Interpolation of Linear Operators in the Köthe Dual Spaces (*).

Mieczyseaw Mastyeo

Abstract

Summary. - In this paper we investigate when the Köthe dual spaces Y^{\prime} and X^{\prime} are interpolation spaces with respect to couples of the Köthe dual spaces ($Y_{0}^{\prime}, Y_{1}^{\prime}$) and ($X_{0}^{\prime}, X_{1}^{\prime}$), respectively, where X and Y are interpolation spaces with respect to given couples $\left(X_{0}, X_{1}\right)$ and $\left(Y_{0}, Y_{1}\right)$ of Banach function spaces.

1. - Introduction.

A pair $\boldsymbol{A}=\left(A_{0}, A_{1}\right)$ of Banach spaces is called a Banach couple if A_{0} and A_{1} are both continuously imbedded in some Hausdorff topological vector space V.

For a Banach couple $A=\left(A_{0}, A_{1}\right)$ we can form the sum $A_{0}+A_{1}$ and the intersection $A_{0} \cap A_{1}$. They are both Banach spaces in the natural norms $\|a\|_{A_{0}+A_{1}}=$ $=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{0} \in A_{0}, a_{1} \in A_{1}\right\}$ for $a_{6} \in A_{0}+A_{1}$ and $\|a\|_{A_{0} \cap A_{1}}=$ $=\max \left(\|a\|_{A_{0}},\|a\|_{A_{1}}\right)$ for $a \in A_{0} \cap A_{1}$.

A Banach space A is called an intermediate space between A_{0} and A_{1} (or with respect to \boldsymbol{A}) if $A_{0} \cap A_{1} \subset A \subset A_{0}+A_{1}$ with continuous inclusions. For brevity, the closure of $A_{0} \cap A_{1}$ in A will be denoted by A^{0}. We write $A^{0}=\left(A_{0}^{0}, A_{1}^{0}\right)$ for a Banach couple \boldsymbol{A}. If $\boldsymbol{A}^{0}=\boldsymbol{A}, \boldsymbol{A}$ is called a regular couple and then the dual spaces A_{0}^{*} and A_{1}^{*} may be regarded as subspaces of $\left(A_{0} \cap A_{1}\right)^{*}$. So (A_{0}^{*}, A_{1}^{*}) is a Banach couple which we denote by A^{*}. Since $\left(A_{0}+A_{1}\right)^{*}=A_{0}^{*} \cap A_{1}^{*}$ and $\left(A_{0} \cap A_{1}\right)^{*}=A_{0}^{*}+A_{1}^{*}$ isometrically (see [2]), so if A is any intermediate space with respect to A, such that $A_{0} \cap A_{1}$ is dense in A, then A^{*} is an intermediate space with respect to \boldsymbol{A}^{*}.

In the theory of interpolation spaces Banach function spaces are importance. We recall some fundamental notation.

Let (Ω, μ) be a measure space with μ complete and σ-finite. We denote by $L^{0}=$ $=L^{0}(\Omega, \mu)$ the space of all equivalence classes of μ-measurable real valued functions defined and finite μ-a.e. on Ω, equipped with the topology of convergence in measure on μ-finite sets.

A linear subspace X of L^{0} is called an ideal (in L^{0}) if $|x| \leqslant|y| \mu$-a.e. for $x \in L^{0}$ and $y \in X$ imply $x \in X$. Note that every ideal X in L^{0} with $\operatorname{supp} X=\Omega(\operatorname{supp} X$ is the smallest measurable set outside of which all functions in X are equal to zero)

[^0]is super order dense in L^{0}, i.e., for every $0 \leqslant x \in L^{0}$ there exists a sequence $\left(x_{n}\right) \subset X$ such that $0 \leqslant x_{n} \wedge x, \mu$-a.e. (see [9], Lemma 1, p. 138).

We say that an ideal X in L^{0} is a Banach function space (on (Ω, μ)) if X is a Banach space with the property $|x| \leqslant|y| \mu$-a.e. for $x, y \in X$ implies $\|x\|_{x} \leqslant\|y\|_{x}$. Hence, it follows that if X_{0} and X_{1} are any two Banach function spaces (on (Ω, μ)) then $X=\left(X_{0}, X_{1}\right)$ forms a Banach couple.

We say that the norm $\|\cdot\|_{X}$ of a Banach function space X is continuous if $x_{n} \in X$, $0 \leqslant x_{n} \downarrow 0$, imply $\left\|x_{n}\right\|_{X} \rightarrow 0$, semi-continuous if $0 \leqslant x_{n} \uparrow x, x \in X$, imply $\left\|x_{n}\right\|_{x} \rightarrow\left\|x_{x}\right\|_{X}$, monotone complete if $0 \leqslant x_{n} \uparrow x$ and $\sup _{n \geqslant 1}\left\|x_{n}\right\|_{x}<\infty$, imply $x \in X$. If the norm of X is semi-continuous and monotone complete, then we say that it has the Fatou properiy.

The Köthe dual space (or associate space) X^{\prime} of X is defined by

$$
X^{\prime}=\left\{x^{\prime} \in L^{0}: \operatorname{supp} x^{\prime} \subset \operatorname{supp} X,\langle | x\left|,\left|x^{\prime}\right|\right\rangle<\infty \text { for all } x \in X\right\}
$$

where $\left\langle x, x^{\prime}\right\rangle=\int_{\Omega} x x^{\prime} d \mu$ for $\left(x, x^{\prime}\right) \in X \times X^{\prime}$.
The space X^{\prime} is a Banach function space on (Ω, μ) with the norm

$$
\left\|x^{\prime}\right\|_{x^{\prime}}=\sup \left\{\left|\left\langle x, x^{\prime}\right\rangle\right|:\|x\|_{x} \leqslant 1\right\}
$$

whence follows the Hölder inequality

$$
\left|\left\langle x, x^{\prime}\right\rangle\right| \leqslant\|x\|_{x}\left\|x^{\prime}\right\|_{x^{\prime}}
$$

In the remainder we assume that $\operatorname{supp} X=\Omega$.
We note the useful remark that if X is a Banach function space, then by the super order deasity of any ideal Y with supp $Y=\operatorname{supp} X$ in L^{0} and Lebesgue dominated convergence theorem we get

$$
\left\|x^{\prime}\right\|_{X^{\prime}}=\sup \left\{\left|\left\langle x, x^{\prime}\right\rangle\right|:\|x\|_{X} \leqslant 1, x \in Y\right\}
$$

for all $x^{\prime} \in X^{\prime}$.
For a given Banach couple $X=\left(X_{0}, X_{1}\right)$ of Banach function spaces ($X_{0}^{\prime}, X_{1}^{\prime}$) is a Banach couple which we denote by \boldsymbol{X}^{\prime}.

It is well known that if X is a Banach function space, then $\|x\|_{X^{n}}=\|x\|_{X}$ for $x \in X$, when the norm $\|\cdot\|_{X}$ is semi-continuous. Moreover $X=X^{\prime \prime}$ and $\|x\|_{X}=\|x\|_{X^{\prime \prime}}$ if and only if the norm of X has the Fatou property (see [9, 19]). In particular the norm of X^{\prime} has the Fatou property.

