th central difference 42"
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Moreover, since 4, . = W¥»(R), 1 <p <oo, re N, Theorem 3.10 states that
the following norms are equivalent on We2r2(R)

dalir—x)
A 2k

b iR

[a]pr-rs + sup (t"” a

0 <t<o

), I<kgr.
kd

As an example for the application of the reduction results of Theorem 3.9 let
us consider the Besov spaces B;*% 1 < a < 2.

According to (3.25) (i), (ii) for these spaces the following norms are equivalent

FL ., d | Ted\e
taloss + [ [re 22 el ['5)",

0

¢ 4! —2a A2 —~2(a—1) a 2 dr\ve
e N e | K

0

In [7; Chap. 4.3.2] equivalent characterizations of B)*? are obtained consider-
ing / as the infinitesimal generator of a holomorphic Cy-semigroup T whose explicit
representation is given by the Weierstrass singular integral

oo

(T(t)a)(z) = M%erxp (—s4t)a(x —s)ds, xzcR, tcRY.

—C0

Indeed, the cosine operator function C and the semigroup I’ are related by the
formula

(T(t)a)(x) = 1 fexp (— s2/48)(C(s) &) (w) ds

(et )2
0

which is well-known from the theory of transmutation and related P.D.E.’s (ef. [8],

[10]).

REMARK 1. — In higher dimensions, i.e. 4 =4 and 4 = L*(R?%), d > 1, the ap-
plicability of our results is somewhat marred by the fact that 4 only generates an
equibounded Cy-cosine operator funetion C if p = 2. For example, in case d = 2
resp. d = 3 we may use the Poisson-Parzeval resp. the Kirchhoff formula as an ex-
plicit representation of C in order to characterize the Besov spaces Bi*“.

As a further application of the results of Section 3 we shall be concerned with
the order reduction of the second order Cauchy problem (2.11a), (2.11d). In practice
one often fries to introduce new variables a, a, according to a,:= a, a,:= (d/dt)a
and thus to rednce (2.11e), (2.11b) to the first order system

d (o, B 0 — I\ {a, +
S-C ) e
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with iritial conditions
(4.20) a,{0) = a,, a,(0) =al.

However, such a reduction is not always justified, since it may happen that the
second order problem (2.11a), (2.11d) is well-posed while the first order one is not.

Nevertheless, in the special situation of Lemma 3.8 the reduction as outlined
above leads to a well-posed first order problem.

More generally we have:

THROREM 4.1. — Let QcR% de N, and A = L?(Q), 1 <p <oco. Then an op-
erator 4 e C(4) is the infinitesimal generator of an equibounded C,-cosine operator
function if and only if the operator-valued matrix

0 Ao
(4.3) Qo‘:(/I1/2+oc 0 )7 0<a<1/2
where A7 := *"(— A)?, y € R*, generates an equibounded C,-group of operators on
A o XA

Proor. — For the necessary part of the assertion assume that A e G(4) is the
infinitesimal generator of an equibounded C,-cosine operator function € and define

C(2) Aie-a8(1)

(4.4) Gu(t) = ( Az (s o)

), 0<a<1/2, teR.

By means of the basic identities (2.13a), (2.13b) and Lemma 3.8 it is easily
verified that T is a Cy-group of operators on 49, , X A. Moreover, if 12€ g(4) we get

_{ ARG A) A2 R(42; A)
(4.5) E(2, D) = (/Il/2+OLR(/'L2; A) AR(A%; A) )

On the other hand, it follows by (2.15a) and (2.15b) that

w0

f exp (— A) Bult) &t = R(1; Bs)

which readily shows that B, is geverated by D,. It is also immediately clear in
view of (4.5) that G, is equibounded.

