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Abstract

We solve the problem of constructing entire functions where In M (7; f) grows like In?r
from their values at ¢~™, for 0 < g < 1. As application we give a product formula for
the basic sine function.

1 Introduction

In [9], Ismail and Zhang introduced the g-analogue of the exponential and trigonometric
functions. They used transform formula to analytically continue to entire functions in
the variable w. Suslov (see [14]) identified a special case which leads to a comprehensive
orthogonal system of functions. This opened the door for a comprehensive study of g-
Fourier series, where g-analogues of some results in classical Fourier series have been
proved (see [14]). In this paper we give a product formula for the basic sine function.

In this work we mostly follow the terminology of [4]. We will always assume 0 < ¢ < 1.
We first remind the reader of the notations to be used. A g-shifted factorial is defined by
(see [4])
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k=0
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A basic hypergeometric series is
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Given a function f defined on (—1,1), we set f(e??) := f(z), x = cosf. In other words
we think of f(cos ) as a function of €. In this notation the Askey-Wilson finite difference
operator D, is defined by

1

flaze”) = g~ 2e™)
(g2 —q 2 .

(Dgf)(x) = (1.4)

—q 2)isinf

2 Interpolation of entire functions

In a recent work, M.E.H.Ismail and D.Stanton (see [7]) solved the problem of constructing

entire functions from their values at 3 lag™ + —], for entire functions satisfying
aq

In M(r; f))

lim sup ——— =g, (2.1)
r—00 In“r

for a particular ¢ which depends upon ¢q. Here M (r; f) is
M(r; f) = sup{|f(2)] : [2] <7}
In this section, we adopt their method to solve interpolation problem for the sequence

{q_",n =0,1, } .

Let us begin by the following lemma:

Lemma 1. The Cauchy’s kernel

has the expansion

1 T; > T;
B G (@ Ok &

y—r - 2) o = (W Dke

for all y such thaty #x andy #q¢ ", n=0,1,...

Proof. By induction on n, one proves easily that for y # x and y £ ¢, n=0,1,..., we
have

1 (@@an “ (z5)k v

y=—7 =)D WDk

The result follows when we tend n to oco. [ |

Theorem 2. Let f be an analytic function in a bounded domain D and let C' be a contour
within D and x belongs to the interior of C. If the contour C'is at a positive distance from
the set {g~";n=0,1,...}, then

 (759)00 fy) 1 .
flz) = /c(y dy + 22.7Tk20q Te(@5 )k,

2im —2)(¥; @)oo

where

_ f(y)
Ji= /c (y; Q)k-i-ldy
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Proof. Multiply the first expansion in Lemma 1 by f(y), integrate with respect to y and
interchange integration and summation, the result follows from Cauchy’s theorem. |

Theorem 3. Any entire function f satisfying (2.1) with ¢ < — has a convergent

2Ingq

exTPansion
F@) =" ful@; )n-
n=0

Moreover any function f is uniquely determined by its values on {¢~™ : n > 0}.

To prove Theorem 3, let us first state and prove the following lemma:

1
Lemma 4. Let —1 < § < 0, and f be entire function satisfying (5) with ¢ < T Then
nq
lim S L) R —
=0 J|y|=g—n—9 (y - x)(ya q)oo
Moreover, the same conclusion holds if
lim ¢ +20+0/2 gy {f(q_"_‘sew) :0<6< 271} = 0. (2.2)
n—-aoo
Proof. It is clear that inf{(y;q)eo : |y| =7} = |(7;¢) 0| . Hence for |y| = ¢7"~°, we have
el = (@ 00" ).
— q—n(n+26+1)/2(q6+1; q)n(q—é; Q)om
and the result follows. |

Instead of proving the expansion in Theorem 3 in the basis {(x;q),}, we shall prove
the following equivalent result:

Theorem 5. The expansion formula

f(.%') - anfn(x;Q)na
n=0

with

_ 1 - (¢ Dn 1k, (5 —k
fn @ 2= ——(=1)"q\2) f(¢™"),

[e=]

for functions f satisfying the assumptions of Lemma 4.