Let $A=\left(A_{0}, A_{1}\right)$ and $B=\left(B_{0}, B_{1}\right)$ be two Banach couples. We denote by $\mathcal{E}(\boldsymbol{A}, \boldsymbol{B})$ the Banach space of all linear operators $T: A_{0}+A_{1} \rightarrow B_{0}+B_{1}$ such that the restriction of T to the space A_{i} is a bounded operator from A_{i} into $B_{i}, i=0,1$,
with the norm

$$
\|T\|_{\mathcal{L}(A, B)}=\max \left\{\|T\|_{A_{0} \rightarrow B_{0}},\|T\|_{A_{1} \rightarrow B_{1}}\right\}
$$

We say that intermediate spaces A and B (with respect to \boldsymbol{A} and \boldsymbol{B}, respectively) are interpolation spaces with respect to A and B and we write $(A, B) \in$ $\in \operatorname{Int}(\boldsymbol{A}, \boldsymbol{B})$ if every operator from $\subseteq(\boldsymbol{A}, \boldsymbol{B})$ maps \boldsymbol{A} into B. It is a consequence of the closed graph theorem that, then the restriction of T to A is a bounded operator from A into B and

$$
\|T\|_{A \rightarrow B} \leqslant C\|T\|_{\mathcal{C}(A, B)}
$$

for some positive constant C independent of $T \in \mathcal{L}(\boldsymbol{A}, \boldsymbol{B})$.
If A coincides with B, then A is called an interpolation space with respect to \boldsymbol{A} and \boldsymbol{B} and we write $A \in \operatorname{Int}(\boldsymbol{A}, \boldsymbol{B})$; if, moreover, $A_{0}=B_{0}$ and $A_{1}=B_{1}$, then A is called an interpolation space between A_{0} and A_{1} (or with respect to A), and we write $A \in \operatorname{Int} A$.

In [2] Aronszajn and Gagliardo showed that if \boldsymbol{A} is a regular Banach couple such that $A_{0} \cap A_{1}$ is a reflexive space and $A \in \operatorname{Int} A$ with $A_{0} \cap A_{1}$ dense in A, then A^{*} is an interpolation space between A_{0}^{*} and A_{1}^{*}. In this paper we investigate when $\left(Y^{\prime}, X^{\prime}\right) \in \operatorname{Int}\left(\mathbf{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$ if we know that $(X, Y) \in \operatorname{Int}(\boldsymbol{X}, \boldsymbol{Y})$, where X and Y are function Banach spaces intermediate with respect to given couples $X=\left(X_{0}, X_{1}\right)$ and $\boldsymbol{Y}=\left(Y_{0}, Y_{1}\right)$ of Banach function spaces, respectively.

2. - Regular operators. Basic properties.

Let $X \subset L^{0}\left(\Omega_{1}, \mu_{1}\right)$ and $Y \subset L^{0}\left(\Omega_{2}, \mu_{2}\right)$ be Banach function spaces. We say that the operator $T: X \rightarrow Y$ is regular if there exists the operator $T^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ (which we called the (order) adjoint of T) such that

$$
\left\langle T x, y^{\prime}\right\rangle=\left\langle x, T^{\prime} y^{\prime}\right\rangle
$$

for all $x \in X$ and $y^{\prime} \in Y^{\prime}$. Note that if the operator $T: X \rightarrow Y$ is regular, then T is linear, moreover if T is bounded, then by Holder inequality we get that T^{\prime} is a bounded operator and $\left\|T^{\prime}\right\|_{Y^{\prime} \rightarrow X^{\prime}} \leqslant\|T\|_{X \rightarrow Y}$.

Now we give a useful theorem which characterizes regular operators. First of all, let X be a Banach function space. Let I denote the set of all linear continuous functionals defined on the space X by

$$
\Gamma=\left\{f_{x^{\prime}}: f_{x^{\prime}}(x)=\left\langle x, x^{\prime}\right\rangle, x^{\prime} \in X^{\prime}\right\}
$$

It is easy to see that Γ is a total linear set of the dual space X^{*}, so on the space X we can define the Γ-topology (which we denote by $\sigma\left(X, X^{\prime}\right)$) generated by the family of semi-norms $\left\{p_{x^{\prime}}: x^{\prime} \in X^{\prime}\right\}$, where $p_{x^{\prime}}(x)=\left|f_{x^{\prime}}(x)\right|$.

Theorem 2.1. - Let X and Y be Banach function spaces. An operator $T: X \rightarrow Y$ is regular if and only if the following condition holds

$$
\begin{equation*}
x_{n} \rightarrow x \text { in } \sigma\left(X, X^{\prime}\right), \quad \text { imply } \quad T x_{n} \rightarrow T x \text { in } \sigma\left(Y, X^{\prime}\right) \tag{1}
\end{equation*}
$$

Proof. - Assume that an operator $T: X \rightarrow Y$ is regular. Then there exists an operator $T^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ such that $\left\langle T x, y^{\prime}\right\rangle=\left\langle x, T^{\prime} y^{\prime}\right\rangle$ for all $x \in X$ and $y^{\prime} \in Y^{\prime}$. Let $x_{n} \rightarrow x$ in $\sigma\left(X, X^{\prime}\right)$, i.e. $\left\langle x_{n}, x^{\prime}\right\rangle \rightarrow\left\langle x, x^{\prime}\right\rangle$ for all $x^{\prime} \in X^{\prime}$. Thus

$$
\left\langle T x_{n}, y^{\prime}\right\rangle=\left\langle x_{n}, T^{\prime} y^{\prime}\right\rangle \rightarrow\left\langle x, T^{\prime} y^{\prime}\right\rangle=\left\langle T x, y^{\prime}\right\rangle
$$

for all $y^{\prime} \in Y^{\prime}$, whence $T x_{n} \rightarrow T x$ in $\sigma\left(Y, Y^{\prime}\right)$.
For the converse suppose that an operator $T: X \rightarrow Y$ satisfies the condition (1). Take a sequence $\left(x_{n}\right)$ in X with $\left|x_{n}\right| \leqslant x, x \in X$ and $x_{n} \rightarrow 0$ a.e. Then $x_{n} \rightarrow 0$ in $\sigma\left(X, X^{\prime}\right)$, by Lebesgue dominated convergence theorem. Now, if we set $f_{y^{\prime}}(x)=$ $=\left\langle T x, y^{\prime}\right\rangle$ for each $x \in X$, where $y^{\prime} \in Y^{\prime}$, we see that $f_{y^{\prime}}\left(x_{n}\right) \rightarrow 0$ for each $y^{\prime} \in Y^{\prime}$ (by $T x_{n} \rightarrow 0$ in $\sigma\left(Y, Y^{\prime}\right)$). It follows that $f_{y^{\prime}}$ is an order continuous linear functional on X for each $y^{\prime} \in Y^{\prime}$. Therefore, there exists (exactly one) element $x^{\prime} \in X^{\prime}$ such that $f_{y^{\prime}}(x)=\left\langle x, x^{\prime}\right\rangle$ for all $x \in X$ (see [9]). Now it is enough to observe that if we set $T^{\prime} y^{\prime}=x^{\prime}$, then the map $T^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ is linear and $f_{y^{\prime}}(x)=\left\langle x, T^{\prime} y^{\prime}\right\rangle$. Thus $\left\langle T x, y^{\prime}\right\rangle=\left\langle x, T^{\prime} y^{\prime}\right\rangle$ for all $x \in X$ and $y^{\prime} \in Y^{\prime}$, so the operator T is regular.

Corollary 2.2. - Let X and Y be Banach function spaces. If the operator $T: X \rightarrow Y$ is regular and the norm of Y is semi-continuous, then T is bounded.

