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Abstract

We solve the problem of constructing entire functions where lnM(r; f) grows like ln2 r

from their values at q−n, for 0 < q < 1. As application we give a product formula for
the basic sine function.

1 Introduction

In [9], Ismail and Zhang introduced the q-analogue of the exponential and trigonometric
functions. They used transform formula to analytically continue to entire functions in
the variable ω. Suslov (see [14]) identified a special case which leads to a comprehensive
orthogonal system of functions. This opened the door for a comprehensive study of q-
Fourier series, where q-analogues of some results in classical Fourier series have been
proved (see [14]). In this paper we give a product formula for the basic sine function.

In this work we mostly follow the terminology of [4]. We will always assume 0 < q < 1.
We first remind the reader of the notations to be used. A q-shifted factorial is defined by
(see [4])

(a; q)0 = 1, (a; q)n =

n−1
∏

k=0

(1 − aqk), n = 1, 2, ...∞ (1.1)

and more generally

(a1, ..., as; q)n =

s
∏

1=0

(ak; q)n, n = 0, 1, 2, ...∞ (1.2)

A basic hypergeometric series is

rϕs(a1, ..., ar+1; b1, ..., br; q, z) =

∞
∑

k=0

(a1, ..., ar; q)k
(b1, ..., bs, q; q)k

[

(−1)kq(
k

2)
]1+s−r

zk. (1.3)
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Given a function f defined on (−1, 1), we set f̆(eiθ) := f(x), x = cos θ. In other words
we think of f(cos θ) as a function of eiθ. In this notation the Askey-Wilson finite difference
operator Dq is defined by

(Dqf)(x) =
f̆(q

1
2 eiθ) − f̆(q−

1
2 e−iθ)

(q
1
2 − q−

1
2 )i sin θ

. (1.4)

2 Interpolation of entire functions

In a recent work, M.E.H.Ismail and D.Stanton (see [7]) solved the problem of constructing

entire functions from their values at
1

2
[aqn +

1

aqn
], for entire functions satisfying

lim
r−→∞

sup
lnM(r; f))

ln2 r
= c, (2.1)

for a particular c which depends upon q. Here M(r; f) is

M(r; f) = sup {|f(z)| : |z| ≤ r} .

In this section, we adopt their method to solve interpolation problem for the sequence
{

q−n, n = 0, 1, ...
}

.

Let us begin by the following lemma:

Lemma 1. The Cauchy’s kernel
1

y − x
has the expansion

1

y − x
=

(x; q)∞
(y − x)(y; q)∞

+

∞
∑

k=0

(x; q)k
(y; q)k+1

qk,

for all y such that y 6= x and y 6= q−n, n = 0, 1, ...

Proof. By induction on n, one proves easily that for y 6= x and y 6= q−n, n = 0, 1, ..., we
have

1

y − x
=

(x; q)n+1

(y − x)(y; q)n+1
+

n
∑

k=0

(x; q)k
(y; q)k+1

qk.

The result follows when we tend n to ∞. �

Theorem 2. Let f be an analytic function in a bounded domain D and let C be a contour
within D and x belongs to the interior of C. If the contour C is at a positive distance from
the set {q−n;n = 0, 1, ...} , then

f(x) =
(x; q)∞

2iπ

∫

C

f(y)

(y − x)(y; q)∞
dy +

1

2iπ

∞
∑

k=0

qkfk(x; q)k,

where

fk =

∫

C

f(y)

(y; q)k+1
dy
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Proof. Multiply the first expansion in Lemma 1 by f(y), integrate with respect to y and
interchange integration and summation, the result follows from Cauchy’s theorem. �

Theorem 3. Any entire function f satisfying (2.1) with c <
1

2 ln q−1
has a convergent

expansion

f(x) =
∞

∑

n=0

fn(x; q)n.

Moreover any function f is uniquely determined by its values on {q−n : n ≥ 0} .