Proof. Let C,, be a circle centered at y = 0 with radius ¢ ™ °. The Lemma 4 shows
that the first integral in Theorem 2 is small if m is large. We split the remaining terms
with n» > m, and initial terms with n < m. We will show that the tail is small, leaving
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the initial terms. Then a residue calculation establishes the expression for f,, because the

poles of M areat y =q¢ % k=0,1,...,n.
(y§ Q)n-i-l
Note that if n > m then
min{|(y; @)ns1| |yl =g "}
= (@™ )m(@ " Dnt1-m

g 2D (O ) (07 ) 1—m

> qf((m+5)2+1752)/2A’

where A is a positive constant independent of n and m. Therefore for sufficiently large m,
—m—4

and |y| = ¢ :

fy)

In[M (g ™9,
M (¥ Ont1

J<la+ JIn®(¢~™%) + O(m)

2Ingqg

for some c1,¢c < ¢ < .
DE= =g 1

This is a uniform bound of e~ , D > 0, for each integral for n > m. Since
(z;¢)n — (2;¢)0, there is a uniform bound B for (z;¢q), on compact sets. Thus the tail
is bounded by

D(ln q—m—6)2

m+1

oo
S Byre Pna 0 < pI gy
n=m+1
which is small for m large. |

1
Theorem 6. Let f be entire function satisfying (2.1) with ¢ < SIS Then
nq

n+1

I@) _ s G0 pa)
(#1000 2= (GG Qoc 1 — ¢

Proof. Consider

. _
fm = /y=q—m-a PRI

JFrom Lemma 4, I,, — 0 as m — oco. On the other hand

+1

fla) &N (=1mgl") g

(1000 = (GG @)oo 1 — ¢

and the Theorem follows. [ |

Theorem 7. Let the complex numbers by, ...by,, satisfy the estimate

m(1l—m)

| by..by |~ 2 <1, m=0,1,..
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Let f be an entire function satisfying
M(q~™ 0, ) < M(q™7°, (b12, -+, bmz; 4™ )oo)-

Then

Z (nﬂ) fla™)
n=0 Q7 q;q )OO 1-— q .YJ
Proof. We have

M(g™ 7% (012, bz ¢™)oo) < J](= 1051070500

<.
Il
—_

(=1l ™% ™) s (= 1bj] 4% 4™ oo,

IA
b

<.
Il
—_

so that

1—m)

M(q—ms—é;f)qms(ms+26+1)/2 < C(’blbm‘ qm - )s’

where C is a constant depending only on by, ..., by,,d but not on s. |

3 Product formula for g-sine function

We start by a g-exponential function, defined in [9] as

’ (1—n) L (1—n)
Eq(cosb,w) = q > Z (—ie¥q 2, —ie g 2 ;q)n (3.1)

The following functions Cy(z;w) and Sy(x;w) given by

. (_w2;q2)oo
Colzsw) = = P (32)
2p1(—qe”, —qe ™ 44, —w?)

and
(_WQ; q2)oo
(—qw?% %) oo

1
2q3w ;
qcos92901(—q262’9,—q2 2037, —w?),
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were discussed recently in [14] as g-analogues of coswz and sinwz on a g-quadratic lattice
x = cos f. The functions Cy(x;w) and Sy(x;w) are defined for |w| < 1 only. For an analytic

continuation of these functions in a large domain see [9],[14]. For example,
2,20 2,20, 2
Cq(ﬂf,(ﬂ) — (qw € 7qw € 7q )OO (34)
(4, —qw?;¢%)oo
2 2i0

X 22 (—w?, —qw?; qw?e®  qw?e %, 4% q),

(2w2e? w22, ¢2) Qq%w
3 5 (3.5)
(% =% ¢*)  1—¢

2 2.2 2 20 2 2 —2i0, 2 3
X oo (—w?, —qw*; ¢“w e, g we” " ¢, ¢°),

Sq(z;w) =

The notation for Sy(x;w) is the same as the ones proposed by Suslov in [14]. The g-sine
function satisfies the g-difference equation (see[14])

D2Sq(w;w) = S Sy~ (r;w). (3.6)

Suslov established the continuous orthogonality relations for the g-sine function( see [14]),
(€, e q)oo

dd = 0
(22, q2e=2; )