Proof. - Let $x_{n} \rightarrow x$ in X. Then $x_{n} \rightarrow x$ in $\sigma\left(X, X^{\prime}\right)$, by the Hölder inequality. Since the operator $T: X \rightarrow Y$ is regular, it follows that for each $y^{\prime} \in Y^{\prime}$

$$
\begin{equation*}
\left|\left\langle T x_{n}, y^{\prime}\right\rangle\right| \rightarrow\left|\left\langle T x, y^{\prime}\right\rangle\right| \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

by Theorem 2.1.
Now let $\varepsilon>0$. By semi-continuity of the norm $\|\cdot\|_{Y}$, we have

$$
\|T x\|_{Y}=\sup \left\{\left|\left\langle T x, y^{\prime}\right\rangle\right|:\left\|y^{\prime}\right\|_{Y^{\prime}} \leqslant 1\right\}
$$

Then the inequality

$$
\begin{equation*}
\|T x\|_{Y}<\left|\left\langle T x, y_{0}^{\prime}\right\rangle\right|+\varepsilon / 2 \tag{3}
\end{equation*}
$$

holds for some $y_{0}^{\prime} \in Y^{\prime}$ with $\left\|y_{0}^{\prime}\right\|_{Y^{\prime}} \leqslant 1$. Since there exists an $n_{0} \in N$ with

$$
\left|\left\langle T x, y_{0}^{\prime}\right\rangle\right|<\left|\left\langle T x_{n}, y_{0}^{\prime}\right\rangle\right|+\varepsilon / 2
$$

for all $n>n_{0}$, by (2), so from (3), we get

$$
\|T x\|_{Y}<\left|\left\langle T x_{n}, y_{0}^{\prime}\right\rangle\right|+\varepsilon \leqslant\left\|T x_{n}\right\|_{Y}+\varepsilon
$$

for all $n>n_{0}$. Since $\varepsilon>0$ is arbitrary $\|T x\|_{Y} \leqslant \lim \inf \left\|T x_{n}\right\|_{Y}$ holds. Consequently, since T is linear our assertion follows from a well known fact that the linear operator S from a Banach space E into a normed space F is continuous if and only if $x_{n} \rightarrow x$ in E imply $\|S x\|_{F} \leqslant \liminf _{n \rightarrow \infty}\left\|S x_{n}\right\|_{F}$.

Remark. - If X is a Banach function space, then the mapping $x^{\prime} \mapsto f_{x^{\prime}}$, where $f_{x^{\prime}}(x)=\left\langle x, x^{\prime}\right\rangle$ for $x \in X$ is a linear isometry from the Köthe dual X^{\prime} of X onto X^{*} if and only if X has continuous norm (see [9]). Hence, by applying Theorem 2.1, we obtain (cf. [8]) the following

Theorem 2.3. - Let X and Y be Banach function spaces. A linear bounded operator from X into Y is regular if and only if X has continuous norm.

3. - Interpolation in the Köthe dual spaces.

Let X, Y be Banach function spaces. An operator $T: X \rightarrow Y$ is positive if $T\left(X^{+}\right) \subset Y^{+}$, where $X^{+}=\{x \in X: x \geqslant 0\}$. Note that every additive operator T_{0} : $X^{+} \rightarrow Y^{+}$has a unique extension to a linear operator $T: X \rightarrow Y$. This extension is defined by the formula $T(x)=T_{0}\left(x^{+}\right)-T_{0}\left(x^{-}\right)$(see [1], Theorem 1.7, p. 7). Note also that a positive linear operator $T: X \rightarrow Y$ is bounded (see [1], Theorem 12.3, p. 175).

Let $\boldsymbol{X}=\left(X_{0}, X_{1}\right)$ and $\boldsymbol{Y}=\left(Y_{0}, Y_{1}\right)$ be couples of Banach function spaces, then by $\mathfrak{L}_{r}(\boldsymbol{X}, \boldsymbol{Y})$ we denote the subspace of all operators $\boldsymbol{T} \in \mathfrak{L}(\boldsymbol{X}, \boldsymbol{Y})$ such that the restrictions $\left.T\right|_{X_{i}}:=T_{X_{i}}$ are regular operators from X_{i} into $Y_{i}, i=0,1$. By $\mathcal{L}_{+}(\boldsymbol{X}, \mathbf{Y})$, we denote the set of all operators $T \in \mathbb{C}(\boldsymbol{X}, \boldsymbol{Y})$ such that $T_{X_{i}}: X_{i} \rightarrow Y_{i}(i=0,1)$ are positive operators.

If X and Y are Banach function spaces intermediate with respect to X and Y, respectively, then we write $(X, Y) \in I n t_{+}(\boldsymbol{X}, \boldsymbol{Y})$ if $T X \subset X$ for all $T \in \mathcal{L}_{+}(\boldsymbol{X}, \boldsymbol{Y})$.

In this section we are interested in the problem, when $\left(Y^{\prime}, X^{\prime}\right) \in \operatorname{Int} t_{+}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$ $\left(\operatorname{Int}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)\right)$ if we know that $(X, Y) \in \operatorname{Int} t_{+}(\boldsymbol{X}, \boldsymbol{Y})(\operatorname{Int}(\boldsymbol{X}, \boldsymbol{Y}))$. To answer this problem we need some propositions.

Proposition 3.1. - Let $\boldsymbol{X}=\left(X_{0}, X_{1}\right)$ and $\boldsymbol{Y}=\left(Y_{0}, Y_{1}\right)$ be couples of Banach function spaces. If an operator $T \in \mathcal{L}_{r}(\boldsymbol{X}, \boldsymbol{Y})$, then there exists an operator $T^{\prime} \in \mathcal{L}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$ such that $\left.T^{\prime}\right|_{Y_{i}^{\prime}}=T_{X_{i}}^{\prime}$, where $T_{X_{i}}^{\prime}$ is the adjoint of $T_{X_{i}}, i=0,1$.

Proof (cf. [2]). - Let $T \in \mathcal{L}_{r}(\boldsymbol{X}, \boldsymbol{Y})$, then there exist operators $T_{X_{i}}^{\prime}: Y_{i}^{\prime} \rightarrow X_{i}^{\prime}$ such that $\left\langle T_{X_{i}} x_{i}, y_{i}^{\prime}\right\rangle=\left\langle x_{i}, T_{X_{i}}^{\prime} y_{i}^{\prime}\right\rangle$ for all $x_{i} \in X_{i}$ and $y_{i}^{\prime} \in Y_{i}^{\prime}, i=0,1$. Hence

$$
\left\langle x, T_{X_{0}}^{\prime} y^{\prime}\right\rangle=\left\langle T_{X_{0}} x, y^{\prime}\right\rangle=\left\langle T_{X_{1}} x, y^{\prime}\right\rangle=\left\langle x, T_{X_{1}}^{\prime} y^{\prime}\right\rangle
$$

for all $x \in X_{0} \cap X_{1}$ and $y^{\prime} \in Y_{0}^{\prime} \cap Y_{1}^{\prime}$. Thus $\left\langle x, T_{X_{0}}^{\prime} y^{\prime}-T_{X_{1}}^{\prime} y^{\prime}\right\rangle=0$ for each $x \in$ $\in X_{0} \cap X_{1}$. This implies that $\left\|T_{X_{0}}^{\prime} y^{\prime}-T_{X_{1}}^{\prime} y^{\prime}\right\|_{\left(X_{0} \cap X_{1}\right)^{\prime}}=0$ for all $y^{\prime} \in Y_{0}^{\prime} \cap Y_{1}^{\prime}$, so
$T_{X_{0}}^{\prime}=T_{X_{1}}^{\prime}$ on $Y_{0}^{\prime} \cap Y_{1}^{\prime}$. Now, if we define the operator $T^{\prime}: Y_{0}^{\prime}+Y_{1}^{\prime} \rightarrow X_{0}^{\prime}+X_{1}^{\prime}$, by $T^{\prime} y^{\prime}=T_{X_{0}}^{\prime} y_{0}^{\prime}+T_{X_{1}}^{\prime} y_{1}^{\prime}$ for $y^{\prime}=y_{0}^{\prime}+y_{1}^{\prime}$ with $y_{i}^{\prime} \in Y_{i}^{\prime}, i=0,1$. Then simply $T^{\prime} y^{\prime}$ is independent of the choice of the decomposition $y^{\prime}=y_{0}^{\prime}+y_{1}^{\prime}$. Obviously $\left.T^{\prime}\right|_{X_{i}^{\prime}}=T_{X_{i}}^{\prime}(i=0,1)$ and $T^{\prime} \in \mathcal{L}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$.