To prove Theorem 3, let us first state and prove the following lemma:

Lemma 4. Let −1 < δ < 0, and f be entire function satisfying (5) with c <
1

2 ln q−1
. Then

lim
n−→∞

∫

|y|=q−n−δ

f(y)

(y − x)(y; q)∞
dy = 0.

Moreover, the same conclusion holds if

lim
n−→∞

qn(n+2δ+1)/2 sup
{

f(q−n−δeiθ) : 0 ≤ θ ≤ 2π
}

= 0. (2.2)

Proof. It is clear that inf{(y; q)∞ : |y| = r} = |(r; q)∞| . Hence for |y| = q−n−δ, we have

|(y; q)∞| ≥
∣

∣

∣
(q−n−δ; q)n(q

−δ; q)∞

∣

∣

∣
,

= q−n(n+2δ+1)/2(qδ+1; q)n(q
−δ; q)∞,

and the result follows. �

Instead of proving the expansion in Theorem 3 in the basis {(x; q)n}, we shall prove
the following equivalent result:

Theorem 5. The expansion formula

f(x) =

∞
∑

n=0

qnfn(x; q)n,

with

fn =
1

(q; q)n

n
∑

k=0

(q; q)n
(q; q)n−k(q; q)k

(−1)kq(
k

2)f(q−k),

for functions f satisfying the assumptions of Lemma 4.

Proof. Let Cm be a circle centered at y = 0 with radius q−m−δ. The Lemma 4 shows
that the first integral in Theorem 2 is small if m is large. We split the remaining terms
with n > m, and initial terms with n ≤ m. We will show that the tail is small, leaving
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the initial terms. Then a residue calculation establishes the expression for fn, because the

poles of
f(y)

(y; q)n+1
are at y = q−k, k = 0, 1, ..., n.

Note that if n > m then

min{|(y; q)n+1| : |y| = q−m−δ}
= (q−m−δ ; q)m(q−δ; q)n+1−m

= q−m(m+2δ+1)(qδ+1; q)m(q−δ; q)n+1−m

≥ q−((m+δ)2+1−δ2)/2A,

where A is a positive constant independent of n and m. Therefore for sufficiently large m,
and |y| = q−m−δ,

ln[M(q−m−δ ,
f(y)

(y; q)n+1
] ≤ [c1 +

1

2 ln q
] ln2(q−m−δ) +O(m)

for some c1, c ≤ c1 ≤ 1

2 ln q−1
.

This is a uniform bound of e−D(ln q−m−δ)2 , D > 0, for each integral for n > m. Since
(x; q)n −→ (x; q)∞, there is a uniform bound B for (x; q)n on compact sets. Thus the tail
is bounded by

∞
∑

n=m+1

Bqne−D(ln q−m−δ)2 ≤ B
qm+1

1 − q
e−D(ln q−m−δ)2 ,

which is small for m large. �

Theorem 6. Let f be entire function satisfying (2.1) with c <
1

2 ln q−1
. Then

f(x)

(x; q)∞
=

∞
∑

n=0

(−1)nq(
n+1

2 )

(q; q)n(q; q)∞

f(q−n)

1 − qnx
.

Proof. Consider

Im :=

∫

|y|=q−m−δ

f(y)

(y − x)(y; q)∞
dy.

¿From Lemma 4, Im −→ 0 as m −→ ∞. On the other hand

Im =
f(x)

(x; q)∞
−

m
∑

n=0

(−1)nq(
n+1

2 )

(q; q)n(q; q)∞

f(q−n)

1 − qnx
,

and the Theorem follows. �

Theorem 7. Let the complex numbers b1, ...bm, satisfy the estimate

| b1...bm | q
m(1−m)

2 < 1, m = 0, 1, ...
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Let f be an entire function satisfying

M(q−ms−δ, f) ≤M(qms−δ, (b1z, ..., bmz; q
m)∞).

Then

f(x)

(x; q)∞
=

∞
∑

n=0

(−1)nq(
n+1

2 )

(q; q)n(q; q)∞

f(q−n)

1 − qnx
.

