
Interpolation of Cosine Operator Functions (*). 

RO~-ALD H. W. KOPPE (Berlin, West Germa~y) 

S u m m a r y .  - Using basic techniques ]rom the theory of interpolation spaces equivalence theorems 

are established ]or the intermediate spaces between a given Banach space A and the domain 
D(A r) o] the r-th power o] the in]initesimal generator A o] a strongly conti~nwus cosine oper- 

ator ]unction C. The results are applied to the study o] second order evolution equations 

including regularity, order reduetio;~ and approximation by ]inite di]]erence methods. 

1.  - I n t r o d u c t i o n .  

Given a strongly continuous cosine operator function C on R + with values in 

the Baaach algebra 33(A) of bounded linear operators in a Banach space A and 

infinitesimal generator A, we shall be concerned with the investigation of the inter- 

mediate spaces between A and the domain D(Ar), r ~ N, as well as with the charac- 

terization of the domains of fractional powers (-- A) ~, 0 < ~ < r. Using the K-method 

we shall give equivalent characterizations of these intermediate spaces by means 

of moduli Of continuity of C including reduction results bo th  i n  the ease of n0a- 

optimal approximation and satm'ation. With respect to the regularity of Solutions 

of initial-value problems ior second order evolution equations and the reduction 

of well-posed second order problems to ec~uivalenti first order Ones we shall Study 

mapping properties of C and its strong integral S which are the propagators of such 

problems. As applications, ~he results of this paper not only provide characteriza- 

tions of the Besov spaces B~ ~'r ia lights of a cosine operator functional calculus 

instead of the well-known semigroup approach via the WeierstraSs singular integral 

but also can be used in the approximate solution of initial-value problems for second 

order hyperbolic P.D.E.'s by finite difference techniques with special emphasis on 

the case of non-smooth initial data. 

2.  - B a s i c  f a c t s  o n  c o s i n e  o p e r a t o r  f u n c t i o n s .  

In this preliminary section we will summarize some basic facts in cosine operator 

functional calculus which we will strongly need in the subsequent sections such as 

the da Prato-Giusti-Sova generation theorem, expansions of the r-th Riemann dif- 

(*) En~rata in Redazione il 25 gennaio 1982. 
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ference of a cosine operator  funct ion and representat ions of fract ional  powers of 

its infinitesimal generator.  For  a detailed discussion of general cosine operator  

theory  we refer  to G. DA P]CATO, E. GIUSTI [9], H. O. I~ATTOaI~I [11], [12] and 

~i. SovA [2]]. 

In  what  follows A denotes a Banach  space over K (K ----- R or K = C) with norm 

]l'[i.~ C(A, B) the  set of all densely defined closed linear operators A with domain 

D(A)  in A and range R ( A )  in another  Banach  space B over K and :B(A, B)  the  Ba- 

nach space of bounded linear operators A: A -~ B with norm []A [] = sup ][Aa [!B/]I a [] ~, 
ag:0 

A e ~B(A, B) (if B = A we s imply write C(A) resp. :B(A) instead of C(A, A) resp. 

.~(A, A)) .  The resolvent  set and the  spectrum of A ~ C(A) will be denoted by  ~o(A) 

resp. a(A) while R(~;A) ,  ~ e  ~(A), refers to the  resolvent  ( ~ I - - A )  -~. 

A t ransformat ion  C: R + --> :B(A), where R + : =  [0, oo), is called a cosine opera tor  

funct ion if C ( 0 ) =  I and C(. ) satisfies d~Alembert's funct ional  equation, i.e. 

(2.1) C(t+s)§ t, s e R  + , t > s .  

A cosine operator  funct ion C is called strongly continuous or simply a C0-cosine 

operator  funct ion if C( . )a  is continuous on R+ for each a e A (or equivalent ly ,  if 

s - - l i m  C(t)a = a where s - - l i m  means convergence in the  norm topology of A). 
t--->0~- 

REHAtCK 1. - I t  is clear t ha t  a Co-cosine operator  funct ion C can be cont inuously 

ex tended  to the  whole real line R by  set t ing C(t) = C(--  t) for t < 0. For  nota t ional  

convenience tha t  extension will be still denoted by  C. 

Eve ry  C0-cosine operator  funct ion C is quasi-bov_nded in the sense t h a t  there  

are nonnegat ive constants  M and co such tha t  

(2.2) llC(t)]E<Mcosh(cot), t ~ R  + 

(el. [21]; Thin. 2.5]). We shall then  say tha t  C is of type  (M, co). In  part icular ,  

if co = 0 then  C is called e q u i b o n n d e d .  

The operators C( ')  commute  for different arguments ,  i.e. 

(2.3) C(tl)C(t2) = C(t2)C(t~) , tl, t2e R + , 

and if C is of type  (M, co) and t~=_ R +, v --  1, ..., d, then  

• r (2.4) < ~ [ I  cost (~t~) 
Y=I Y=I 

(cf. [21]; Thins. 2.9, 2.10). 
In  the sequel we shall f requent ly  use the following simple expansion of the r- th 

Riemann difference [g(t) - -  I] ' ,  r e N: 
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LE3L-~IA 2.1. -- Le t  C be a cosine opera tor  funct ion and r e  N. Then there  holds 

;=~ r - j  C ( j t ) + ( - - 1 ) ,  .i z . 

PI~ooF. - The proof  of (2.5) is easily done via  induct ion on r e N making  repea ted  

use of d 'A lember t ' s  funct ional  equat ion  (2.1). 

As in the  case of semigroups of operators  there  is the  importa~it  not ion of the  

infinitesimal genera tor :  Given a cosine opera tor  funct ion  C we associate wi th  C a 

l inear opera tor  A: D ( A ) c A - ~ A  as the  opera tor  given by  

(:?.6) A a : =  2 s - - l i m t - ~ [ C ( t ) - - I ] a ,  a e D ( A ) ,  
t ' + O +  

where D(A)  is the  set of all a e A for which the  l imi t  in (2.6) exists.  The operator  A 

is called the  infini tesimal genera tor  of C. Moreover,  as we shall  see below, the  s t rong 

integrM of U as gi'cen b y  

t 

(2.7) S(t)a=fO(s)ads, aeA 
0 

plays  a decisive role in cosine opera tor  funct ionM calculus. 

LES~)~A 2.2. - Let  C be a C0-cosine opera tor  funct ion wi th  infinitesimM gener- 

a tor  A. Then there  hoids f o r  r e N:  

)2.8a,) 

(2.Sb) 

(i) Are  C(A); 

(ii) I f  a ~ D(210, so does C(t)a, t e R +, and 

(~2r--1 

dt~,_l C(t)a. = A~S(t)a = S( t )A~a,  

d~r 
d W  C ( t ) a =  A ' C ( t ) a  = C(t )A 'a;  

(2.9) 

(iii) I f  a ~ A  then  
t t t 

[C(t) - -  I ] 'a  = A ... (t - -  s~)C(s~)a dsl ds2.., ds~. 

0 0 0 

P~ooF. - The assert ion (i), (ii) and (iii) are obvious generalizations of the cor- 

responding relat ions in case r =  I which have  been p roved  in [11; L e m m a  5A], 

[21; L e m m a  2.14]. 
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The 2r-th Taylor operator B 2r of a C0-cosine operator function C with domain 

D(B20  c D ( A  ~<) and range B(B-~9 c A is defined by 

where 

B~r a s l im ~r = _ B t 
t-+O+ 

B ,  a (2r)  ~t -2~ t~J 
~'~0 

a .  

I~El~iX 2.3. - Le~ C be ~ C0-co,ine operator functioll with infinitesimal gener- 

ator A and let B "~, r ~ N,  be its Taylor operator of order 2r. Then there holds 

(i) I f  a e D ( A ' )  then s - - l i m B ~ a  = A~a; 
t--~O+ 

(ii) I f  a e D ( A  ~-~) and s e R + then 
8 

(2.10) s - - l i m ~  (s -- ~) C(~)B~'a  d~ = [C(s) - - I ] A ~ - ~ a .  
v-+O+ d 

o 

P~ooF. - In  view of Lemma 2.2 (ii) the Taylor theorem for vector-vMued func- 

tions gives 
t 

~ - I  t2J . 1 f 
c ( t ) ~ -  ~: ( ~ . A , ~  - ( 2 r -  1) ! 

J=0  
0 

(el. also [19; Thin. 7]). I t  follows tha!~ 

5, f B~ a = 2rt -z" ( t - - s ) ~ - ! C ( S ) A ' a  ds 

0 

and 

IlB~'a - -  A "  a l [ ~ < 2 r t - 2 ' : f ( t  - -  8)'-111 [r  - ~]A'ai] ~ ds 

0 

= o(1) 

whence D ( A 9  = D(B~9 and B2~a ---- A~'a. 