Conversely, if G, is an equibounded O,-group of operators on 45 1o XA with
infinitesimal generator @, then

Calt) := } (Bult) ~ Ba(—1), t€R,
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defines an equibounded Cy-cosine operator function on 4 . XA with infinitesimal

generator @2. But
A4 0
[
%=y )

which shows that /A generates an equibounded C,-cosine operator function on A.
As an immediate consequence we obfain:

COROLLARY 4.2. — The second order Cauchy problem (2.11a), (2.115) is uniformly
well-posed iff so is the first order problem

(4.6a) C%a(t) = D,a(t), teR, 0<agl)2,

(4.6b) a(0) = a°

where a(t) = (@.(?), a:(t))'€ 4, |, X 4, t € R, and there is a one-to-one correspondence
between the solutions of (2.11a), (2.11) and (4.6a), (4.6b) given by a,(t) = Av*-sa(t)
and a,(f) == (d/dt)a(?).

REMARK 2. - Under slight modifications the assertions of the preceding theorem
and its corollary remain valid if 4 is the infinitesimal generator of a C,-cosine oper-
ator function ¢ of type (M, w) with » > 0. In this case one has to replace @, in
(4.3) resp. (4.6a) by

b — 0 /I;“—“Jrigl)
"\ — ol 0

where A,:= A — I for some ¢ > w (cf. [12; Thm. 6.9]).

As a final example we shall be concerned with the approximate solution of the
Cauchy problem for a second order hyperbolic P.D.E. with special emphasis on the
case of non-smooth initial data. The analysis presented here is somewhat similar
to that one given in [6] for the approximate solution of initial value problems for
parabolic and first order hyperbolic equations, but the main difference is that we
shall concentrate on two-step fully discrete schemes instead of one-step methods.

Let us consider the initial-value problem

2
(4.7a) Ed{z“(m? t) = (Pa)(,t) := Y paD*a(z,t), xR’ teR,
lal<om
(4.70) a(x, 0) = a®(x) , %a(m, 0) =a%x), wzecR*

a
where pa€C, o = (%, .., &) € NG, |a| = > o, ne N. If we treat that problem in
§==1

I*(R?%), then as we have pointed out in Section 2, (4.7a), (4.7b) is uniformly well-
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posed in R if and only if the differential operator P is the infinifesimal generator
of a C,-cosine operator function C: R — B(L*(R%), and in this case € and its strong
integral § are the propagators of the given Cauchy problem. Throughout the fol-
lowing we will restrict ourselves to the case p = 2. As mentioned before, the reason
for this lies in the fact that even in the simple case P = A the Cauchy problem
(4.7a), (4.7b) is not uniformly well-posed in R unless d = 1 or p = 2. Nevertheless,
with regard to an approximate solution of (4.7a), (4.7b) we are interested in error
estimates in the I*-norm, and as we shall see below that purpose naturally involves
interpolation spaces, namely the Besov spaces B¢ ¢>0.
If we denote by ’

(4.8) P(E) =Y pali&)

fal<em

the symbol P of P, then Pa = F-1(Pd), a € §', where ¢ := Fa denotes the Fourier
transform of o and 8, is the space of tempered distributions. The Fourier trans-
formed initial-value problem now reads

(4.9a) ;—;d(g, t)= P(&)d(&, 1), EcR’ (R,
(4.9 WE0 =0,  LaE0 =@, ek

It is clear that (4.7a), (4.7b) is uniformly well-posed in R (with respect to L*(R9))
iff the same holds true for the transformed problem (4.9a), (4.95). Equivalently, P is
the infinitesimal generator of a (y-cosine operator function € of type (M, o) if and
only if P generates a C,-cosine operator function C of the same type which can
formally be represented by

©  p2i

(4.10) C(t) = ;0 @WP(EV'

The correspondence between ¢ and C is given by
Oa = (C(t)d), teR,

at least for a € @f , the space of functions whose Fourier transform 4 belongs to 0.
Moreover, by means of Theorems 2.4 and 4.1 we have the following simple criterion
for well-posedness of (4.7a), (4.75):

LemumA 4.3. — The initial-value problem (4.7a), {4.7b) is uniformly well posed
in R if and only if there exists a polynomial @ = @(5), & e R?% such that P =
= J(£)? + ¢* for some ce C, Re ¢>w, and

(4.11) [Re Q(%)|<w, EeR?.
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As a simple example let us consider the one-dimensional wave equation where
P = @*/de®. Then P(§) = — &, Q(§) = i€, ¢ = 0, and thus O(f) = cos (t£) Whence
Ot)a = F-cos (t&)d) = 4[a(- + t) + a(-—1)] (ef. (4.1)).