Proof. We have

M(q−ms−δ; (b1z, ..., bmz; q
m)∞) ≤

m
∏

j=1

(− |bj | q−ms−δ; qm)∞,

≤
m
∏

j=1

(− |bj | q−ms−δ; qm)s(− |bj | q−δ; qm)∞,

so that

M(q−ms−δ; f)qms(ms+2δ+1)/2 ≤ C(|b1...bm| q
m(1−m)

2 )s,

where C is a constant depending only on b1, ..., bm, δ but not on s. �

3 Product formula for q-sine function

We start by a q-exponential function, defined in [9] as

Eq(cos θ, ω) =
(α2; q2)∞
(qα2; q2)∞

∞
∑

n=0

(−ieιθq
(1−n)

2 ,−ie−ιθq
(1−n)

2 ; q)n (3.1)

(iω)n

(q; q)n
q

n
2

4 .

The following functions Cq(x;ω) and Sq(x;ω) given by

Cq(x;ω) =
(−ω2; q2)∞
(−qω2; q2)∞

(3.2)

2ϕ1(−qe2iθ,−qe−2iθ; q; q2,−ω2)

and

Sq(x;ω) =
(−ω2; q2)∞
(−qω2; q2)∞

(3.3)

2q
1
4ω

1 − q
cos θ2ϕ1(−q2e2iθ,−q2e−2iθ; q3; q2,−ω2),
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were discussed recently in [14] as q-analogues of cosωx and sinωx on a q-quadratic lattice
x = cos θ. The functions Cq(x;ω) and Sq(x;ω) are defined for |ω| < 1 only. For an analytic
continuation of these functions in a large domain see [9],[14]. For example,

Cq(x;ω) =
(qω2e2iθ, qω2e−2iθ; q2)∞

(q,−qω2; q2)∞
(3.4)

× 2ϕ2(−ω2,−qω2; qω2e2iθ, qω2e−2iθ; q2, q),

Sq(x;ω) =
(q2ω2e2iθ, q2ω2e−2iθ; q2)∞

(q3,−qω2; q2)∞

2q
1
4ω

1 − q
(3.5)

× 2ϕ2(−ω2,−qω2; q2ω2e2iθ, q2ω2e−2iθ; q2, q3),

The notation for Sq(x;ω) is the same as the ones proposed by Suslov in [14]. The q-sine
function satisfies the q-difference equation (see[14])

D2
qSq(x;ω) = − ω2q

1
2

(1 − q)2
Sq(x;ω). (3.6)

Suslov established the continuous orthogonality relations for the q-sine function( see [14]),

∫ π

0
Sq(cos θ;ω)Sq(cos θ;ω

′

)
(e2iθ, e−2iθ; q)∞

(q
1
2 e2iθ, q

1
2 e−2iθ; q)∞

dθ = 0

and
∫ π

0
S2
q (cos θ;ω)

(e2iθ, e−2iθ; q)∞

(q
1
2 e2iθ, q

1
2 e−2iθ; q)∞

dθ

= π
(q

1
2 ,−q 1

2ω2; q)∞
(q,−ω2; q)∞

(−ω2; q2)∞
(−qω2; q2)∞

×2ϕ1

(

−q 1
2 , ω2;−q 1

2ω2; q, q
)

.

Here ω and ω
′

are different solutions of the equation

S(
1

2
(q

1
4 + q−

1
4 );ω) = 0.