On the other hand,  using Lemma 2.2 (iii) we get 

s t 

Bt a dv  = 2r(2r - -  1)t -~ (t - -  ~)~2~-~)B~(~-~)[C(s)~ - -  1]a d~ 

0 0 

which yields 

$ 

0 t 

- - - -  1 2r(2r - -  1 ) t - , ~ f ( t _ , ) ~ 2 ( ~ - ~ ) [ C ( s )  - -  l][B,(~-~)a, - -  A ~ - ~ a ] d - ~  

0 

thus proving par t  (ii) of the assertion. 
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Equations (2.8a), (2.8b) in Lemma 2.2 (ii) show that  C0-cosine operator func- 

tions ~re intimately connected with the Cauchy problem for second order evolution 

equations 

d ~ 
(2.11a) ~ a(t) : Aa(t) , ~ ~ R + , 

d 
(2.1:Lb) a(O) = a o a(O) = a~ ' ~ 

Indeed, as has been shown by H. O. FATTOalNI (cf. [11]) the initial-value prob- 

lem (2.11a), (2.11b) is uniformly well posed in R + if and only if the operator A is 

the infinitesimal generator of a C0-cosine operator function (here uniform well- 

posedness means that, if (a,)N, a e C~(R +, A), a,,(t) e D(A), t e R +, n e N, is a sequence 

of solutions of (2.11a) such that  (d~/dVJa~(O +) -+0 (n-->c~), /r = 0, 1, then (a (.)) N 

converges to zero uniformly on compact subsets of R+). 

In this ease the operators C and S are the propagators of (2.11a), (2.11b) in the 

sense that,  if a C, a~ D(A),  then the unique solution a(t), t ~ R  +, of (2.11a), (2.11b) 

is given by  

(2 .1s)  a(t)  = C( t )a  ~ + ~ ( t )a~ .  

Using this property along with (2.8a), (2.8b) and the fact that  D(A)  is dense in A 

one can derive the following two functional equations for C resp. S which we shall 

strongly need later on (cf. [11; Lemma 2.3]) 

(2.13a) C(s + t) = C(s) C(t) + AS(s)S( t )  , s, t ~ R + 

(2.13b) S(s + t) = C(s) S(t) + S(s) C(t) ,  s, t ~ R + . 

Obviously, cosine operator functions play the same role for second order evolu- 

tion equations as do semigroups of operators for first order ones. Moreover, with 

regard to the generation of Co-Cosine operator functions of type (M, co) there is the 

following result which is analogous to the tIille-Phillips-Yosida generation theorem 

for semigroups : 

Tm~0~E~I 2.4 (da Prato-Giusti-Sova generation theorem). - An operator A e C(A) 

is the infinitesimal generator of a C0-cosine operator function of type (M, co) if and 

only if 

(2.14) (i) If  ~ > r ~ then )~ ~ r 

(ii) s - - l i m 2 B ( 2 ; A ) a - - - -  a, a ~ D ( A )  (4 > co~); 
,~,-.+ r 

] d ~ J 1 (D)_(n+l) O'))--(n+l] ) (iii) ~-~ )~R(),~; A) < -~ M n  ![(). + + ()~ --  , 
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P~ooF. - Cf. e.g. [9], [21; Thms. 3.1, 3.2]. 

The coincidence with semigroup theory is stretched by the fact that  AR(A2; A) 

resp. /~(A~; A), ,~ > o~, can be shown to be the operational Laplace transforms of C 

resp. S (cf. [11; Lemma 5.6]), i.e. 

co 

)./~(2 ~ ;A)a =.(exp (-- ~t)C(t)a dt (2.15a) 

o ()~ > o~, a~A) 
co 

R(Z~; A)a --fexp tit. (2.15b) 

0 

Conversely, assume that  A e C ( A )  with ~e~o(A) if 2 > w ,  and that  C(.) is a 

5~(A)-valued strongly continuous function satisfying C(0) = I and an inequality of 

type (2.2). Then if (2.15a) holds true, C(.) is a Co-cosine operator function and A 

is its infinitesimal generator (cf. [11; Lemma 5.8]). 

I t  is an immediate consequence of (2.14) (i), (ii), (iii) that,  if A is the infinitesimal 

generator of a Co-cosine operator function of type (M, ~), then A also generates a 

Co-semigroup of operators of type (M, o~2). However, the converse is not always 

true, take e.g. A = A in A = L~(R~), p =~ 2, d > 1 (cf. [17], [18]). 

I f  C is an equibounded C0-cosine operator function, then we may define frac- 

tional powers ( - -Ap,  ~e  R +, of its infinitesimal generator. In the next section 

we will treat D((--A)~), 0 < ~ < r, r e N, equipped in the usual way with the graph 

norm, as intermediate spaces between A and D(A*). Preparatory we shall now 

derive u representation of (--A) ~ by means of the r-th l~iemann difference of C as 

well as an inverse formula for the operator (--A) ~. In the case of semigroaps and 

groups of operators such an approeh has been used by H. B ] ~ s ,  P. L. Bv~z]~g, 

U. W E S ~ ' ~  in [4] and by U. WESTPH~ in [23] and [24]. 

We introduce p~.,(t), t e R, 0 < c~<n, n e iV, as the function whose Fourier trans- 

form/~. , (s) ,  s e R is given by 

(2.16) 

Furthermore, l e t  q~,~(t), t e R,  be defined by 

t 

q ,o(t) = t-lfp , (s) ds.  
0 

In view of (2.16) the Fourier transform ~,~(s), s ~ R, turns out to be 

co 

(2.17) ~,~(s) =ft-~(cost  - ~)~ dt T '  0 < ~ < ~ .  
$ 

The functions pc,,,,(.) and q,,~(.) can be shown to be even functions belonging 
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to L~(R) with 

(2.1Sa) 

(2.~Sb) 

+ c o  r  

- - o 0  0 

+0o 

~,~(t)  dt  = 2)  -~  , ~ = ~ 

- - 0 o  

(for details and explicit representations of p~,~(t) r e sp  q~,,(t) see [15] and [24]). 

The following Lemma serves as a useful tool in the characterization of fractional 

powers of the infinitesimal generator A: 

LE~v~  2.5, - Le t  C be an equibounded C0-cosine operator function with in- 

finitesimal generator A and let k: n e N. 

Then there holds: 

(2.19) 

(i) I f  0 < : r  and s , ~ > 0 ,  then  for a e A  

r  c o  c o  c o  

d t  s d s  - ~  _ C ( s )  a - -  
- ~ [ r  - -  I q ~ , .  r  = [ v ( t )  I ~,~ ; 

e ~ 
r/ 0 e 0 

(2.20) 

(if) I f  k < n ~  0 < g < k  and e , t > 0 ,  then  for a e A  

c o  c o  c o  

J ~ J \ U  T "  
0 e 0 

PlCOOF. - The ident i ty  (2 19) has bee~) proved in [15; Lemma 2.2]. Since (2.20) 

can be shown in an analogous manner,  we will only sketch ~he proof. For  notat ional  

convenience we set 

a~, .  : =  (-- 1 ) - - J 2  - -+1 j = 1,  ~ ,  ~ e N ~ ' . , . ~  

and 

o , [r < 
(e > 0) 

Then, using the expansion of the k-th resp. the n-th l~iemann difference of C 

given by  (2.5) the left-hand side of (2.20) can be t ransformed into 

+co 

(2.22) ~ee a~.,~q~,~ C(s)a ds, 
J~0 

- - o o  
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while the  r igh t -hand  side can be wr i t t en  as 

2 ~ - 1  "2~ T - -  8 

(2.23) t a~,n) ~8(T)p~,~ d~ C(s)a ds.  

--nO 0 

Therefor% in order to show t h a t  (2.20) holds t rue  it  is sufficient to es tabl ish the  

iden t i ty  of the  b racke ted  t e rms  in (2.22) and (2.23). For  this purpose  we m a y  

choose C(t) ~ cos (~t), ~ e R, and A -~ C, since the  asser t ion then  follows f rom the  

uniqueness of the  inverse cosine t rans form.  

For  our special choice of C (2.22) and  (2.23) can be easily computed  giving 

(2.2~) 

(2.25) 

_1 (cos (),t) - -  1) ~ q~,~(2e) ~ a resp. 
2 

co 

$ 

The ident i ty  of (2.24) and  (2.25) is immedia t e ly  verified in view of (2.16) 

resp.  (2.17). 