The following useful Proposition follows immediately from Theorem 3.1 in [12].
Proposition 3.2. - Let $\left(X_{0}, X_{1}\right)$ be a couple of Banach function spaces, then $\left(X_{0}+X_{1}\right)^{\prime}=X_{0}^{\prime} \cap X_{1}^{\prime}$ and $\left(X_{0} \cap X_{1}\right)^{\prime}=X_{0}^{\prime}+X_{1}^{\prime}$ with equality of norms.

In the remainder let $\boldsymbol{X}=\left(X_{0}, X_{1}\right)$ and $\mathbf{Y}=\left(Y_{0}, Y_{1}\right)$ be couples of Banach function spaces.

Theorex 3.3. - Let a couple $\boldsymbol{Y}=\left(Y_{0}, Y_{1}\right)$ be such that the norm of $Y_{0}^{\prime}+Y_{1}^{\prime}$ is continuous.
(a) If $Y_{i}^{\prime \prime}=Y_{i}(i=0,1)$ and $R \in \mathfrak{L}_{+}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$, then there exists an operator $T \in \mathfrak{E}_{+}(\mathbf{X}, \mathbf{Y})$ such that $T^{\prime}=R$.
(b) If $X_{0} \cap X_{1}$ is dense in $X_{i}(i=0,1), Y_{0}^{\prime \prime} \cap Y_{1}^{\prime \prime}=Y_{0} \cap Y_{1}$, the norms of X_{i} are semi-continuous ($i=0,1$) and $R \in \mathbb{C}\left(\mathbf{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$, then there exists an operator $T \in \mathbb{L}(\boldsymbol{X} \mathbf{Y})$ such that $T^{\prime}=R$.

Proof. - (a) Let an operator $R \in \mathcal{L}_{+}\left(\mathbf{Y}^{\prime} \boldsymbol{X}^{\prime}\right)$. Then $R:\left(Y_{0} \cap Y_{1}\right)^{\prime} \rightarrow\left(X_{0} \cap X_{1}\right)^{\prime}$, by Proposition 3.2. Since $Y_{0}^{\prime}+Y_{1}^{\prime}=\left(Y_{0} \cap Y_{1}\right)^{\prime}$ has a semi-continuous norm, it follows from Theorem 2.3 that the operator $R:\left(Y_{0} \cap Y_{1}\right)^{\prime} \rightarrow\left(X_{0} \cap X_{1}\right)^{\prime}$ is regular. Thus there exists a linear and bounded operator $S:\left(X_{0} \cap X_{1}\right)^{\prime \prime} \rightarrow\left(Y_{0} \cap Y_{1}\right)^{\prime \prime}=$ $=Y_{0} \cap Y_{1}$ satisfying the equality $\left\langle R y^{\prime}, x^{\prime \prime}\right\rangle=\left\langle y^{\prime}, S x^{\prime \prime}\right\rangle$ for all $y^{\prime} \in\left(Y_{0} \cap Y_{1}\right)^{\prime}$ and $x^{\prime \prime} \in\left(X_{0} \cap X_{1}\right)^{\prime \prime}$. Hence it follows that S is a positive operator and

$$
\begin{equation*}
\left\langle R y^{\prime}, x\right\rangle=\left\langle y^{\prime}, S x\right\rangle \tag{4}
\end{equation*}
$$

for all $y^{\prime} \in\left(Y_{0} \cap Y_{1}\right)^{\prime}=Y_{0}^{\prime}+Y_{1}^{\prime}$ and $x \in X_{0} \cap X_{1}$, by $X_{0} \cap X_{1} \subset\left(X_{0} \cap X_{1}\right)^{\prime \prime}$. Thus, by the semi-continuity of the norms in $Y_{i}(i=0,1)$ and Hölder inequality we have

$$
\begin{aligned}
\|S x\|_{Y_{0}}=\sup \left\{\left|\left\langle y^{\prime} S x\right\rangle\right|:\left\|y^{\prime}\right\|_{Y_{0}^{\prime}} \leqslant 1\right\}= & \sup \left\{\left|\left\langle R y^{\prime} x\right\rangle\right|:\left\|y^{\prime}\right\|_{Y_{0}^{\prime}} \leqslant 1\right\} \leqslant \\
& \leqslant \sup \left\{\left\|R y^{\prime}\right\|_{X_{0}^{\prime}}\|x\|_{x_{0}}:\left\|y^{\prime}\right\|_{Y_{0}^{\prime}} \leqslant 1\right\}=\|R\|_{X_{0}^{\prime} \rightarrow x_{0}^{\prime}}\|x\|_{x_{0}}
\end{aligned}
$$

and

$$
\|S\|_{X_{2}} \leqslant\|R\|_{X_{1}^{\prime} \rightarrow x_{1}^{\prime}}\|x\|_{X_{1}}
$$

for all $x \in X_{0} \cap X_{1}$.
Now let fix $x \in X_{0}$ with $x \geqslant 0$. Since $X_{0} \cap X_{1}$ is an ideal, so there exists a sequence (x_{n}) in $X_{0} \cap X_{1}$ such that $0 \leqslant x_{n} \uparrow x$. Thus $0 \leqslant S x_{n} \uparrow$, by positivity of S. Since
$\left\|S x_{n}\right\|_{Y_{0}} \leqslant\|S\|_{X_{0} \rightarrow Y_{0}}\left\|x_{n}\right\|_{X_{0}} \leqslant\|S\|_{X_{0} \rightarrow Y_{0}}\|x\|_{X_{0}}$, it follows from the Fatou property in Y_{0} that

$$
S_{0} x:=\lim _{n \rightarrow \infty} S x_{n} \in Y_{0}
$$

and

$$
\left\|S_{0} x\right\|_{Y_{0}}=\lim _{n \rightarrow \infty}\left\|S x_{n}\right\|_{Y_{0}} \leqslant\|S\|_{X_{0} \rightarrow Y_{0}} \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{X_{0}} \leqslant\|S\| X_{0} \rightarrow Y_{0}\|x\|_{X_{0}}
$$