The continuous q-Hermite polynomials is defined by (see [13])

Hn(cos θ | q) =

n
∑

k=0

(q; q)n
(q; q)k(q; q)n−k

ei(n−2k)θ. (3.7)

The continuous q-Hermite polynomials satisfy the q-difference equation (see [13])

1

w(x)
Dq[w(x)Dqy(x)] = −4q−n+1 1 − qn

(1 − q)2
y(x).
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and the product formula (see [12])

Hn(x | q)Hn(y | q) =
(q; q)∞
2πtn

∫ π

0
Kt(cos θ, cosφ, cosψ) (3.8)

×Hn(cosψ | q)(e2iψ, e−2iψ ; q)∞dψ

where

Kt(cos θ, cosφ, cosψ) (3.9)

=
(t2e2iψ; q)∞

(e−2iψ , tei(θ+φ+ψ), tei(θ−φ+ψ), tei(φ+ψ−θ), tei(−θ−φ+ψ); q)∞

× 6ϕ5

(

tei(θ+φ+ψ), tei(θ−φ+ψ), tei(ψ+φ−θ), tei(−θ−φ+ψ), 0, 0
qe2iψ, teiψ,−teiψ,√qteiψ,−√

qteiψ

∣

∣

∣

∣

q, qeiψ)

)

+ a similar terms with ψ replaced by − ψ.

In the following proposition, we show that the function S̃q(x;ω) defined by

S̃q(x;ω) =
(1 − q)

(

q3, qω2; q2
)

∞
Sq(x; iω)

2q1/4x(−q2e2iθ,−q2e−2iθ; q2)∞
,

is a nonterminating extension of the continuous q-Hermite polynomials.

Proposition 8. For n = 0, 1, 2, ...we have

S̃q(x; q
−n) = iq−n

2
H2n(x | q).

Proof. ¿From (Theorem 2.2, [8]), we have

Hn(x | q) =
n

∑

k=0

ckψk(x),

where

ck =
q

k
2
−k

4 (1 − q)k

2k(q; q)k
(Dk

qHn(x | q))(0)

and

ψk(x) = (1 + e2iθ)(−q2−ne2iθ; q2)n−1e
−inθ.

In the other hand

H2n+1(0 | q) = 0, H2n(0 | q) = (−1)n(q; q2)n

and

Dk
qHn(x | q) = (

2

1 − q
)kq−

1
2
((n

2)−(n−k

2 )) (q; q)n
(q; q)n−k

Hn−k(x | q).

Therefore H2n(x | q) has the q-Taylor expansion

H2n(x | q) =
n

∑

k=0

(−1)n−k
(q; q)2nq

2k(k−n)

(q; q)2k(q2; q2)n−k
ψ2k(x).

After some computations we get the proposition. �
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Now put

k (ω; q) =

∞
∑

n=0

(−1)nq2n
2+n

(q2; q2)n(q2; q2)∞

(

ω2; q2
)

∞

1 − qnω2
,

is no difficult to see that the function k (ω; q) is entire and satisfy

k
(

q−n; q
)

= qn
2
, n = 0, 1, ... .

In the following proposition we establish a product formula for the basic function.

Proposition 9. The q-sine function satisfy the product formula

Sq(cos θ;ω)Sq(cosφ;ω) =

∫ π

0
∆(cos θ, cosφ, cosψ)

×Sq(cosψ;ω)(e2iψ , e−2iψ ; q)∞dψ

where

∆(cos θ, cosφ, cosψ) =
2iq1/4(−q2e2iθ,−q2e−2iθ,−q2e2iφ,−q2e−2iφ; q2)∞

πk (ω; q) (1 − q) (q3, qω2; q2)∞ (−q2e2iψ,−q2e−2iψ ; q2)∞
cos θ cosφ

cosψ
K1(cos θ, cosφ, cosψ).

Proof. Put

g(ω) = k
(

iω5; q5
)

S̃q5(cos θ;ω
5)S̃q5(cosφ;ω5)

−
∫ π

0
iK1(cos θ, cosφ, cosψ, q

10)

×S̃q5(cosψ;ω5)(e2iψ , e−2iψ; q10)∞dψ,

It is easy to show that the function g is entire and from proposition 9 and the product
formula (13), we have

g(q−n) = 0, n = 0, 1, 2, .....

By (3.5), we have

M(q−s−δ/10, g) ≤ CM(q−10s−δ, (q5z; q10)10∞).

Then according to the Theorem 7, we have

g = 0.

�
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