As appa ren t  consequences of the  identi t ies  (2.19) a n d  (2.20) in the  preceding 

L e m m a  we have :  

L E ~ t A  2.6. - Under  the  hypotheses  of L e m m a  2.5 there  holds: 

(i) I f  r e N and 0 < c~ < r t hen  for any  a ~ A the  in tegra l  

fq~,,.(t) ~(t) a dt 
0 

belongs to ] ) ( ( - -A)~)  and  for any  e > 0 

r  co 

(2.26) (--  ~,~ C(t) a - -  -~ [C(t) - -  I ]  ; 

0 $ 

(ii) Le t  t e N  and 0 < ~ < r .  

belongs to / ) ( ( - -A)" )  a n d  

(2.27) 

Then for any  a e A and t e R + the  in tegral  

co 

0 

co 

[O(t)--I],a = 2 t ~ ( - -  ) ~,~ O ( s ) a - - i - .  

0 
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5{oreover, if a ~ D((--A)~) then  there holds the inversion formula 
co 

(2 , .28)  [ C ( t )  - -  I]'a = 2t~ C(s)(-- A)~a 7 

0 

P~0OF. -- Par t  (i) of the assertion can be easily established by means of 

Lemma 2.5 (i) and [15; Lemma 2.1] while part  (if) follows from Lemma 2.5 (if) 

and [15; Lemma 2.1] for e -+ 0 + if we take k = r and n > r. 

Using the preceding results we finally arrive at  the following characterization 

of fractional  powers of the infinitesimal generator A: 

Tm~o~E~ 2.7. - Suppose t ha t  the assumptions of Lemma 2.5 are met.  Then an 

element a ~ A belongs to D((--A)~), 0 < e < r, r ~ N, if and only if the strong limit  

co 

(2.29) s--lim~._~o+ C;1"f t-2~[C(t) - -  T-]~a~ 
,8 

exists in which case i t  is equal to (--A)c'a. 

I f  A is reflexive, then  condition (2.29) may  be replaced by 

c o  

 ,o 11 
PI~ooF. - In  the general case the assertion can be easily verified by Lemma 2.6 (i) 

(cf. [15 ; Thin. 2.4]). I f  A is reflexive, let (e,)~ be a sequence of positive real nmnbers 

with e~ -+ 0 (n -+ oo) and define 
co 

. /  \ n /  ~ n  

0 

Obviously, a~eD((--A)~) and s - - l i ra  a ~ =  a. Then, if (2.30) holds t rue it fol- 
~-->  co 

lows from (2.26) t ha t  the sequence ((--A)c~a)N is uniformly bounded in A. Con- 

sequently a belongs to the completion of D((--A)~) relative to A. But  in the 

reflexive case t ha t  completion is equal to D((--A)~) (eL [3; pg. 15]) which proves 

the sufficiency of (2.30). Since the necessity of (2.30) is evident, this concludes the 

proof of the assertion. 

3. - Interpolation o f  cosine operator functions.  

The characterization 0f interpolation spaces via Co-semigroups of operators as 

ini t ia ted by  J . L .  L ions  [16] and systematical ly t rea ted by  J. Pv~T~E [20] and 

P. L. Bc~zE~, H. BE~E~S [7] will be adapted to the case of C0-cosine operator rune- 

1 2  - A n n a N  d i  M a t e m a l i c a  
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tions. In part icular ,  we will ident i fy  interpolat ion sp~ces b y  moduli  of cont inui ty  

of cosine operator  functions in the f ramework of the  well-known K-method .  For  

background mater ia l  on the theory  of in terpolat ion spaces the reader  is referred to 

the  excellent  tex tbooks  by  J. B]~G~,  J.  L6FST~6~ [5] and H. T~I]~m~L [22] where 

also an extensive bibl iography is given. 

Le t  C: R + - +  ~(A)  be a Co-cosine operator  funct ion with infinitesimal genera- 

for  A. In  the sequel D(A'), r ~ N, will always b e  equipped with the graph norm 

thus  becoming a Banach space itself, Our first resul t  gives an equivalent  charac- 

ter izat ion of the in termedia te  spaces (A, D(A,))o.~, 0 = a/r, 0 < a < r, l < q  < oo 

( 0 < a < r ,  q = co) by  means of the  r - th  order  modulus of cont inui ty  of C which is 

given by  

(3.1) r a) = sup II[C(8) - I]~a[l~,  a c ~ .  
Is l<t 

I~]~)~K 1. - In  (3.1) we h~ve tac i t ly  used the fact  t ha t  C c~n be cont inuously 

ex tended  to the whole real  line R (cf. l%mark  1 in Section 2). 

P repa ra to ry  we will show the following: 

L E n A  3.1. - Le t  C be a C0-cosine operator  function of t ype  (M, o)  with infini- 

tesimal generator  A. For  r e N and 0 < t < 6 < oo there  exist  constants  C, = C~(M~ 
o), r~ ~)~ v ~-- 1, 2, such t ha t  for a e A  

(3.2) CxK(t ~, a; A, D(A')) <w,( t  ", a) + min (1, t~')ilalla< C~K(t ~, a; A, D(AO) �9 

I f  C is equibounded then  we may  t~ke ~ -~ cx:). 

1~oo~. - Using (2.4) and the basic equat ion (2.9) we find t h a t  

(3.3) l i l t ' (8)  - z ] ' a l l ~ <  :!~ (eosh (o.,s) - 1 (~,8)" ) 8"ilA'all~, a c D(A') .  

On the other  hand 

(3.4) [l[C(s)--I],a]J~<(Mcosh(o~s) + 1),lla[]~ , a e A .  

tIence~ if we set a = a o +  al, where aoeA and a leD(A  ~) we get 

~,(t , ,  a) < sup iI [C(s) - z]'aoil~ + sup Ii[c(s) - z]'al]l~ < 

< ( M  cosh (~t) + ~)'lla0[l~ + ~'~ (eosh (~t)  - -  1)'t.HA, al!l~ . '  

Since (cosh ((or)-- 1 ) , =  O((~ot) ~,) and min (1, t')llalt~<K(t', a; A, D(A,)), this 
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gives the  second inequal i ty  in (3.2). In  order  to prove the first one, we set for 

nota t ional  convenience ~ , ,  :----- ao-,~a~.,, j = 0, 1, ... , r ,  where a~, r is given by  (2.21). 

:Further we note  t ha t  by  means of d 'Alembert ' s  funct ional  equat ion 

v ~ l  ( a x , . . . ,  ar)~Pr 

w h e r e  s , ~ / ~  +, v = 1, . . . ,  r a n d  _P, :=  {(a~, . . . ,  o'~)1o'1= 0 7 a ,e  {O, 1}7 v = 2, . . . ,  r}. Then,  

if a ~ A it follows by  (2.5) and (3.5) t h a t  

*/~ t / r  ~/~ 

f f f n  (3.6) a = 2~(t/r)-~rJ~=o= g~" . . . . .  ,=1 (t/r - -  s,) C(]s,)a ds~ ds~ ... ds~--  

o o o 

t /r t i t  t /r 

• fff  2'(t/r) -~" g~j, ... ( t i t  - -  s~) C(~s,) a ds~ ds2. . ,  ds,  = 
j= l  

0 0 0 

o e e 

"  fffn 2 (t/r) ~ ~ "aj, ... (# /r - -  s,) ~ ( s , ) a  ds~ ds~. . ,  as~. 
j = l  V ~ l  

0 0 0 

Denot ing by  ao and a~ the first resp. the  second t e rm  on the  r ight-hand side of 

(3.6), we obviously have a o e A  while a ~ e D ( A  ~) which follows easily f rom L e m  

ma 2.2 (iii). Moreover, applying (2.4) and (2.9) we get  

r~ 

][a, lf.<2~M ~ (la~.~l(~ojt/r)--[cosh ( ~ # / r )  - -  lY}I[alI.~ 7 
j = l  

llA~a, lI,<2" ~ {(j/r)-'ja,,~lit-'~(t~, a). 

This gives the  desired inequal i ty  

K(t ~', a; A, D(A')) < llaoIla + m i n  (1, t')'~[al[]~(A,, < C[%(t', a) -5 min (1, W)]la][~ ] . 

As an immedia te  consequence of the preceding L e m m a  we have:  

T~tEO~E~ 3.2. - Under  the  assumptions of L e m m a  3.1 let  A,, . ;q ,  O <  ~ < r  7 

1 <q  < oo (resp. 0 < ~ < r ,  q = oo), r e N, be the in te rmedia te  spaces (A, D(A~))o,~, 

0 = :r 7 and let  0 < d < oo. Then  for A,,;q there  are the following equivalent  
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n o r m s  

(3.7) 
D A ~ "~q dt~l]q (i) ( ))] -()  , 

o 

o 
d 

9 

with the  usual  modification in case q = o0. 