After these preliminaries we will now approximate the given initial-value problem
(4.7a), (4.7b) by fully discrete schemes which are governed by some finite difference
approximations in the space variables and a two-step finite difference scheme in
the time variable. Let us denote by ke R™ the step size with respect to the
discretization in space and let us define A, := {t,= jk|jeZ} as a uniform partition
of the real line R with step size k € R™ which we assume to be related to b by kb~ =
= } = const for some ¥ € N. We then introduce finite difference operators 4, and
B; according to

Aty = 3 an(h -+ k),
Ir|<p
(4.12)
By, = Eﬁv (- + vh)
IrI<<p

a
where » = (vy, .., va) € Z%, |v| = 3 |v;], p € N, and ox(h), By(h) are polynomials in k
of degree less or equal 2r g=i '
For given approximations a) and a, to a° resp. a'= a(k) we consider the two-

step fully discrete scheme

(4.13) Buoy™ + at ] = Azat, neN.

The symbols 4, and B, of the difference operators A;, B, are given by

== > op(h) exp (i<&, vh)),

[r|<o

= 2, Bs(h) exp (i(§, vh)) .

Iri<p

If we assume

> Bo(0) exp (i<&, ) # 0, EeR?

Ivi<p

then B,(£) is bounded away from zero for at least sufficiently small heR", and
the Fourier transformed difference equation can be written in the form

(4.14) @t —2R (Hdr -+ d&t=0, neN

‘where

(4.15) Bu(&) := 1B71(&) dulé) .
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In the sequel we shall essentially take advantage of the fact that the solutions
a(t) resp. d(t), te R, of the initial-value problems (4.7a), (4.7b) resp. (4.9a), (4.9)
satisfy a difference equation analogous to (4.14). Indeed, in terms of C resp. C we
have the three-term recurrence formulas

(4.16) a((n + 1)k) —20(k)a(nk) + a((n—1)k) =0, neN,
(4.17) d((n + 1) k) — 20(k)d(nk) + d((n—1)k) =0, nel.

In order to give explicit representations of the solutions d(¢), t € 4;, of (4.17),
resp. d2, ne N, of (4.14) we introduce the characteristic polynomials

(4.18) PoA; E)i= A2—28(H)A +1, »=1,2,
where 4,(£) = O(k) and 8,(&) = R,(&).

Then if we choose R e R* large enough such that the roots A72(£), », u =1, 2,
of (4.18) are located inside the circle || = R, the complex line integrals

o &) :—-——-§ P A EYAM A —26,(&)]1dA, neN,

(4.19) lAi=2
Pin; &) ——fﬁ Y2 &Y Am dA, nel,

{Al=R

are well defined, and it can be shown (cf. [13]) that the solutions d(t), ¢ € 4;,
of (4.17) resp. 4}, n €N, of (4.14) are given by

(4.20) d(nk) = P(n; £)d° + Pin; &)@ resp.
(4.21) i = P(n; &)d + Pi(n; §)d:.

Due to the fact, if a%, a'e C’“’ resp. al, are O°° then a(f) = F-14(t), t € Ay, resp.
ar= 7147, ne N, is a solution of (4.16) resp. (4. 13) we define the operators P#(n),

v-——l,Z,y—O 1, given by
P(n)a = F-(Pt(n; £)d), aelP

as the solution operators of (4.16) resp. (4.13).

Therefore, we can cast the consistency of (4.7a) and (4.13) in terms of the Fourier
transformed equations (4.9a) and (4.14) (cf. [6, § 3]).

In this sense the difference equation (4.13) and the second order hyperbolic P.D.E.
(4.7a) are said to be consistent of order p > 0 if

(4.22) Ri(&) — O(k) = O(he[L + |E+#]), (B, &~ 0).