We show that the operator $S_{0}: X_{0}^{+} \rightarrow Y_{0}^{+}$is additive. To see this we first show that $S_{0} x=\lim _{n \rightarrow \infty} S x_{n}$, where $x \in X_{0}^{+}$, is independent of the choice of the sequence $\left(x_{n}\right) \subset$ $\subset X_{0} \cap \bar{X}_{1}$ such that $0 \leqslant x_{n} \uparrow x$. Let $x \in X_{0}^{+},\left(x_{n}\right) \subset X_{0} \cap X_{1}$ with $0 \leqslant x_{n} \uparrow x$. Then $\left|x_{n} R y^{\prime}\right| \leqslant|x|\left|R y^{\prime}\right|,\left|y^{\prime} S x_{n}\right| \leqslant\left|y^{\prime}\right||S x|$ and $\langle | R y^{\prime}|,|x|\rangle \leqslant\left\|R y^{\prime}\right\|_{x_{0}^{\prime}}\|x\|_{x_{0}}<\infty,\langle | y^{\prime}| | S x| \rangle \leqslant$ $\left\|y^{\prime}\right\|_{Y_{0}^{\prime}}\|S x\|_{Y_{0}}<\infty$ for all $y^{\prime} \in Y_{0}^{\prime}$, by Hölder inequality. Hence $\left\langle R y^{\prime}, x_{n}\right\rangle \rightarrow\left\langle R y^{\prime}, x\right\rangle$ and $\left\langle y^{\prime}, S x_{n}\right\rangle \rightarrow\left\langle y^{\prime}, S_{0} x\right\rangle$ as $n \rightarrow \infty$, by Lebesgue dominated convergence theorem. Finally if we put $S_{0} x=y_{0}$, then

$$
\begin{equation*}
\left\langle R y^{\prime}, x\right\rangle=\left\langle y^{\prime}, y_{0}\right\rangle=\left\langle y^{\prime}, \lim _{n \rightarrow \infty} S x_{n}\right\rangle \tag{5}
\end{equation*}
$$

for all $y^{\prime} \in Y_{0}^{\prime}$, by (4). Now if $0 \leqslant y_{n} \uparrow x$ with $\left(y_{n}\right) \subset X_{0} \cap X_{1}$, then $\lim _{n \rightarrow \infty} S y_{n}=\vec{y}_{0} \in Y_{0}$ and $\left\langle R y^{\prime}, x\right\rangle=\left\langle y^{\prime}, y_{0}\right\rangle,\left\langle R y^{\prime}, x\right\rangle=\left\langle y^{\prime}, \bar{y}_{0}\right\rangle$, by (5). This implies that $\left\langle y^{\prime}, y_{0}-\bar{y}_{0}\right\rangle=0$ for all $y^{\prime} \in Y_{0}^{\prime}$ and consequently $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} S y_{n}$. Hence, we obtain easily that the operator $S_{0}: X_{0}^{+} \rightarrow Y_{0}^{+}$is additive. Thus, S_{0} has a unique extension to a linear operator $\bar{S}_{0}: X_{0} \rightarrow Y_{0}$ defined by the formula $\bar{S}_{0}(x)=S_{0}\left(x^{+}\right)-S_{0}\left(x^{-}\right)$for $x \in X_{0}$. Obviously \bar{S}_{0} is bounded and $\left\|\bar{S}_{0} x\right\|_{Y_{0}} \leqslant 2\|S\|_{X_{0} \rightarrow Y_{0}}\|x\|_{X_{0}}$. Moreover

$$
\begin{align*}
\left\langle y_{0}^{\prime}, \bar{S}_{0} x\right\rangle=\left\langle y_{0}^{\prime}, S_{0} x^{+}\right\rangle- & \left\langle y_{0}^{\prime}, S_{0} x^{-}\right\rangle= \tag{6}\\
& =\left\langle R y_{0}^{\prime}, x^{+}\right\rangle-\left\langle R y_{0}^{\prime}, x^{-}\right\rangle=\left\langle R y_{0}^{\prime}, x^{+}-x^{-}\right\rangle=\left\langle R y_{0}^{\prime}, x\right\rangle
\end{align*}
$$

for all $x \in X_{0}$ and $y_{0}^{\prime} \in Y_{0}^{\prime}$, by (5).
Similarly, we define a linear operator $\bar{S}_{1}: X_{1} \rightarrow Y_{1}$ with $\left\|\bar{S}_{1} x\right\|_{Y_{2}} \leqslant 2\|S\|_{X_{1} \rightarrow Y_{1}}\|x\|_{X}$ and

$$
\begin{equation*}
\left\langle y_{1}^{\prime}, \bar{S}_{1} x\right\rangle=\left\langle R y_{1}^{\prime}, x\right\rangle \tag{7}
\end{equation*}
$$

for all $x \in X_{1}$ and $y_{1}^{\prime} \in Y_{1}^{\prime}$. Obviously $\bar{S}_{0} x=\bar{S}_{1} x$ for $x \in X_{0} \cap X_{1}$. We simply set $T x=\bar{S}_{0} x_{0}+\bar{S}_{1} x_{1}$ for $x=x_{0}+x_{1}$, where $x_{i} \in X_{i}, i=0,1$, and show that $T x$ is independent of the choice of the decomposition $x=x_{0}+x_{1}$. Since $\bar{S}_{i}: X_{i} \rightarrow Y_{i}$ ($i=0,1$) are positive operators, so $T \in \mathcal{L}_{+}(\boldsymbol{X}, \boldsymbol{Y})$. By (6) and (7), we see that $T \in \mathcal{L}_{r}(\boldsymbol{X}, \boldsymbol{Y})$ and $T_{X_{0}}^{\prime}=\bar{S}_{0}^{\prime}=R_{Y_{0}^{\prime}}, T_{X_{1}}^{\prime}=\bar{S}_{1}^{\prime}=R_{Y_{1}^{\prime}}$. From Proposition 3.1, we get that there exists an operator $T^{\prime} \in \mathbb{C}\left(\mathbf{Y}^{\prime}, \mathbf{X}^{\prime}\right)$, such that $T^{\prime} y^{\prime}=T_{X_{0}}^{\prime} y_{0}^{\prime}+T_{X_{1}}^{\prime} y_{1}^{\prime}$ for $y^{\prime}=y_{0}^{\prime}+y_{1}^{\prime}$ with $y_{i}^{\prime} \in Y_{i}^{\prime}(i=0,1)$. To finish the proof note that $T^{\prime} y^{\prime}=R_{Y_{0}^{\prime}} y_{0}^{\prime}+R_{Y_{1}^{\prime}} y_{1}^{\prime}=$ $R\left(y_{0}^{\prime}+y_{1}^{\prime}\right)=R y^{\prime}$ for all $y^{\prime} \in Y_{0}^{\prime}+Y_{1}^{\prime}$. Consequently $T^{\prime}=R$.
(b) Modyfing the proof of (a), we obtain easily the proof of (b).

Proposition 3.4. - Let X and Y be Banach function spaces intermediate with respect to \boldsymbol{X} and \mathbf{Y}, respectively. If $(X, Y) \in \operatorname{Int}(\mathbf{X}, \mathbf{Y})$ and $T \in \mathcal{L}_{r}(\boldsymbol{X}, \boldsymbol{Y})$, then $\left.T^{\prime}\right|_{Y^{\prime}}$ is a bounded linear operator from Y^{\prime} into X^{\prime}.