~ K ~i~ I~E~A~ 1. - 57ore tha t  ~]= c~ is aa  admissible value in (3.7) (i), (ii) and (iii) 

if the  C0-cosine operator  funct ion C is supposed to be equibounded.  

C 0 ~ 0 L L ~ u  3.3. - Under  the same assumptions and with the  same notat ions 

as in Theorem 3.2 there  holds 

(3.8) 

(3.9) 

C(t)A,~;cA~,~;q, t e R  +, O < ~ < r ,  l < q < o o  ( O < a < r ,  q = o o ) ;  

S(t)A .~;~c A~+m,~; ~ , 

teR+, O < ~ < r - - 1 / 2 ,  l < q < o o  ( O < ~ < r - - l / 2 ,  q = o o ) .  

P~ooF. - The asserted relations (3.8) and (3.9) follow immedia te ly  f rom (3.7) (iii). 

t~E~A~K 2. - Note tha t  (3.8) is nothing else bu t  the in terpola t ion space p roper ty  

of A ,  m. 
Next  we shall give a character izat ion of 1)((--A)~), O <  ~ <  r, r ~ N ~  as inter- 

mediate  spaces of A and D(AO, and we shall derive some reduct ion results bo th  

in the  ease of non-opt imal  approximat ion  and saturat ion.  

L E n A  3A. - Le t  A e C(A) be the infinitesimal generator  of an equibonnded 

C0-cosine operator  function.  Then there  holds: 

(i) I f  r e N a n d  0 < g < r  then  

(3.10) A~,~,lc D((-- A)~) c A~,~ .  

(ii) I f  t e N  and O < ~ <  fi<.r, l<q<cx), then  

(3.11) (A,D((--A)e))o,~= A~,~;~, 0 = :r 

while the  Favard  space (A, D((- -  A)~))I, ~ is the space of all a e A such tha t  (2.30) 
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holds t rue normed by 
co 

IIoI + t 

/ J J , In  part icular,  D((--  A) ~), 0 < ~ < fl ~ r ,  is a dense subspace of A ~.q, 1 < q < c~. 

P~ooF. - The inclusions (3.10) can be easily verified by means of Lemma 2.6 (ii) 

resp. Theorem 2.7. As an immediate  consequence we have tha t  D((--A)~), 0 < ~ < r, 

is of class C(0; A, D(A~)), 0 = ~/r (of. [5; Def. 3.5.1], [7; Def. 3.2.15]). This also 

holds t rue for ~ = 0 and ~ = r as follows directly from the theory of intermediate  

spaces (cf. [5; pg. ~9], [7; pg. 192]). Then (3.11) is readily established applying 

the reiteration theorem (cf. [5; Thin. 3.5.3], [7; Thin. 3.2.20]). The characterization 

of the Favard  space can be deduced from Lemma 2.6 (i) (cf. [3; Thin. 4.5] in the 

semigronp case). 

Finally,  the rest of the assertion is a well-know]l property  of interpolation spaces 

(cf. [5; Thm. 3A.2 (b)]). 

We denote by  A ~ , 0~<~<r~ the closure of D(A ~) in A.~;~ . I n  view of Corol- 

lary 3.3 the restriction of C to A ~ defines an equibounded cosine operator func- 

tion. Our next  result  shows tha t  A ~ is the largest subspace of A, , ;~  such thu t  

the mapping C(') a: R + -~ A ,.~, a e A ~ is strongly continuous. 

LElvI~t& 3 , 5 .  - An1 element a e A belongs to A ~ 0 < ~ < r ,  r e N if and only if 

(3.12) lim ll[C(t) - -  I ] a ] l ~ , ~ ; ~  --~ 0 .  
t " * 0 +  

P~ooF. - For  the necessary par t  of the proof we may  assume a e D(Ar). Then 

it  follows by (2.27) and (3..7) (iii) t ha t  

T] Iv(t) - I ]  abe,r= ~ < C{II[C(t) - -  I ]  a]! ~ + sup  ] 8 -~ [6 (8 )  - -  I]~[C(t)  - -  ~] a,] ~} = 
s ~ R  + 

= r  - z ]a lI~  + 

< e {Hie(t) - Z]a!F~ + 

co 

co 0 

0 

which immediate ly  gives (3.12). 

Conversely, assume tha t  (3.12) holds true and set 

co 

0 

t ~ R  + . 
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L e m m a  2.6 (if) tells ns t ha t  ate D(AO. l~Ioreover, using (2.18b) we have  

co 

O 

By the  dominated  convergence theorem the r igh t -hand  side of the  preceding 

inequal i ty  tends to zero as t ~ 0 +. Hence,  a belongs to the  closure of D(AO in 

A~,;.~, i.e. a e A ~ 

]~E1VIAI~K 3. - Since D(A') is ~ closed subspace of A,~;~, we have  in par t i cu la r  

A ~ " D(AO. 
. rjr; ~o 

The following resul t  character izes the  behavior  of the  r - th  R i emann  difference 

[C(t) - -  l]~a for a ~ A,~;r resp.  a e A ~ as t approaches  zero : 

LE)~A 3.6. - Under  the  assumpt ions  of L e m m ~  3.4 there  holds: 

(i) I f  a e A~,r;q, 0 < a < r, 1 < q < oo (resp. 0 < ~  < r ,  q = co), r e N, then  

(3.13) [l[C(t) - I r a  N,~= O( t~ )  , (t ~ o * ) .  

Conversely,  if (3.13) holds t rue  then  a ~ A 
g ~ g r ;  r  

(ii) Let O < x < r ,  r e N .  Then a e A  ~ iff 

(3.1t) 

PEOOF. - I f  a e A,nq  then  a ~ A , r ; ~ ,  Bu t  a e A~,~;~ if and  only if (3.13) holds 

t rue  as follows direct ly  f rom (3.7) (iii). I f  a ~ A ~ then  t-a/~K(t, a; A, D(A')) --> 0 

(t --~ 0 +) and vice-versa (cf. [5; Thin. 3.4.2 (V)]) which implies assert ion (if) in view 

of L e m m a  3.1. 

We shall now derive some special mapp ing  proper t ies  of S which will p rove  to 

be a useful tool in the  reduct ion of second order  evolut ion equat ions to first order 

systems.  

LEPTA 3.7. - Le t  A be a reflexive Banach  space and  let  C be an equibounded 

Co-cosine opera tor  funct ion wi th  infinitesimal genera tor  A. Then there  holds for 

t ~ R  +. 

(3.15) S(t)A1/~,l;r c D(A) . 

PI~OOF. - Le t  a e A1/2,1; ~ and t e R +. Then,  using (2.1) it  is easy to show t h a t  for 

O < s < t  
s 0 

i t ( s )  - x ] m t ) ~  = �89  + ~) - c(t)]a d~ - -  ~ f m ( t  + 7) - c( t ) ]~  dr  
0 - - S  
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whence 

H[g(s) - -  I]%(t)ai[~s sup li[C(t -~- "r - -  C(t)]allx 
I d e s  

But  in view of (3.13) we have  

IIEC(t + ~ ) -  C(t)]a i i~= o(1~1), (I~l -~ 0) 

and  thus  

[ ] [C(s ) - - I ]S ( t ) a l ] ,~ -  O(s") , (s ->0+). 

Hence,  L e m m a  3.6 (i) implies t h a t  S(t)a e A~,~;=. Final ly ,  since A is reflexive, 

A~,rr = D(A) which gives t h e  assert ion.  

I n  the  special case A ----- L~(D), 1 < p < oo, we can show: 

LE~I~A 3.8. - Le t  A = L~(f2), 1 < p < 0% where f2 c R d, d e N, and suppose t h a t  

C is a a  equibounded g0-cosine opera tor  hmct ioE  wi th  infinitesimal genera tor  A. 

Then the re  holds for t e R + 

(3.16) ~(t)A j;coc.D((--A) ~+1/~) , 0<~<�89 
+ r  

_< f lsl_,oc,(t_s) ds o -- a E A~,l;= (3.17) ( - -A)~+~/~S( t )a  = C~,~ c~ s ' 0 < ~ <  1/2 

where ~ = -  2(1 § 2~)~+~/,,~ a]~d the  in tegra l  in (3 .17)h~s  to be unders tood  as 

the  pr incipal  va lue  in the  sense of Cauehy. 

