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INTERPOLATION OF FUZZY DATA

BY USING E(3) CUBIC SPLINES
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Abstract: In this paper, we will consider the interpolation of fuzzy data by
fuzzy-valued E(3) splines. Numerical examples will be presented to illustrate
the differences between of using E(3) spline and other interpolations that have
been studied before.
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1. Introduction

The following problem was first posed by L.A. Zadeh, see for example [12].
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Suppose that we have n + 1 distinct real numbers x0, x1, . . . , xn and for each
of these numbers a fuzzy value in R, rather than a crisp value, is given. Zadeh
asked the question whether it is possible to construct some kind of smooth
function on R to fit with the collection of fuzzy data at these n + 1 points.

Lagrange interpolation for fuzzy data was first investigated by Lowen [12].
Later, Kaleva [9], avoided the well-known computational troubles associated
with crisp Lagrange interpolation by using linear spline and not-a-knot cubic
spline approximations. If the fuzzy data are not convex, then a technical diffi-
culty arises and in this case the Bernestein approximation can be constructed,
see for example Diamond and Ramer [6]. The interpolation of fuzzy data by
using spline functions of odd degree was considered in [2] with natural splines,
in [1] with complete splines and in [3] with fuzzy splines. Constructing con-
sistent fuzzy surfaces from fuzzy data in sense of Lagrange polynomials, linear
splines and not-a-knot cubic splines were described in [11].

In [4], Behforooz compared the E(3) cubic spline with the not-a-knot cubic
spline and the natural cubic spline and he showed that the E(3) cubic spline is
more accurate than these two cubic splines, and also, it has superconvergence
properties which the other two cubic splines do not have these properties. These
superconvergence properties of the E(3) cubic spline can be used in different
fields for better approximation and this fact has motivated us to use E(3) cubic
spline for construction E(3) cubic fuzzy spline. In Section 3, we will introduce
E(3) cubic fuzzy spline to interpolate the fuzzy data. Finally, in Section 4,
some numerical examples will be presented to compare our results with other
studies.

2. Preliminaries

In this section we recall some fundamental results of fuzzy numbers and fuzzy
interpolations.

Definition 1. A fuzzy number is a mapping u : R → I = [0, 1] with the
following properties (see [10]):

(i) u is an upper semi-continuous function on R.

(ii) u(x) = 0 outside of some interval [c, d] ⊂ R.

(iii) There exist real numbers a, b such that c ≤ a ≤ b ≤ d, and

(1) u(x) is a monotonic increasing function on [c, a],

(2) u(x) is a monotonic decreasing function on [b, d],
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(3) u(x) = 1, for all x in [a, b].

Definition 2. A fuzzy number u = (m, l, r)LR of type L − R is a function
from the reals into the interval [0, 1] satisfying

u(x) =







R(x−α
β

) , a ≤ x ≤ a + β,

L(α−x
α

) , a − α ≤ x ≤ a,

0, otherwise,

where L and R are decreasing and continuous functions from [0, 1] to [0, 1]
satisfying L(0) = R(0) = 1 and L(1) = R(1) = 0.

The set of all fuzzy numbers is denoted by F . A popular type of fuzzy
number is the set of triangular fuzzy number u = (c, α, β) defined by

u(x) =



















x − c + α

α
, c − α ≤ x ≤ c,

c + β − x

β
, c ≤ x ≤ c + β,

0, otherwise,

where α > 0 and β > 0. Note that the triangular fuzzy numbers are special
cases of L − L fuzzy numbers, see [4].

Definition 3. If u ∈ F then the α−level set of u is denoted by [u]α and
defined by [u]α = {x ∈ R|u(x) ≥ α}, where 0 < α ≤ 1. Also, [u]0 is called the
support of u and it is given by [u]0 = ∪α∈(0,1][u]α. It follows that the level sets
of u are closed and bounded intervals in R.

It is well-known that the addition and multiplication operations of real
numbers can be extended to F . In other words, for any 0 < α ≤ 1, λ ∈ R and
u, v ∈ F , we have:

[u + v]α = [u]α + [v]α and [λu]α = λ[u]α.

Consider n + 1 distinct real numbers x0 ≤ x1 ≤ x2 ≤ ... ≤ xn. For each xi

we associate a fuzzy number ui ∈ F . To solve Zadeh’s problem, we must find
a continuous function F : R → F such that F (xi) = ui; for i = 0, 1, . . . , n.

Let Py0,y1...,yn(x) be the Lagrange interpolation polynomial of degree n

which interpolates the data (xi, yi) ; i = 0, 1, . . . , n. According to the extension
principle [4], we can write the membership function F (x) for each x ∈ R as
follows:

µF (x)(t) =







sup y0,y1,...,yn
t=Py0...yn (x)

mini=0,1,...,n µui
(yi), if P−1

y0...yn
(t) 6= ∅,

0, otherwise,

where µui
is the membership function of ui.