Proof. - Let $x \in X_{0} \cap X_{1}$ and $y^{\prime}=y_{0}^{\prime}+y_{1}^{\prime}$, with $y_{0}^{\prime} \in Y_{0}^{\prime}, y_{1}^{\prime} \in Y_{1}^{\prime}$. Then by the construction of the operator $T^{\prime} \in \mathcal{L}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$ (see Proposition 3.1) we have

$$
\begin{array}{r}
\left\langle T_{X} x, y^{\prime}\right\rangle=\left\langle T_{X} x, y_{0}^{\prime}+y_{1}^{\prime}\right\rangle=\left\langle T_{X} x, y_{0}^{\prime}\right\rangle+\left\langle T_{X} x, y_{1}^{\prime}\right\rangle=\left\langle T_{X_{0}} x, y_{0}^{\prime}\right\rangle+\left\langle T_{X_{1}} x, y_{1}^{\prime}\right\rangle= \\
=\left\langle x, T_{X_{0}}^{\prime} y_{0}^{\prime}\right\rangle+\left\langle x, T_{X_{1}}^{\prime} y_{1}^{\prime}\right\rangle=\left\langle x, T_{X_{0}}^{\prime} y_{0}^{\prime}+T_{X_{1}}^{\prime} y_{1}^{\prime}\right\rangle=\left\langle x, T^{\prime} y^{\prime}\right\rangle
\end{array}
$$

Thus $\left\langle T_{X} x, y^{\prime}\right\rangle=\left\langle x, T_{Y^{\prime}} y^{\prime}\right\rangle$ for all $x \in X_{0} \cap X_{1}$ and $y^{\prime} \in Y^{\prime}$, by $Y^{\prime} \subset Y_{0}^{\prime}+Y_{1}^{\prime}$. Since $X_{0} \cap X_{1}$ is an ideal it follows from the Hölder inequality that

$$
\begin{aligned}
\left\|T^{\prime} y^{\prime}\right\|_{X^{\prime}}=\sup \left\{\left|\left\langle x, T^{\prime} y^{\prime}\right\rangle\right|\right. & \left.:\|x\|_{x} \leqslant 1, x \in X_{0} \cap X_{1}\right\}= \\
& =\sup \left\{\left|\left\langle T_{X} x, y^{\prime}\right\rangle\right|:\|x\|_{X} \leqslant 1, x \in X_{0} \cap X_{1}\right\} \leqslant\|T\|_{X \rightarrow Y}\left\|y^{\prime}\right\|_{Y^{\prime}}
\end{aligned}
$$

Theorem 3.5. - Let a Banach couple $\boldsymbol{Y}=\left(Y_{0}, Y_{1}\right)$ be such that the norm of $Y_{0}^{\prime}+Y_{1}^{\prime}$ is continuous.
(a) If $Y_{i}^{\prime \prime}=Y_{i}(i=0,1)$ and $(X, Y) \in \operatorname{Int} t_{+}(\mathbf{X}, \mathbf{Y})$, then $\left(Y^{\prime}, X^{\prime}\right) \in \operatorname{Int} t_{+}\left(\mathbf{Y}^{\prime}, \mathbf{X}^{\prime}\right)$.
(b) If $X_{0} \cap X_{1}$ is dense in $X_{i}(i=0,1), Y_{0}^{\prime \prime} \cap Y_{1}^{\prime \prime}=Y_{0} \cap Y_{1}$, the norms of Y_{i} are semi-continuous $(i=0,1)$ and $(X, Y) \in \operatorname{Int}(\mathbf{X}, \boldsymbol{Y})$, then $\left(Y^{\prime}, X^{\prime}\right) \in \operatorname{Int}\left(\mathbf{Y}^{\prime}, \mathbf{X}^{\prime}\right)$.

The proof is clear by virtue of Theorem 3.3 and Proposition 3.4.
Corollary 3.6. - Let $X_{i}^{i \prime}=X_{i}, Y_{i}^{\prime \prime}=Y_{i} i=0,1$ and let the norms of $X_{0}+X_{1}$ and $Y_{0}^{\prime}+Y_{1}^{\prime}$ be continuous.
(a) If $(X, Y) \in \operatorname{Int}(\mathbf{X}, \boldsymbol{Y})$, then $\left(X^{\prime \prime}, \boldsymbol{X}^{\prime \prime}\right) \in \operatorname{Int}(\mathbf{X}, \boldsymbol{Y})$.
(b) If $X^{\prime \prime}=X$ and $Y^{\prime \prime}=Y$, then $(X, Y) \in \operatorname{Int}(\mathbf{X}, \boldsymbol{Y})$ if and only if $\left(Y^{\prime}, X^{\prime}\right) \in \operatorname{Int}\left(\mathbf{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$.

Proof. - Since $X_{0} \cap X_{1}$ is an ideal and the norm of $X_{0}+X_{1}$ is continuous, so $X_{0} \cap X_{1}$ is dense in $X_{0}+X_{1}$. In consequence $X_{0} \cap X_{1}$ is dense in both X_{0} and X_{1} (see [2]). Similarly we get that $Y_{0}^{\prime} \cap Y_{1}^{\prime}$ is dense in $Y_{i}^{\prime}(i=0,1)$. Thus, Corollary follows easily from Proposition 3.2 and Theorem 3.5 (b).

Remark. - In general $X^{\prime} \in \operatorname{Int}\left(X_{0}^{\prime}, X_{1}^{\prime}\right)$ does not imply $X \in \operatorname{Int}\left(X_{0}, X_{1}\right)$. Namely, let $L^{1}=L^{1}(0, \infty), L^{\infty}=L^{\infty}(0, \infty)$. Russu has given an example of a symmetric space X on $(0, \infty)$ such that $X \notin \operatorname{Int}\left(L^{1}, L^{\infty}\right)$ (see [10], Theorem 5.11). Since the norm of a symmetric space X^{\prime} has the Fatou property, so $X^{\prime} \in \operatorname{Int}\left(L^{\infty}, L^{1}\right)=$ $=\operatorname{Int}\left(\left(L^{1}\right)^{\prime},\left(L^{\infty}\right)^{\prime}\right)$ (see [10], Theorem 4.9, p. 142).

In the remainder we need the following
Proposition 3.7. - Let X be a Banach function space in $L^{0}(\Omega, \mu)$. If $Y \subset X$ is a linear ideal in L^{0} with $\operatorname{supp} Y=\operatorname{supp} X=\Omega$, then $\left(\bar{Y}^{X}\right)^{\prime}=X^{\prime}$ with equality of norms.

Proof. - Let $E=\bar{Y}^{x}$. Obviously E is a Banach function space and $X^{\prime} \subset E^{\prime}$ with $\left\|x^{\prime}\right\|_{x^{\prime}} \leqslant\left\|x^{\prime}\right\|_{x^{\prime}}$ for all $x^{\prime} \in X^{\prime}$. Now let $x^{\prime} \in E^{\prime}$, then

$$
\begin{equation*}
\langle | y\left|,\left|x^{\prime}\right|\right\rangle<\infty \tag{8}
\end{equation*}
$$

for all $y \in E$. Let $x \in X$. Since Y is a linear ideal in L^{0}, so there exists a sequence $\left(y_{n}\right) \subset Y$ such that $0 \leqslant y_{n} \uparrow|x| \mu$-a.e. Hence by (8)

$$
\int_{\Omega}\left|x^{\prime}\right| y_{n} d \mu \leqslant\left\|x^{\prime}\right\|_{E^{\prime}}\left\|y_{n}\right\|_{E}=\left\|x^{\prime}\right\|_{E^{\prime}}\left\|y_{n}\right\|_{X \leqslant} \leqslant x^{\prime}\left\|_{E^{\prime}}\right\| x \|_{X}
$$

and consequently, by Levy's Lemma $\langle | x\left|,\left|x^{\prime}\right|\right\rangle \leqslant\left\|x^{\prime}\right\|_{z^{\prime}}\|x\|_{x}<\infty$. Thus $x^{\prime} \in X^{\prime}$ and $\left\|x^{\prime}\right\|_{X^{\prime}} \leqslant\left\|x^{\prime}\right\|_{E^{\prime}}$ and the proof is finished.

From Theorem 3.5 and Proposition 3.7 we obtain the following
Corollary 3.8. - Let a couple $\mathbf{Y}=\left(Y_{0}, Y_{1}\right)$ be such that the norm of $Y_{0}^{\prime}+Y_{1}^{\prime}$ is continuous, $Y_{0}^{\prime \prime} \cap Y_{1}^{\prime \prime}=Y_{0} \cap Y_{1}$ and the norms of Y_{i} are semi-continuous $(i=0,1)$. $\operatorname{If}(X, \boldsymbol{Y}) \in \operatorname{Int}(\boldsymbol{X}, \boldsymbol{Y})$ implies $\left(X^{0}, Y^{0}\right) \in \operatorname{Int}\left(\mathbf{X}^{0}, \boldsymbol{Y}^{0}\right)$, then $\left(Y^{\prime}, X^{\prime}\right) \in \operatorname{Int}\left(\mathbf{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$.