P~ooF. - Since for a ~ �89 asser t ion (3.16) follows direct ly  f rom L e m m a  3.7, we 

m~y  res t r ic t  ourselves to the  c~se a e A,~;= ! 0 < ~  < �89 

~ow,  if s, t ~ R + there  holds 

(3.1s) 

and  tha~ 

t-l-s t - - s  t 

s - - s  0 

d 1 [C(t  + s) - -  C(t - -  s)] as [C(s) - -  Z] S(t)a  --  :j 

Hence,  if e > 0 aIld we fo rmal ly  in tegra te  b y  pa r t s  we get 

(3.19) 

co 

C_ ~ f s_,~,_lrO~s, ds 

co 

= -  ~ ; ~ l s - , o - , E o ( s )  - z ]  s ( t )  < : : v  - o:,Ifs-,oEo(t, + s) - c(t - s)3 a ~ .  
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;-T k he preceding ident i ty  (3.18) also implies 

whence 

(3.20) lim 2s -z~-~ IC;~I[II [C(s) --  I] S(t) nil ~ = O. 
8--r O~ 

On the other hand,  using (3.18) once more we get 

t + z  t 

[ C ( e ) -  1]S(t)a = �89 C(t)]a d v -  � 8 9  C(t)]a dv 

t t - - 8  

and thus 

(3.21) ~-~-1l l  [ r  - z ]  S( t )  a II ~ < 8 - ~  s u p  li [ c ( ~ )  - c ( t ) ]  II ~. 
l'~--tI<e 

~Since a e A,~:~,  i t  follows from (3.13) and (3.21) t ha t  

(3.22) sup 2~-'~ -~[~;~11I [r - z] ~(t) all ~<  ~ .  

Moreover, if a r  ~ then  in case ce-~ 0 the Co-property of C (note t ha t  

A ~ = A) and in case 0 < ~ < �89 relation (3.11) together with (3.21) imply tha t  
O,l;m 

(3.23) lim 2e -~-1 !~;~] l] [C(e) - - / ]  S(t) all ~ -~ 0 .  
e--->0-b 

As far as the second te rm on the r ight-hand side of (3.19) is concerned we have 

(3.24) 

co 

- 0;~lf  s-'~[c(t § s) - c(t - s)]a dss = 

= 0 -1 I s l - ' ~ C ( t - - s ) a T =  Iq-'~[C(t s) C( t ) ] a~  

Isl~>8 IsI>~e 

I f  we set 

~ , ( s ;  a) : =  ] t -  s l -2~[C(s )  - r  s z R ,  

then  ~ ( . ;  a ) e  L~(R,  A),  since [] [ C ( s ) -  C(t)]ai]~ = O ( I s -  tl2~ ) as s -+ t. Hence, if we 

make use of a special Z~-property of the Hilbert  t ransform (el. [12; Lemma 2.2]) 

i t  can be shown in the same way as in [12 ; Lemmg 2.1] tha t ,  if s --> 0 +, the right- 

hand side of (3.24) converges in Z~(I, A) for any I : =  [-- e, -k e], c e R +, and any  
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q > l  to the  Hi lber t  t rans form of G ( ' ,  a) except  for a constant  factor.  Consequently,  

if a ~ A~,l;o~, t hen  taking (3.19), (3.20), (3.22) and (3.24) into account,  (2.30) of The- 

orem 2.7 implies t ha t  (3.16) holds t rue  for almost  all t ~ R, while in e~se a e A ~ ~,I;Co 

by means of (3.19), (3.20), (3.23) ~nd (3.24) it follows from (2.29) of Theorem 2.7 

that for ~lmost ~ll t ~ R + 

+ c o  + c o  

- - r  - - r  

the  integrals being principal  values in the  sense of Cauchy. 

Bu t  using (2.13b) and the  fact  t ha t  S( .)  is odd, i t  is easily shown (cf. [12; 

Thm. 2.3]) t ha t  (3.16) ~nd (3.17) ~re even t rue  for all t ~ R .  Fur the rmore ,  

(--A)~+~/~S(.)a, a e A ~ is ~ strongly measm'able funct ion ~nd hence strongly 

continuous which ulso follows f rom the  funct ional  equat ion (2.13b). 

I~EI~IAI~K 4, - -  I f  A is the  infinitesimal generator  of a Co-Cosine operator  func- 

t ion C of t ype  (M, co) wi th  co > 0, t hen  if we set AQ :=  A - - r  for some ~>o)- 

we h~ve 2R(2~;AQ) = ~R(~2+ ~2;A) and i t  follows f rom Theorem 2.4 t h a t  A 

generates an equibounded Co-COsine operator  funct ion C .  Consequently,  ill this 

case we m a y  state  the  preceding results in te rms of A und Ce instead of A and C. 

We conclude this section with reduct ion theorems bo th  in the  case of opt imal  

und non-opt imal  approximat ion.  In  the  case of non-opt imal  approximat ion we 

obtain (cf. [7; Thm.  3.4.6, Corollary 3.4.9] in the  semigroup case): 

T m ~ o ~  3.9. - For  given 0 < ~ < r, r ~ N, suppose t h a t  ~ = k + fi for some 

O < k < r - - 1 ,  0 < / 3 < 1 .  Then  a ~ A , r ; ~ , l < q < c o ,  if  and only if and only if a ~  

~D(A~-J), O < j < k ,  and A~-Ja~Aj+~,j+I;~ (0 < f l <  1) resp. A~-J~Aj+Ij+2 ~ (fi = 1). 
, ; 

~Ioreover, the following norms on A,~;q are equivalent  to those given by  (3.7) 

(i)-(iii) 

(3.25) (i) Ila][~(AO) + [t-~(~-'[/B~ Cj+~,/~-~ali~Y , 0 < / ~  < 1; 

0 

6 

(f 
0 

(ii) 

[[a[l~(a*-')+ [ t - ~ ( ~ + J ) [ i [ C ( t ) - - I y + ~ A ~ - ' a [ l A ' 7 ]  ' fi = 1 

0 

where again we have to use the  usual  modification for q = co and ~ = oo is ad- 

missible if U is assumed to be equibounded.  
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PIr - As we h~ve stated in the  proof of Lemm~ 3A, D(AT~), 0 < k < r ,  belongs 

to the  cluss ~ ( 0 ; A , D ( A ~ ) ) , 0 - ~ / r .  Hence, if g = k  + r ,  0 < k < r - - l ,  0 < f i < l ,  

resp. 0 < k < r -  2,/? ---- 1~ we may  apply the  reiteru~ion theorem to obtain 

A~.~; = (D(A~-O, D(A~+~))(r resp. 

A , ~ . =  (D(A~-~), D~A~,+~ 
, \ ~ *  1 1 [ i + l ) [ ( ~ + 2 ) ; q .  

Since the tra.nsformation (I  - -  A) ~-~, 0 < ] <-< k, provides ~n isomorphism between 

D(A ~-~) and A resp. between D(A~+,,) and D(AJ+~), v-----1, 2, the interpolation the- 

orem (el. [7; Thin. 3.2.23]) states tha t  the sp~ces (D(A~-~), D(A~+~))(a+~)/(~+~,,, ~nd 

(A, D(AJ+'))(a+~)/,~+~),~ resp. (D(A~'-~), D(A~+~))(~+~)m+~,,, and (A, D(A~+~))~+~)m+~), ~ are 

isomorphic. Hence, the assertions of this theorem are readily established. 

In  the  ease of s~tnration we get (ef. [7; Thm. 3.4.10, Corollary 3.4.11] in the 

semigroup case) : 

Tm~o~]~[ 3.10. - An element  a ~ A belongs to A~,~;~, r ~ N, if ~nd only if a E 

e D(A ~-~) ~nd A*-~a e Ak,~; ~ , 1 < Ic < r. 
The following norms on A~;~  are equi~alent to those given by (3.7) (i)-(iii) 

t ~j A~ ] 
(3.26) (i) ,[ai,.(a.-, ) L ~ # ~ ,  (t-'-" [ C ( t ) -  :~: ~ j Ar-~a In), 

(ii) ]lalI2)r + sup (t-'k]][g(t) - -  I]'A~-'all~) 
0 < t < t 5  

(~ = oo admissible in (3.26) (i), (ii) if C is equibounded).  

PI~ooF. - I t  follows from (2.9) tha t  for s, t ~ R + a.nd a E A 

S f z 

0 S 0 t 0 t 

0 0 0 

Hence, if a ~ At,r; ~ we get 

(3.2.7) l i l t ( t )  - f ] [ r  - / ] r - ~ a ' ~ l  ~ = 

= li~mo+ ]2rz -" f  f ' " f  ~=1 ~ ( T -  z , )Ctv , )[C(t) -  I ] [C(s ) -  I]'-~a d% d'r, ... , ---- 

0 0 0 

A 
z---~O+ J 

0 o 0 

< ~ u t ~ ( ~ - ,  s u p  ( ~ - ' r t l [ c ( ~ )  - I ]~ . [1~)  �9 



~0NALD I-I. W. HOPPE: Interpolat ion o/ cosine operator /unctions 201 

F rom the preceding inequal i ty  we immedia te ly  conclude tha t  a ~ A _~.,_~.~ and 

l j [C( t )  - -  I ] a i l ~ , _  . . . . .  ~ ---> 0 (t -* 0 +) which shows a e A ~ and thus a e D ( A ' - ~ ) .  