13 ~ dnnali di Malematica
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Moreover, the difference scheme (4.13) is said to be stable if there is b€ R™ such
that for all <k, and any T e R" there exists a constant € = O(T) with

(4.23) |Pm)al < Clafy, w=0,1, nk<T, acCy.

Again, it is more convenient to state stability criteria by means of the Fourier
transformed equation (4.14):

LEvma 4.4. - If there exist positive real numbers h; and € such that for all h<h,

(4.24) sup |B.(&)| <1 + Ok,

then the difference scheme (4.13) is stable.
Proor. — If (4.24) holds true then we also have

(4.25) sup AQ(E)| <1+ Ok, p=1,2.
£er®

Using the theorem of residues we can compute P#(n; £), u = 0,1, and we thus
obtain
7—1

Pyn; &) = 3 (PO 7(FE), Pl =3 (PEN(2P@) -

0 =0

3

I

Then (4.23) is an immediate consequence of (4.25) and Parzeval’s relation.

We shall now establish a priori estimates for the global discretization error
ay—a(nk) in the L*-norm for initial data «° and a belonging to the Besov spaces
B, yo= d/2 + s, resp. Bite, = (d—1)/2 4+ 5, where 0 <s<r + p. For the
sake of simplicity we shall assume that the initial approximations e, and a;, are
given by the correct initial data and that the starting value &} for the difference
scheme (4.13) corresponds to the exact solution of (4.7a), (4.70) at t =k, i.e.

(4.26) w=at, 0= a;

a; = a(k) = C(k)a® + S(k)al.
REMARK 3. — In practice an approximation a; to a(k) may be obtained by a
one-step method of appropriate order which can be derived from a reduction of
(4.7a), (4.70) to an equivalent initial-value problem for a first-order system according
to Corollary 4.2.
The following error analysis heavily relies upon two basic results on the Besov
spaces By, vy=d/2 + 5, s>0:
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LeMMA 4.5. ~ Let ue C°(R% be a slowly increasing function and suppose that
there is a positive constant K such that

w(@)|<E[L + |&F], EeRe,

for some s>0. Then, if Ta := F-(ud), a € By, vo= d/2 -+ s, Wwe have Ta e L®(R?),
and there exists a positive constant € such that

| Taj 5> < OF [a] s
PROOF. ~ See e.g. [6; Corollary 2.2.1].

LEMMA 4.6. — Let P be a bounded linear operator from By, §,>0, into L*(R9)
and assume that there are constants K,, K, > 0 such that

| Palze < Hola|ppr, aeBp!

|Pa|z><Kilajpnr, aeBy, s> s.

Then, if a € By®, sp<< 8 << sy, and g:= (s — 8;)/(8;— 8,), there holds
| Pa o < OKS K| a]ppe .

Proor. — The assertion of this Lemma is a special case of [6; Corollary 2.5.17.
Our main result now states:

THEOREM 4.7. — Let the initial-value problem (4.7a), (4.70) be uniformly well-
posed in R, let the difference scheme (4.13) be consistent with (4.7¢), (4.7b) of order
P >0 and assume that the stability condition (4.24) is satisfied.

Moreover, suppose that a’eB)»®,y =d[2 +s,0a%e B, »,= (d—1)/2 + s,
0<<s<<r -+p, and that the starting values a) and a, are given by (4.26). Then, if
h<h, and a(nk), a7, nk<T, are the solutions of (4.7a), (4.7b) resp. (4.13), there
exists a positive constant C = C(T) such that

(4.27) a7 — a(nk) | = << Oh D[ [09] gyon + [0 gpuse] -

ProoF. — The outline of proof is as follows: Using Lemma 4.5 we shall first
derive two estimates for the global discretization error in the L*-norm for starting
values a° a® belonging to B¥*! resp. B+, y,=d/2 + r + p, and we shall then es-
tablish (4.27) by means of the interpolation result of Lemma 4.6 and Corollary 3.3.