For each α ∈(0,1] and i = 0, 1, . . . , n, let Jα
i = [ui]

α = µ−1
ui

[α, 1], and Fα(x)
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Figure 1: The solid line represents the support and the dashed line rep-
resents 0.5-level set and the thick line represents 1-level set of natural

cubic spline

Figure 2: The solid line represents the support and the dashed line rep-
resents 0.5-level set and the thick line represents 1-level set of complete

cubic spline

be the α−level sets of ui and F (x), respectively. Hence,

F α(x) = {t ∈ R|µF (x)(t) ≥ α}

= {t ∈ R | ∃ y0, y1, ..., yn : µui
(yi) ≥ α, i = 0, 1, . . . , n

and Py0,y1...,yn(x) = t} = {t ∈ R | ∃ y ∈
∏n

i = 0 Jα
i : Py0, y1..., yn(x) = t},
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Figure 3: The solid line represents the support and the dashed line
represents 0.5-level set and the thick line represents 1-level set of not-
a-knot cubic spline

Figure 4: The solid line represents the support and the dashed line
represents 0.5-level set and the thick line represents 1-level set of E(3)
cubic spline

where y = (y0, y1, ..., yn) ∈ R
n+1. Now, we have

µF (x)(t) = sup{α ∈ (0, 1] | ∃ y ∈
n

∏

i=0

Jα
i : Py0,y1...,yn(x) = t},
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Figure 5: The solid line represents the support and the dashed line rep-
resents 0.5-level set and the thick line represents 1-level set of natural

cubic spline

Figure 6: The solid line represents the support and the dashed line rep-
resents 0.5-level set and the thick line represents 1-level set of complete

cubic spline

where, as mentioned by Lowen in [12], the supremum is attained and hence
from Nguyen [10], we have

F α(x) = {y ∈ R | y = Py0,y1...,yn(x), yi ∈ Jα
i }.
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Figure 7: The solid line represents the support and the dashed line
represents 0.5-level set and the thick line represents 1-level set of not-
a-knot cubic spline

Figure 8: The solid line represents the support and the dashed line
represents 0.5-level set and the thick line represents 1-level set of E(3)
cubic spline

But, from Lagrange interpolation formula, we have

F α(x) =
n

∑

i=0

Li(x)Jα
i ,

where Li(x) represents the Lagrange polynomials.
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3. E(3) Cubic Fuzzy Splines

In this section we introduce a set of special cubic spline functions called “E(3)
Cubic Fuzzy Splines”.

Definition 4. For a given data {(xi, yi)}
n
i=0 with equally spaced points

xi = x0 + ih; i = 0, 1, · · · , n, an E(3) cubic spline with knots xi is a piecewise
polynomial function s : [x0, xn] → R, that possesses the following conditions:

a) s(xi) = yi,

b) s belongs C2[x0, xn],

c) s(x) is a polynomial of degree 3 for x ∈ [xi, xi+1); i = 0, 1, . . . , n − 1,

d) m0 +3m1 = 1
6h

{−17y0 + 9y1 + 9y2 − y3},

e) mn + 3mn−1 = − 1
6h

{−17yn + 9yn−1 + 9yn−2 − yn−3},

where mi = s(1)(xi). If all of n+1 parameters mi are known, then at any point
x ∈ [xi−1, xi]; i = 1, 2, · · · , n, the value of s(x) can be obtained by using the
two points Hermite interpolation polynomial formula, for more details see [4]
and [5]. We denote the family of these splines by S3(x0, xn). If the base splines
s belong to S3(x0, xn) are such that si(xj) = 1 for i = j and si(xj) = 0 for
i 6= j, then similar to Lagrange interpolation polynomial, the fuzzy spline

Sy0,y1...,yn(x) =

n
∑

i = 0

si(x) yi

interpolates (xi, yi); i = 0, 1, . . . , n. Hence from Section 2, we have

F α(x) = {t ∈ R| ∃ y ∈
n

∏

i=0

Jα
i : Sy0,y1...,yn(x) = t} =

n
∑

i=1

si(x)Jα
i ,

and

F (x) =
n

∑

i =0

si(x)ui.

Hence if all ui areL − L fuzzy numbers, then F (x) is an L − L fuzzy number
for all x ∈ [x0, xn].

4. Numerical Examples

Let Jα
i = [aα

i , bα
i ]. Then the upper end point of F α(x) is the solution of the

following problem:

Maximize Sy0y1...yn subject to aα
i ≤ yi ≤ bα

i ; i = 0, 1, . . . , n, where the
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optimal solution is

yi =

{

bα
i , if si(x) ≥ 0,

aα
i , if si(x) < 0.

Similarly the lower end point of F α(x) can be obtained. Hence if ui =
(mi, li, ri) and F (x) = (m(x), l(x), r(x)), then we will have

m(x) =

n
∑

i= 0

si(x)mi, l(x) =
∑

si(x)≥0

si(x)li −
∑

si(x)<0

si(x)ri;

r(x) =
∑

si(x)≥0

si(x)ri −
∑

si(x)<0

si(x)li,

which are the same results in Kaleva [9].

Example 1. Suppose we have the data (xi, ui)

xi 1 1.1 1.2 1.3 1.4 1.5

mi 0 5 1 4 0 1
li 2 1 0 4 3 1
ri 1 2 3 3 2 1

and using cubic spline. Figures 1, 2, 3 and 4 show the zero, 0.5 and one level
sets for natural, complete, not-a-knot and E(3) cubic spline.

Example 2. Here we have ui = yi + A; i = 0, 1, ..., n and A = (0, 1, 1) and
cubic spline, where

xi 1 1.1 1.2 1.3 1.4 1.5

yi 0 4 -1 1 5 0

Figures 5, 6, 7 and 8 show the zero, 0.5 and one level sets.
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