Then using (2.9) and (3.27) again i t  follows tha t  

s u p  ( t - ~ ] [ [ c ( t )  - z]A' -~,~ l l )  = 
t~ / t  + 

( rr r - I) = sup t -~ lira 2~-~s -~'-~) ... 1-[ (s - -  v~) C(~:@[C(t) - -  I]  A~-~a d~  dr2.., d~,_~ --  
te~+ \ s -~o+  II ~' J o v= l  A 

00 0 

= sup (t- '  lira (2"-~S-'(r-~)I[[C(S) - -  I]'-~[C(t) - -  I ]  a][,~)) < 
t e R  + $ - ~ 0 +  

< 2, -~x  sup (~:- , , ] [ [c(~)  - z]'~]l~ 
.r~R + 

whence A ~ - l a e A ~  ~ ~.  Repeat ing the  previous steps of proof as of ten as necessary 

we conclude t ha t  a e D ( A  "-~) and A~-~a e A  :~,,_~;~. In  order  to prove the converse 

we note  t h a t  by  (2.9) 

which immedia te ly  gives the  assertion. 

The equivalence of the norms (3.26) (i), (ii) with those in Theorem 3.2 is then  

easily established. 

4 .  - A p p l i c a t i o n s .  

Let  us consider the second order ordinary  differential  operator  A = d~/dx 2. I t  

is n o t  hard  to show tha t  A generates an equibounded Co-Cosine operator  funct ion C 

on A = L~(R),  l < p < o o ,  given by  

(4.z) (C(t)a)(x)  = �89 -~ t) -[- a ( x - - t ) ] ,  x,  t e R ,  a e E l ( R ) .  

Since D(AO,  r ~ 5 r, corresponds to the Sobolev space W2r,~(R), the  interpolat ion 

spaces A ,~;~ 0 <  e <  r, l < q < c ~  (resp. 0 < e < r ,  q = o o )  can be identified as the 

Besov spaces B~ ~'q and hence, the norms given in Theorems 3.2, 3.9 and 3.10 define 

equivalent  norms on these spaces. In  part icular ,  using the  explicit  representat ion 

(4.1) of C we can easily compute  the r- th  I~iemann difference [ C ( t ) -  I]~a 

( [ c ( t )  - z ? , ~ ) ( x )  = ( A , ' ~ ) ( x )  = ]~ (-- ~),-~ a ( x  + jr) 
J = - - r  ~" 

and via (3.7) (ii), (iii) we thus  obtain the  well-known characterizat ions of B~ ~'~ by 

means of the  2r- th  central  difference A~ ~. 
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) [oreover ,  since A ~ ~o ~ W2~'~(R), 1 < p < oo, r ~ N, Theorem 3.10 states t ha t  

the following norms are equivalent  on W2~.~(R) 

<~<~ dx2(~_~)a , l < k < r .  

As an example for the application of the reduct ion results of Theorem 3.9 let  
2r162 us consider the Besov spaces B~ , 1  < ~ < 2. 

According to (3.25) (i), (ii) for these spaces the following norms are equivalent  

0 

eo 

0 

In  [7; Chap. 4.3.2] equivalent  characterizat ions of B~ ~'q are obtained consider- 

ing A as the infinitesimal generator  of a holomorphie C0-semigroup T whose explici t  

representat ion is given by  the Weierstrass singular integral  

-]-co. 

( l ' ( t )a)(x)  (4z~)~/~ e x p ( - - s 2 / 4 t ) a ( x - - s ) d s ,  x ~ R ,  t ~ R  +. 

- -  c z )  

Indeed,  the cosine operator  funct ion C and the semigroup T are re la ted by  the 

formula  

_ e x p  

0 

which is well-known f rom the  theory  of t r ansmuta t ion  and related P.D.E. ' s  (cf. [8], 

[10]). 

l ~ A ~ I C  1. - In  higher dimensions, i.e. A ~ A and A = L'(Rd),  d > 1, the ap- 

plicabil i ty of our results is somewhat marred  b y  the fact  t ha t  z] only generates aa  

equibounded Co-cosine operator  funct ion C if p = 2. For  example,  in case d = 2 

resp. d = 3 we may  use the Poisson-Parzeval  reap. the Kirchhoff  formula as an ex- 

plicit representat ion of C in order to characterize the  Besov spaces B~ ~'~. 

As a fur ther  application of the results of Section 3 we shah be concerned with 

the  order reduct ion of the second order Cauchy problem (2.11a), (2.11b). In  pract ice 

one of ten  tr ies to introduce new variables al,  a2 according to a l : ~  a, a2:~- (d/dt)a 

and thus  to reduce (2.11a), (2.11b) to  the  firs~ order system 

,)(ol) 
(~.2a) dt\a~l -0 a~' 
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with  i~)itial conditions 

(~.2b) a~(0) -= ao, a~(0) = at ~ . 

However, such a reduction is not  aiways justified, since i t  may  happen tha t  the 

second order problem (2.11a), (2.11b) is well-posed while the first order one is not. 

Nevertheless, in the special si tuation of Lemma 3.8 the reduction as outlined 

above leads to a well-posed first order problem. 

More generally we have:  

TtIEOI~EM 4.1. -- Le t  t9 c R ~, d e N, and A -~ L~(~), 1 < p < co. Then an op- 

erator A e C(A) is the infinitesimal generator of an equibounded Co-cosine operator 

function if and only if the operator-valued matr ix  

(~ 
0.3) ~ =  lI~+~ , 0<~<1/2 

where z~r :---- i~( - A) ,, y e R +, generates an equibounded Co-group of operators on 

A ~ •  ~l;CO 

P~ooF. - For  She necessary par t  of the assertion assume tha t  A E C(A) is the 

infinitesimal generator of un equibounded C0-cosine operator function C and define 

(4.4) [ c(t) ~i~-~,~(t)' I 
~(t) =\A~/~+~(t) c(t) }' o<~<:t/2, t e R .  

By means of the basic identities (2.13a), (2.13b) and Lcmma 3.8 it is easily 

verified tha t  ~ is ~ C0-group of operators on A~ x A .  Moreover, if ~ e  ~(A) we get 

(4.5) 
[ 2R(2'; A) ~in-~/~(22;A)~ 

R(~, ~ )  = [zIll~+:n()~:; A) ~l~(~; A) ] '  

On the other hand,  i t  follows by (2.15a) and (2.15b) tha t  

co 

f exp  ( - - ~ t ) ~ ( t ) d t  = .R(~t; qs~,) 

0 

which readily shows tha t  ~ is generated by ~b~. I t  is also immediately clear in 

view of (4.5) tha t  ~6~ is equibounded. 

Conversely, if ~ ,  is an equibounded C0-group of operators on A ~ •  wi th  

infinitesimal generator ~b~ then  

c~(t) .= �89 (~( t )  § ~ ( -  t)), t e R ,  
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defines an equibounded G-cosine operator function on A ~ x A with infinitesimal 

generator q~ But 

which shows that  A generates an equibounded C0-cosine operator function on A. 

As an immediate consequence we obtain: 

C0tr165 4.2. - The second order Cauchy problem (2.11a), (2.11b) is uniformly 

well-posed iff so is the first order problem 

d 
(4.6a) d--t a(t) = q3~a(t) , t E R,  0~<a~<l/2, 

(4.6b) a(O) = a ~ 

where a(t) = (a~(t), a~(t))'~ A ~ x A,  t e R, and there is a one-to-one correspondence 

between the solutions of (2.11a)~ (2.11b) and (4.6a), (4.6b) given by a~(t)=zl~/~-~a(t) 

and a~(t)= (d/dt)a(t). 

t~E~AI~K 2. -- Under slight modifica, tions the assertions of the preceding theorem 

and its corollary remain valid if A is the infinitesimal generator of a Co-cosine oper- 

ator fanction C of type (M, co) with ~ > 0. In this case one has to replace qS~ in 

(4.3) resp. (4.6a) by 

A~ ~- i@I 

r z~/~+ i@I 0 

where A~ :=  A -- @~I for some @ > ~ (el. [12; Thm. 6.9]). 