Since the global discretization error a?— a(nk) has the representation

(4.28)  ar— a(nk) = FY([PYn; &) — Pi(n; £)14°) + F[PL(n; &) — Pl(n; £)14Y) ,
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we have to provide estimates for P’;(n i &) —P’{(n; &), u=0,1, in order to apply
Lemma 4.5. It follows from Lemma 4.3 and Lemma 4.4 that O(k) and RB,(£), h<h,,
can be bounded independently of e B¢ Consequently, in (4.19) we may choose
R € R* independent of &, & such that the characteristic polynomials $,(4; &), v = 1, 2,
[M = R, are bounded away from zerc uniformly in &€ R¢ whenece
(4.29) |Py(n; )] <0, EeRy h<hy, v=1,2, u=0,1,

By a similar argument we find that
(4.30)  |Pi(n; &) — Pi(n; £)| < O|0(k) — Bu(®)|, &€ R h<hy, p=0,1.

Now, if a°, a'e B, it follows from (4.28), (4.29) and Lemma 4.5 tha:
(4.31) [a7 — a(nk)| ;= < C[||a°| paran - | @*| paen] .

On the other hand, suppose that a% a'e By»', v,=d/2 +r + p.

Then, if h|¢| < 0y, 0;:= min (1, oy), for some suitably chosen ¢,> 0, we get by
(4.30) and (4.22)
(4.32) |Pi(n; &) — Pi(n; §)| < OW[L + [g[2], u=10,1,

while, if hl¢|> 0y, it follows from (4.29) that

(4.33)  [Pln; &) — Piin; £)] <0 = O(hjg[™*) (%)””o;@ﬂk
<C(h]§])7+”<0h"[l -+ &[], wp=0,1.
Hence, in view of (4.28), (4.32) and (4.33), Lemma 4.5 implies that
(4.34) Jat— a(nk)] g < OW?[[ @ zan + 03] gzen]

Finally, if a’e B}, a%e B}»*, then Corollary 3.3 gives a'e B;»®, and we get
by means of (4.31), (4.34) and Lemma 4.6

(4.35) |y — a(nk)| 1= < Cher/e49[ [ a®] pyoe + [ @t ppo] -
But a'= C(t)a® -+ S(¢)a} whence
(4.36) 0] 5z00 < OT %) gy + 2] 0] -

Ingerting (4.36) into (4.35) gives the conclusion.



Ronarp H. W. Hoppr: Interpolation of cosine operator functions 211

A special type of two-step fully discrete schemes can be obtained in the following
way:
Using symmetric difference quotients:

Doay () := (2h)[an(@ + hey) —ay(z —he))], v=1,...,4d

where he R™ and ¢, denotes the »-th unit vector in R?, we approximate the dif-
ferential operator P in (4.7a¢) by the difference operator

d
(4.37) P a, = Z psDy, Dji= Hngy

lol<Sam y=1

whose symbol P, is given by (cf. [6; § 3.2])

Po(&) = P(hsin (h8)), siné = (sinéy,...,sin&,).

Moreover, in view of (4.10) we approximate coshz, 2 € C, by a rational func-
tion 7(2) = g—*(2?)p(2*), where p and ¢ are polynomials in 2% of order less or equal s
such that ¢(k2P,(£)) # 0, £ € R, for at least sufficiently small b € R Then, if we
choose A,(&) = p(k2P,(&)) and B,(§) = q(k*Py(£)) and set A,0 = F-1(4,d), B, =
= F-YB,d), ac C"‘f, we achieve at a two-step fully discrete scheme of type (4.13).

A suitable choice of rational approximations to cosh z is given by the parameter
dependent family of rational functions

(4.38) re5 ) i= ¢ &% y)p(2°sy), 2€C, yeRT,

where

For second order hyperbolic initial-boundary value problems involving a self-
adjoint, positive definite operator P such rational functions have been successfully
used in [1] and [14] to design highly efficient two-step fully discrete schemes where
in contrast to (4.37) the discretization in the space variables has been performed
by Galerkin type methods. For a detailed discussion of the stability and the ac-
curacy of the methods based on (4.38) we refer to [1], [2] and [14].
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