The next result is a consequence of Corollary 3.6 and Ogasawara's Theorem (see [1], Theorem 14.22, p. 240) from which it follows that a Banach function space E is reflexive if and only if the norms of E and E^{\prime} are continuous and $E^{\prime \prime}=E$.

Corollary 3.9. - Let X_{0} and X_{1} be reflexive Banach function spaces. Then $X \in$ $\in \operatorname{Int}\left(X_{0}, X_{1}\right)$ if and only if $X^{\prime} \in \operatorname{Int}\left(X_{0}^{\prime}, X_{1}^{\prime}\right)$.

4. - Interpolation in special Banach function spaces.

In this section we give applications of our results to concrete function Banach spaces. Let \boldsymbol{A} be a couple of Banach spaces. Denote by L^{∞}, respectively $L_{1 / s}^{\infty}$, the space of all measurable functions x on \mathbb{R}_{+}such that $|x(s)|$, respectively $|x(s)| / s$, is essentially bounded. Put $L^{\infty}=\left(L^{\infty}, L_{1 / s}^{\infty}\right)$. For any Banach function space Φ intermediate with respect to L^{∞}, the real interpolation space (or K space) \boldsymbol{A}_{Φ} is defined to consist of all $a \in A_{0}+A_{1}$ such that $K(\cdot, a ; A) \in \Phi$, with the norm $\|a\|_{A_{\Phi}}=$ $=\|K(\cdot, a ; A)\|_{\Phi}$, where for $a \in A_{0}+A_{1}$ and $t>0$

$$
K(t, a ; A)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{2}}: a=a_{0}+a_{1}, a_{0} \in A_{0}, a_{1} \in A_{1}\right\}
$$

is the K-functional of Peetre.

Let \boldsymbol{A} and \boldsymbol{B} be two Banach couples. We say that \boldsymbol{A} has the Calderón property relative to \boldsymbol{B} if the condition

$$
K(t, b ; \boldsymbol{B}) \leqslant K(t, a ; \boldsymbol{A}) \quad \text { for all } t>0
$$

implies the existence of an operator $T \in \mathcal{C}(\boldsymbol{A}, \boldsymbol{B})$ (whose norm depends only on the couples \boldsymbol{A} and \boldsymbol{B}) such that $T a=b$.

Theorem 4.1. - Let $\boldsymbol{X}=\left(X_{0}, X_{1}\right)$ and $\boldsymbol{Y}=\left(Y_{0}, Y_{1}\right)$ be Banach function spaces and let \boldsymbol{Y} be such that $Y_{0}^{\prime}+Y_{1}^{\prime}$ has continuous norm, $Y_{0}^{\prime \prime} \cap Y_{1}^{\prime \prime}=Y_{0} \cap Y_{1}$ and the norms of Y_{i} are semi-continuous $(i=0,1)$. If $E \subset \boldsymbol{X}_{\Phi}$ and $F \supset \boldsymbol{Y}_{\Phi}$ are Banach function spaces intermediate with respect to \boldsymbol{X} and \boldsymbol{Y}, respectively, then $\left(F^{\prime}, E^{\prime}\right) \in \operatorname{Int}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$. In particular, if \boldsymbol{X} has the Calderón property relative to \boldsymbol{Y} and $(X, Y) \in \operatorname{Int}(\boldsymbol{X}, \boldsymbol{Y})$, then $\left(\bar{Y}^{\prime}, X^{\prime}\right) \in \operatorname{Int}\left(\boldsymbol{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$.

Proof. - First we note that $(E, F) \in \operatorname{Int}(\mathbf{X}, \boldsymbol{Y})$. Since $K\left(t, a ; A_{0}^{0}, A_{1}^{0}\right)=K(t, a ;$ A_{0}, A_{1}) for all $a \in\left(A_{0}+A_{1}\right)^{0}=A_{0}^{0}+A_{1}^{0}$, so $E^{0} \subset\left(X_{0}, X_{1}\right)_{\Phi}^{0}=\left(X_{0}^{0}, X_{1}^{0}\right)_{\Phi}^{0}$ and $F^{0} \supset$ $\supset\left(Y_{0}, Y_{1}\right)_{\Phi}^{0}=\left(Y_{0}^{0}, Y_{1}^{0}\right)_{\Phi}^{0}$. Hence $\left(E^{0}, F^{0}\right) \in \operatorname{Int}\left(\mathbf{X}^{0}, \mathbf{Y}^{0}\right)$ and consequently $\left(F^{\prime}, E^{\prime}\right) \in$ $\in \operatorname{Int}\left(\mathbf{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$, by Corollary 3.9.

If \boldsymbol{X} has the Calderón property relative to \boldsymbol{Y} and $(X, Y) \in \operatorname{Int}(\boldsymbol{X}, \mathbf{Y})$, then there exists a Banach function space $\Phi \in \operatorname{Int} \boldsymbol{L}^{\infty}$ such that $X \subset \boldsymbol{X}_{\Phi}$ and $Y \supset \boldsymbol{Y}_{\Phi}$ (see [4, 15]). Thus the proof of the theorem is complete.

It is well known (see $[5,7,16,18]$) that the couple ($L^{p_{1}}, L^{p_{0}}$) has the Calderon property relative to ($L^{q_{0}}, L^{q_{1}}$), where $1 \leqslant p_{0} \leqslant q_{0} \leqslant \infty$ and $1 \leqslant p_{1} \leqslant q_{1} \leqslant \infty$. Thus, by Theorem 4.1 we get the following

Comollary 4.2.- Let $\boldsymbol{X}=\left(L^{p_{0}}, L^{p_{1}}\right)$ and $\boldsymbol{Y}=\left(L^{q_{0}}, L^{q_{0}}\right), 1 \leqslant p_{0} \leqslant q_{0}<\infty, 1 \leqslant p_{1} \leqslant$ $\leqslant q_{1}<\infty, q_{0}, q_{1} \neq 1$. If $(X, Y) \in \operatorname{Int}(\mathbf{X}, \mathbf{Y})$, then $\left(Y^{\prime}, X^{\prime}\right) \in \operatorname{Int}\left(\left(L^{a_{0}^{\prime}}, L^{\alpha_{1}^{\prime}}\right),\left(L^{p_{0}^{\prime}}, L^{p_{1}^{\prime}}\right)\right)$, where $1 / p_{i}+1 / p_{i}^{\prime}=1 / q_{i}+1 / q_{i}^{\prime}=1 \quad(i=0,1)$.