As a final example we shall be concerned with the approximate solution of the 

Cauehy problem for a second order hyperbolic P.D.E. with special emphasis on the 

case of non-smooth initial data. The analysis presented here is somewhat similar 

to that  one given in [6] for the approximate solution of initial value problems for 

parabolic and first order hyperbolic equations~ but the main difference is that  we 

shall concentrate on two-step fully discrete schemes instead of one-step methods. 

Let us consider the initial-value problem 

d 2 
(4.7a) ~-g a(x, t) = (~'a)(x, t) : =  ~ p ~ l ) ~ a ( x ,  t ) ,  

d 
(4.7b) a(x, O) = aO(x) , ~ a ( x ,  O) = a~(x) , 

g 

where  p ~ e  C, ~ = (~1, . . . ,  ca) e N ~, [el = ~ e~, n e N .  

Z~(Re)~ then as we have pointed out in Section 2, (4.7a), (4.7b) is uniformly well- 

x e R ~  t e R ~  

x E R  ~ 

If  we treat that  problem in 
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posed in R if and only if the differential operator P is the infinitesimal generator 

of a C0-cosine operator function C: R --> ~B(L~(R~)), and in this case C and its strong 

integral S are the propagators of the given Canchy problem. Throughout the fol- 

lowing we will restrict ourselves ~o the ease p = 2. As mentioned before, the reason 

for this  lies in the fact  t ha t  even in the simple case P = A the Canchy problem 

(4.7a), (l.7b) is not  uniformly well-posed in R unless d ---- 1 or p ---- 2. -N%vertheless, 

with regard to an approximate solution of (4.7a), (4.7b) we are interested in error 

estimates in the L~-norm, and as we shall see below tha t  purpose natural ly  involves 

interpolation spaces, namely the Besov spaces ~2~d/2+~'~, s>0 .  

I f  we denote by 

(4 . s )  : =  
Ial~2m 

the symbo l /5  o~ 2 ~, then  Pa = ~-~(Pd),  a e S', where d : =  ~-a denotes the Fourier 

t ransform of a and S, is the space of tempered distributions. The Fourier trans- 

formed initial-value problem now reads 

(4.9a) d~2d(~, t) = P(~) d(~, t ) ,  ~ e R ~, t e R ,  

d 
(4.9b) d(~, 0) ---- d0(~), ~ d(~, 0) ----- d~(~), ~ e R d . 

I t  is clear that  (4.7a), (4.7b) is uniformly well-posed in R (with respect to La(R~)) 

iff the same holds t rue for the t ransformed problem (4.9a), (4.9b). Equivalently,  P is 

the infinitesimal generator of a Co-cosine operator function C of type  (M, co) if and 

only if /)  generates a Co-cosine operator function C of the same type  which can 

formally  be represented by 

w 
(4.1o) O( t )  : " 

The correspondence between C and C is given by 

C(t)a = 9;-J(C(t)d), t e R ,  

at  least for a e 0~,  the space of [mlctions whose Fourier t ransform d belongs to C o . 

Moreover, by  means of Theorems 2.4 and 4.1 we have the following simple criterion 

for well-posedness of (4.7a), (4.7b): 

Lm~i~. 4.3. - The initial-value problem (4.7a), (4.7b) is uniformly well posed 

in R if and only if there exists a polynomial ~ = (~($), ~ e R ~, such that P(~) ---- 

= ~(~)2 + c ~ for some c e C, Re e>w,  and 

(4.11) e.R". 
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As a simple example let  us consider the  one-dimensional wave equat ion where 

2 = g~/dx ~. Then  /3(~) = _ ~ ,  Q(~) = i~, o = 0, and thus 0(t) = cos (t~) whence 

~(t)a = a--~(cos (t~)a) = �89 + t) + a ( . - t ) ]  (el. (~.l)). 

After  these preliminaries we will now approximate  the  given initial-value problem 

(4.7a)~ (4.7b) by  ful ly discrete schemes which are governed by  some finite difference 

approximations in the space variables and a two-step finite difference scheme in 

the t ime variable.  Le t  us denote by  h e R + the  step size with respect  to the 

diseretization in space and let  us define A~0 :=  { t ,=  jk [ j eZ}  as a uniform par t i t ion  

of the real line R with step size k e R + which we assume to be re la ted to h by  kh-" = 

= ), = eonst for some r ~ N. We then  introduce finite difference operators Aa and 

B~ according to 

(~.!2) 
I~,1~<~ 

B~a~ : =  ~ ~,(hla~(. + ~1 
I~'l~<~ 

d 

where ~ = (~, ..., r~) ~ Z ~, Iv[ = ~ [vj t, p e N, and ~(h),  fi~(h) are polynomials  in h 

of degree less or equal  2r. ~=~ 

:For given approximat ions  a ~ and a~ to a ~ resp. a ~ =  a(k) we consider the  two- 

step fully discrete scheme 

(~.i3) B ran+l a n-l] Ai, a~ n e N 
hL k "@ h J :  ~ " 

The symbols Aa and B~ of the  difference operators A~, B ,  are given by  

B,,(~) = ~ r exp (i<~, ~h>). 
Iv l<~ 

If we assume 

~ fi,(0) exp (i<~, r>) # 0 ,  SeR a 

I~,1~<~ 

then  JP~(~)is bounded away f rom zero for at  least sufficiently small h e R +, and 

the Fourier  t ransformed difference equat ion can be wri t ten  in the form 

~ + 1  ^ d" d~-1 0 n e N (4.14) a~ --2/t~(~) ~ +  ~ = , 

where 

(4.15) 
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In  the sequel we shall essentially take advantage of the fact  tha t  the solutions 

a(t) resp. d(t), t ~ R ,  of t h e  initial-value problems (4.7a), (4.7b) resp. (4.9a), (4.9b) 

satisfy g difference equation analogous to (4.14) Indeed,  in terms of C resp. ~ we 

have the three- term recurrence formulas 

(4.16) 

(4.~7) 

a((n ~- 1)/~) - -2C(k )a (nk )  ~- a((n-- 1)k) = 0, n e N ,  

d((n + 1)~) --  2d(~)~(~)  + d( (~- -  1)~r = 0 ,  n e N .  

In  order to give explicit representations of the solutions d(t), t e A~, of (4.17), 

resp. d ~ n ~ N, of (4.14) we introduce the characteristic polynomials 
h~ 

(4.~8) ~(~;  $) := ~ - -  2~(~)2 + 1 ,  , = 1 , 2 ,  

where ~ ( ~ ) =  d(k) and ~2(~)=-]~(~)- 

Then if we choose R e R + large enough such tha t  the roots 2~(~), ~, # = 1, 2, 

of (4.18) are located inside the circle [~I = / ? ,  the complex line integrals 

(4.19) 

5 o  . 1 
, (n ,~)  = - ~ i  Y~7~(2;~))~[2--2~(~)]d2'  n ~ N ,  

l~l=R 

are well defined, and it  can be shown (cf. [13]) tha t  the solutions d(t), t 6 A ~ ,  

of (4.17) resp. %,, n e N, of (4.14) are given by 

(4.2o) 

(4.21) 

d(@)  = P~ ~)d ~ + P~(n; ~ )~  resp. 

~ = po(~; ~ 0  + p~(n; ~) ~ 
/ / t  

o a~e do,  then  a(t) I A ~ = 5"- a(t), t e A ~ ,  resp. Due to the fact,  if a ~ a ~  U o resp. a~, 

= ~ - - ~ d  ~ a~ ~ ~, n e N, is a solution of (4.16) resp. (4.13), we define the operators P~(n), 

= 1, 2, # ---- O, 1, giver~ by 

2~(n)a : :  y - l (p , (n ;  ~)~),  a e 00 

as the solution operators of (4.16) resp. (4.13). 

Therefore, we can cast the consistency of (4.7a) and (4.13) in terms of the Fourier 

t ransformed equations (4.9a) and (4.14) (cf. [6, w 3]). 

In  this sense the difference equation (4.13) and the second order hyperbolic P.D.E.  

(4.7a) are said to be consistent of order p > 0 if 

(4.22) ~ ( ~ )  - d(k) = O(h~[1 + I~l~+q), (h, ~ -~ 0).  

1 3  - A n n a l l  di Matemat tca 
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~Vioreover, the difference scheme (4.13) is said to be stable if there  is h~e R + such 

tha t  for all h<h~ and any T e R  + there  exists a constant  C = C(T) with 

(4.23) 

Again, i t  is more convenient  to s tate  s tabil i ty cri teria by  means of the Fourier  

t ransformed equat ion (4.14): 

LE~nwA 4.4. - I f  there  exist  positive real n~mbers h~ and C such tha t  for all h<hl  

(4.24) sup l/~(~)]<z § c~, 
~e~ a 

then  the  difference scheme (4.13) is stable. 