/ Sq(cosb;w)Sy(cos b; w)
0

and

(e2?,e7%9: q) o

/ Sg(cos 0;w)—
0 (

do
1 .. 1 ]
qze?? q2e=29; q)

1 1
(42, —q2w? @)oo (—w?¢%) o
(¢, —w?% @)oo (—qw?;¢?)so
1 9 1 9
X901 <—q2,w i —q2w ;q,q>-

Here w and ' are different solutions of the equation

The continuous g-Hermite polynomials is defined by (see [13])

& (@ 9)n i(n—2k)0
Hy(cosb | q) = Z %e’(" . (3.7)
= (G Dr(G Dnk

The continuous g-Hermite polynomials satisfy the g-difference equation (see [13])

1 Dylw(x)Dgy(x)] = —4q”+l%y(a¢).

w(z)
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and the product formula (see [12])

(e | a)Hay]q) = LD

xHy(cosy | q)(e™, €Y q)ocdy)

/ Ki(cos @, cos ¢, cos)
0

where

Ki(cos 6, cos ¢, cos )
(¥ @)oo
=210 _tei(0+d+1) tei(0—d+1) tei(d+y—0) tei(—0—d+¢).
) ) ) ) ) q)

[e.9]

tet(0+¢+v) 1oi(0—¢+v) poi(h+e—0) toi(=0—0+¢) (o .
X 6¥5 y ’ ’ > q,qelw)

qe?V e’ —tet?, \/c_]tew, —\/ate“p
+ a similar terms with 1 replaced by — .

In the following proposition, we show that the function gq(x; w) defined by

3 g2 g2 >
Sy(r) = S D050 o Syl )
AN 2q1/ 4z (—q2e2i0, —q2e=2i0 ¢2) .’

is a nonterminating extension of the continuous g-Hermite polynomials.

Proposition 8. Forn =0,1,2,...we have
- B o
Sq(@;q7") =iq™" Hon(z | q).
Proof. ;From (Theorem 2.2, [8]), we have

Hy(x | q) = exthe(w),
k=0

where
K2k
gt (1—qF,
co=——>————(D Hy(z|q))0
and
¢k($) _ (1 + eQie)(—QQ_nGQiG;q2)n_1€_in6.
In the other hand

Hop41(0 | q) =0, Hza(0|q) = (=1)"(g:¢°)n
and
DEH, (x| 4) = (o) N (D E Dy )
1—q (4 @k
Therefore Hyy,(z | ¢) has the g-Taylor expansion

n

Hop(x ] q) = 3 (~1)"* (¢;9)2nq

P (4 02k (%5 @*)n—k

2k(k—n)

Yok ().

After some computations we get the proposition.

(3.8)
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Now put

k(w3 q) i (—Dng? (wWhe?)
W — 5
4 (@%,¢*)n(4% %) o0 1 — q"w?

n=0

is no difficult to see that the function k (w;q) is entire and satisfy

2

k:(q_";q) =q¢", n=0,1,....
In the following proposition we establish a product formula for the basic function.

Proposition 9. The ¢-sine function satisfy the product formula

Sq(cos B;w)Sy(cos pyw) = /A(cosé?,cos¢,cosw)
0
X Sg(cos 3 w) (¢, €2V q)oody)
where

22‘q1/4(—q262i9, e 20 _ 2620 202 ) oo
mk (w;q) (1 = q) (0%, qw*; ¢°) o (—@%€*¥, =P ™Y1 %) o

9 4
LOSUCOs§ ¢K1 (cos B, cos ¢, cos ).
cos

A(cos 8, cos ¢, cos 1)

Proof. Put
g(w) = k(iw’;q’) Sy (cosb;w’)Ss (cos ¢;w°)
—/ iK1 (cos 0, cos ¢, cos 1, ¢*°)
0

X S5 (cos 1 W) (e 72 g10) L dy,

It is easy to show that the function g is entire and from proposition 9 and the product
formula (13), we have

By (3.5), we have
M(qg™*710,g) < CM(g7" 7, (62 ¢"%) D).
Then according to the Theorem 7, we have

g=0.
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