If a Banach function space $\Phi \in$ Int \boldsymbol{L}^{∞} satisfies some conditions, then it is possible to show that for any couples of Banach function spaces \boldsymbol{X} and \boldsymbol{Y} we have $\left(\boldsymbol{Y}^{\prime}, X^{\prime}\right) \in \operatorname{Int}\left(\mathbf{Y}^{\prime}, \boldsymbol{X}^{\prime}\right)$, where $X \subset \boldsymbol{X}_{\Phi}$ and $\boldsymbol{Y} \supset \boldsymbol{Y}_{\Phi}$ are Banach function spaces intermediate with respect to X and \boldsymbol{Y}, respectively. Namely, let Φ^{1} be the dual space to Φ under bilinear form

$$
(f, g)=\int_{\mathbb{R}_{+}} f(t) g\left(\frac{1}{t}\right) \frac{d t}{t}
$$

By J_{Ψ} we denote the $J_{\text {-method of interpolation (see }[3,4,6] \text {, for more details). Thus }}$ the above assertion follows from the following theorem (see [14])

THEOREM 4.3. - Assume that $\left(X_{0}, X_{1}\right)$ is a couple of Banach function spaces. If a Banach function space $\Phi \in \operatorname{Int} L^{\infty}$ is such that $\Phi \cap L^{\infty} \neq L^{\infty} \cap L_{1 / s}^{\infty}$ and $\Phi \cap L_{1 / s}^{\infty} \neq$ $\neq L^{\infty} \cap L_{1 / s}^{\infty}$, then $\left(X_{0}, X_{1}\right)_{\Phi}^{\prime}=J_{\Phi_{1}}\left(X_{0}^{\prime}, X_{1}^{\prime}\right)$.

Before proving the next result we recall that the Marcinkiewicz space M_{φ} on the interval $I=(0, l), 0<l \leqslant \infty$, with Lebesgue measure, is defined by

$$
M_{\varphi}=\left\{x \in L^{0}:\|x\|_{\varphi}=\sup _{0<t<l}\left(\frac{1}{\varphi(t)} \int_{0}^{t} x^{*}(s) d s\right)<\infty\right\}
$$

where the function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is quasi-concave $(\varphi(s) \leqslant \max \{1, s / t\} \varphi(t)$ for all $s, t \in \mathbb{R}_{+}$) and x^{*} is the nonincreasing rearrangement of the function x. It is well known (see [10]) that if $\varphi\left(0_{+}\right)=0$, then the Köthe dual of M_{φ} is the Lorentz space defined by

$$
\Lambda_{\varphi}=\left\{x \in L^{0}:\|x\|_{A_{\varphi}}=\int_{0}^{l} x^{*}(s) d \varphi(s)<\infty\right\}
$$

moreover $M_{\varphi}^{\prime \prime}=M_{\varphi}$. It is easy to verify that if $l<\infty(l=\infty)$, then Λ_{φ} has continuous norm if and only if $\varphi(0+)=0(\varphi(0+)=0$ and $\varphi(\infty)=\infty)$. In what follows we assume that $\varphi(0+)=0$ and $\varphi(\infty)=\infty$ if $l=\infty$. Now we apply the Theorem 4.1 to obtain the following result (cf. [11, 17]).

Theorem 4.4. - $\left(\Lambda_{\varphi}, \Lambda_{\psi}\right) \in \operatorname{Int}\left(\left(\Lambda_{\varphi_{0}}, \Lambda_{\varphi_{1}}\right),\left(\Lambda_{\psi_{0}}, \Lambda_{\psi_{1}}\right)\right)$ if and only if there exists a constant $c>0$ such that for all $s, t \in I$

$$
\begin{equation*}
\frac{\psi(t)}{\varphi(s)} \leqslant c \max \left\{\frac{\psi_{0}(t)}{\varphi_{0}(s)}, \frac{\psi_{1}(t)}{\varphi_{1}(s)}\right\} \tag{9}
\end{equation*}
$$

Proof. - The inequality (9) is equivalent to the following condition (see [11, 13]): $\psi(t) \leqslant \psi_{0}(t) f\left(\psi_{1}(t) / \psi_{0}(t)\right), \varphi_{0}(t) f\left(\varphi_{1}(t) / \varphi_{0}(t)\right) \leqslant c \varphi(t)$ for some quasi-concave function f, $c>0$ and all $t \in I$. Hence, applying the reiteration theorem (see [4]), we obtain

$$
M_{\varphi} \subset M_{\varphi_{0} f\left(\varphi_{1} / \varphi_{0}\right)}=\left(M_{\varphi_{0}}, M_{\varphi_{1}}\right)_{\Phi}
$$

and

$$
M_{\psi} \supset M_{\psi_{0} f\left(\psi_{1} / \psi_{0}\right)}=\left(M_{\psi_{0}}, M_{\psi_{1}}\right)_{\Phi}
$$

where $\Phi=I_{1 / f}^{\infty}$. Since $\Lambda_{\psi_{0}}+\Lambda_{\psi_{1}}=\Lambda_{\min \left(\psi_{0}, \psi_{1}\right)}$, we have $M_{\psi_{0}}^{\prime}+M_{\psi_{1}}^{\prime}=\Lambda_{\min \left(\psi_{0}, \psi_{1}\right)}$ and so Theorem 4.1 applies. A necessary condition (9) is well known to be a necessary condition for the interpolation of symmetric spaces (see [11]).

REFERENCES

[1] C. D. Aliprantis - O. Burkinshaw, Positive Operators, New York, Academic Press (1985).
[2] N. Aronszajn - E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Math. Pure Appl., 68 (1965), pp. 51-118.
[3] J. Bergh - J. Löfström, Interpolation spaces. An introduction, Grundlehren der mathematischen Wissenschaften, 223, Springer, Berlin - Heidelberg - New York (1976).
[4] Ju. A. Brudnyi - N. Ja. Krugljak, Real interpolation functors, Soviet Math. Dokl., 23 (1981), pp. 5-8.
[5] M. CwIked, Monotonicity properties of interpolation spaces, Ark. Mat., 14 (1976), pp. 213-236.
[6] M. Cwikel - J. Peetre, Abstract K and J spaces, J. Math. Pures et Appl., 60 (1981), pp. 1-50.
[7] V. I. Dmitriev, On interpolation of operators in L_{p} spaces, Soviet Math. Dokl., 24. (1981), pp. 373-376.
[8] JU. I. Gribanov, Banach function spaces and integral operators, $I I$, Izv. Vyssh. Uchebn. Zaved. Mat., 2 (55) (1966), pp. 54-63 (Russian).
[9] L. V. Kantorovič - G. P. Akilov, Funational Analysis, Moscow, Nauka, 1977 (Russian).
[10] S. G. Krein - Ju. I. Petunin - E. M. Semenov, Interpolation of linear operators, Moscow, Nauka, 1978 (Russian, English transl. AMS, Providence, 1982).
[11] G. G. Lorentz - T. Shimogaki, Interpolation theorems for operators in function spaces, J. Functional Analysis, 2 (1968), pp. 31-51.
[12] G. Ja. Lozanovskir̆, Transformations of ideal Banach spaces by means of coneave functions, in: Qualitative and approximate methods for investigation of operator equations, Yaroslavl (1978), pp. 122-148 (Russian).
[13] M. Mastyeo, Interpolation of linear operators in Calderón-Lozanovskĭ spaces, Comment. Math. Prace Mat., 26 (1986), pp. 247-256.
[14] M. Mastyøo, The universal right K-property for some interpolation spaces, Studia Math., 90 (1988), pp. 117-128.
[15] P. Nilsson, Interpolation of Calderón and Ovčinnikov pairs, Ann. Mat. Pura Appl., 134 (1983), pp. 201-232.
[16] V. I. Ovchinnizov, The method of orbits in interpolation theory, Math. Reports, 1 (1984), pp. 349-515.
[17] R. Sharplex, Interpolation of operators for A spaces, Bull. Amer. Math. Soc., 80 (1974), pp. 259-261.
[18] G. Spark, Interpolation of weighted L_{p}-spaces, Studia Math., 62 (1978), pp. 229-271.
[19] A. G. Zanen, Integration, Amsterdam, North-Holland, 1967.

[^0]: (*) Entrata in Redazione il 5 novembre 1987.
 Indirizzo dell'A.: Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland,