P~ooF. - I f  (4.24) holds t rue  then  we also have 

(4.25) sup (~) [4(~)l<:[§ ~=~,2.  

Using the  theorem of residues we can compute /5~(n;  ~), # = 0, 1, and we thus 

obtain 

= (xl( ) )  (~(~)1 
1=0 

n--1 
(9) n--l--,i (2) ~ j .  P~(~; ~ )=  Z (~ (~)) (~ ()) 

Then (4.23) is an immedia te  consequence of (4.25) and Parzeval ' s  relation. 

We shall now establish a priori  est imates for the global discretization error  

o belonging to the Besov spaces a~--a(nk) in the Z~176 for initial  dat~ a ~ and a t 

B~~ + s ,  resp. B~ ' ,%v~= ( d ~ 1 ) / 2  +s~  where 0 < s < r - F p .  For  the  

sake of simplicity we shall assume tha t  the  init ial  approximations a~ and a~~ are 

given by  the correct  init ial  da ta  and t h a t  the  s tar t ing value a~ for the  difference 

scheme (4.13) corresponds to the  exact  solution of (4.7a), (4.7b) ut t ~- k, i.e. 

(4.26) Oj•  
~_____ a O  0 _ _  0 

a h , t  - -  a t ; 

a~l= a(~) = C(~)~ ~ + ,~(~)a~ 

1 to a(k) m ay  be obta ined by  a Ir 3. - In  pract ice  an approximat ion  ai, 

one-step method  of appropria te  order which can be derived f rom a reduct ion of 

(4.7a)~ (4.7b) to an equivalent  initial-value problem for a first-order sys tem according 

to Corollary 4.2. 

The following error  analysis heavi ly  relies upon two basic results on the Besov 

spaces B~ ~ ~o = d]2 ~ s, s>l 0: 
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LE~.~A ~.5. - Le t  # ~ C~(R a) be a slowly increasing funct ion and suppose tha t  

there  is a posi t ive constant  K s~ch t h a t  

~~ ~ d/2 + s, we have Ta e L~(Ra),  for some s~>0. Then,  if T a : =  ~--z(#d), a e B 2 .  , t o =  

alld there  exists a posit ive constant  C such tha t  

PaooF.  - See e.g. [6; Corollary 2.2.1]. 

LE~L~Is 4.6. -- Le t  P be a bounded linear operator  f rom B~~ So > 0, into L ~ ( R  a) 

and assume tha t  there  are constants  Ko, K ~ >  0 such tha t  

Iii all  ~200 a E . B p ,  So. 

Then, if a ~ B~ '~, So< s < s~, and ~ : =  (s - -  S o ) / ( s ~  So), there  holds 

1--q q] 

P~ooF. - The assert ion of this Lem m a  is a special case of [6; Corollary 2.5.1]. 

Our main  resul t  now states:  

Tm~O~E~ 4.7. - Le t  the init ial-value problem (4.7a), (4.7b) be uniformly well- 

posed in R,  let  the difference scheme (4.13) be consistent with (4.7a), (4.7b) of order 

p > 0 and assume tha t  the  s tabi l i ty  condit ion (4.24) is satisfied. 

1Vioreover, suppose t h a t  a~ B~ ~ ~'o ~ all2 -1- s, a~e B 2~''~, v~ = (d - -  1)/2 -t- s, 

0 < s < r q -p ,  and tha t  the star~ing values a ~ and a,~ are given b y  (4.26). Then, if 

h < h l  and a(nl~), a~, n k < T ,  are the solutions of (4.7a), (4.7b) resp. (4.13), there  

exists a posi t ive constant  C = C(T) such tha t  

(4.27) 

PnooF.  - The outl ine of proof is as follows: Using L e m m a  4.5 we shall first 

derive two est imates for the global discretization error  in the  Z~-norm for s tar t ing 

�9 ~,1 = d/2 -~ r + p ,  and we shall then  es- values a ~ a 1 belonging to --2B~/2'~ resp. B~ , r2 

tablish (4.27) by  means of the  in terpola t ion resul t  of L e m m a  4.6 and Corollary 3.3. 

Since the global diseretization error  a ~ - - a ( n k )  has the representat ion 

(4.28) a~- -a (nk)  = 5v-l([P~ ~ ) -  P~(n; ~)]d ~ + 5r-l([_P~(n; 2 ) -  ~ ( n ;  ~)]d 1) , 
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we have to provide estimates for /5~(n; 2) --/5~(n; 2), # = 0, 1, in order to apply 

Lemma 4.5. I t  follows from Lemma 4.3 and Lemma 4.4 that  C(k) and/~(~) ,  h<hl ,  

can be bounded independently of ~ e R ~. Consequently, in (4.19) we may choose 

R e R + independent of h, ~ such that the characteristic polynomials/~(2; 2), v = 1, 2, 

[4] = R, are bounded away from zero aniformly in ~ c R ~ whence 

(4.29) ]/5,(n; ~)I<C,  ~ e R  a, h<hl ,  ~ ---= 1 ,2 ,  tt -= O, 1 .  

By a similar argument we find that  

(4.30) 1P,"(n; ~)--_P~(n; ~ ) l<C[0(k) - -&(~) l ,  ~ e R  ~, h<h, ,  ~ = 0, 1 .  

Now, if a ~ a~eB~/2'~ it  follows from (4.28), (4.29) and Lemma 4.5 tha: 

(4 .31 )  !la~- a(n;~)ll~;| < Ol:lia~176 ' + ]la~II=~*,,'] �9 

On the other hand, suppose that  a ~ a ~ E B~ ~'~, ~,~ -= d/2 q- r + p. 

Then, if hI~ l < ~,, ~ :=  min (1, ~0), for some suitably chosen no> 0~ we get by 

(4.30) and (4.22) 

while, if h]~ I > ~,, it follows from (4.29) that  

<O(~l~l)~+,<o~[m + l~l~+q, ~ = o, 1 .  

Hence, in view of (4.28)~ (4.32) and (4.33)~ Lemma 4.5 implies that  

(4.34) l i a r -  a(n~)l]~ < C~[[]a~ + [ ]a~b,,~, ,q �9 

a ~B=' ~a, eB~ , then Corollary 3.3 gives a~eB= ~aud we get 

by means of (4.31), (4.34) and Lemma 4.6 

But a~= C(t)a~ S(t)a~ whence 

(4.36) [!a~l],~0,~< c[[]a%>~ + IIa%:,,~] �9 

Inserting (4.36) into (4.35) gives the conclusion. 
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A special type of two-step fully discrete schemes can be obtained in the following 

way: 

Using symmetric difference quotients: 

D~a~(x) :-~ (2h)-l[a~(x -7 he@ - -  a~(x - -  he@], ~, = 1, . . . ,  d 

where h e R + and e~ denotes the v-th unit vector in R ~, we approximate the dif- 

ferential operator P in (4.7a) by the difference operator 

d 

(4.37) r~a~= ~ p~9~, D~.= 1-I1); ~, 
[c~I~2m vffil 

whose symbol / 5  is given by (cf. [6; w 3.2]) 

P~(~) = P(~-~  sin (h~)) ,  s in ~ = (sin ~ , . . . ,  s in $~). 

NIoreover, in view of (4.10) we approximate cosh z, z e C, by a rational func- 

tion r(z) = q-~(z2)p(z~), where p and q are polynomials in z ~ of order less or equal s 

such that  q(k~Ph(~)) =/= O, ~ ~ R ~, for at least sufficiently small h e/~+. Then, if we 

choose ~(~)=p(k~/Sh(~)) and / ~ ( ~ ) =  q(k2/5~(~)) and set A~a = 27-~(_~d), B ~ =  

- -  ~ (B~a), a e C O , we achieve at a two-step fully discrete scheme of type (4.13). 

A suitable choice of rational approximations to eosh z is given by the parameter 

dependent ~amily of rational functions 

(4.3s) r ( z ; y ) : = q - ~ ( z 2 ; y ) p ( z ~ ; y ) ,  z ~ C ,  y e R  +,  

where 

p(z2; ~,) : =  ~ ~,(y)z 2~ , 

(2( ,  - •)) ,'  /*=0 

q(z2; 2') :=  (1 -- 72z2) ~ . 

s e n  

v = 0 ~ l , . . . , s  

For second order hyperbolic initial-boundary value problems invohdng a self- 

adjoint, positive definite operator P such rational fanetions have been successfully 

used in [1] and [14] to design highly efficient two-step fully discrete schemes where 

in contrast to (4.37) the discretization in the space variables has been performed 

by Galerkin type methods. For a detailed discussion of the stability and the ac- 

curacy of the methods based on (4.38) we refer to [1], [2] and [14]. 
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