Annali di Matematica pura ed applicata (IV), Vol. CLIV (1989), pp. 231-242

Interpolation of Linear Operators in the Köthe Dual Spaces (*).

MIECZYSŁAW MASTYŁO

Summary. – In this paper we investigate when the Köthe dual spaces Y' and X' are interpolation spaces with respect to couples of the Köthe dual spaces (Y'_0, Y'_1) and (X'_0, X'_1) , respectively, where X and Y are interpolation spaces with respect to given couples (X_0, X_1) and (Y_0, Y_1) of Banach function spaces.

1. – Introduction.

A pair $A = (A_0, A_1)$ of Banach spaces is called a *Banach couple* if A_0 and A_1 are both continuously imbedded in some Hausdorff topological vector space V.

For a Banach couple $A = (A_0, A_1)$ we can form the sum $A_0 + A_1$ and the *intersection* $A_0 \cap A_1$. They are both Banach spaces in the natural norms $||a||_{A_0+A_1} = \inf \{ ||a_0||_{A_0} + ||a_1||_{A_1} : a = a_0 + a_1, a_0 \in A_0, a_1 \in A_1 \}$ for $a \in A_0 + A_1$ and $||a||_{A_0 \cap A_1} = \max (||a||_{A_0}, ||a||_{A_0})$ for $a \in A_0 \cap A_1$.

A Banach space A is called an *intermediate space* between A_0 and A_1 (or with respect to A) if $A_0 \cap A_1 \subset A \subset A_0 + A_1$ with continuous inclusions. For brevity, the closure of $A_0 \cap A_1$ in A will be denoted by A^0 . We write $A^0 = (A_0^0, A_1^0)$ for a Banach couple A. If $A^0 = A$, A is called a *regular couple* and then the dual spaces A_0^* and A_1^* may be regarded as subspaces of $(A_0 \cap A_1)^*$. So (A_0^*, A_1^*) is a Banach couple which we denote by A^* . Since $(A_0 + A_1)^* = A_0^* \cap A_1^*$ and $(A_0 \cap A_1)^* = A_0^* + A_1^*$ isometrically (see [2]), so if A is any intermediate space with respect to A, such that $A_0 \cap A_1$ is dense in A, then A^* is an intermediate space with respect to A^* .

In the theory of interpolation spaces Banach function spaces are importance. We recall some fundamental notation.

Let (Ω, μ) be a measure space with μ complete and σ -finite. We denote by $L^{\circ} = L^{\circ}(\Omega, \mu)$ the space of all equivalence classes of μ -measurable real valued functions defined and finite μ -a.e. on Ω , equipped with the topology of convergence in measure on μ -finite sets.

A linear subspace X of L^0 is called an *ideal* (in L^0) if $|x| \leq |y|$ μ -a.e. for $x \in L^0$ and $y \in X$ imply $x \in X$. Note that every ideal X in L^0 with supp $X = \Omega$ (supp X is the smallest measurable set outside of which all functions in X are equal to zero)

^(*) Entrata in Redazione il 5 novembre 1987.

Indirizzo dell'A.: Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland.

is super order dense in L^0 , i.e., for every $0 \le x \in L^0$ there exists a sequence $(x_n) \subset X$ such that $0 \le x_n \land x$, μ -a.e. (see [9], Lemma 1, p. 138).

We say that an ideal X in L^0 is a Banach function space (on (Ω, μ)) if X is a Banach space with the property $|x| \leq |y|$ μ -a.e. for $x, y \in X$ implies $||x||_x \leq ||y||_x$. Hence, it follows that if X_0 and X_1 are any two Banach function spaces (on (Ω, μ)) then $X = (X_0, X_1)$ forms a Banach couple.

We say that the norm $\|\cdot\|_x$ of a Banach function space X is continuous if $x_n \in X$, $0 \leq x_n \downarrow 0$, imply $\|x_n\|_X \to 0$, semi-continuous if $0 \leq x_n \uparrow x$, $x \in X$, imply $\|x_n\|_X \to \|x\|_X$, monotone complete if $0 \leq x_n \uparrow x$ and $\sup_{n \geq 1} \|x_n\|_X < \infty$, imply $x \in X$. If the norm of X is semi-continuous and monotone complete, then we say that it has the Fatou property.

The Köthe dual space (or associate space) X' of X is defined by

$$X' = \{x' \in L^0: \operatorname{supp} x' \subset \operatorname{supp} X, \langle |x|, |x'| \rangle < \infty \text{ for all } x \in X\},\$$

where $\langle x, x' \rangle = \int_{\Omega} x x' \, d\mu$ for $(x, x') \in X \times X'$.

The space X' is a Banach function space on (Ω, μ) with the norm

$$\|x'\|_{\mathfrak{X}'} = \sup \{|\langle x, x' \rangle| \colon \|x\|_{\mathfrak{X}} \leq 1\},\$$

whence follows the Hölder inequality

$$|\langle x, x' \rangle| \leq ||x||_{\mathcal{X}} ||x'||_{\mathcal{X}'}$$
.

In the remainder we assume that supp $X = \Omega$.

We note the useful remark that if X is a Banach function space, then by the super order density of any ideal Y with supp Y = supp X in L^0 and Lebesgue dominated convergence theorem we get

$$\|x'\|_{X'} = \sup \{ |\langle x, x' \rangle| \colon \|x\|_{X} \leq 1, \ x \in Y \}$$

for all $x' \in X'$.

For a given Banach couple $X = (X_0, X_1)$ of Banach function spaces (X'_0, X'_1) is a Banach couple which we denote by X'.

It is well known that if X is a Banach function space, then $||x||_{X'} = ||x||_X$ for $x \in X$, when the norm $|| \cdot ||_X$ is semi-continuous. Moreover X = X'' and $||x||_X = ||x||_{X''}$ if and only if the norm of X has the Fatou property (see [9, 19]). In particular the norm of X' has the Fatou property.

Let $A = (A_0, A_1)$ and $B = (B_0, B_1)$ be two Banach couples. We denote by $\mathfrak{L}(A, B)$ the Banach space of all linear operators $T: A_0 + A_1 \rightarrow B_0 + B_1$ such that the restriction of T to the space A_i is a bounded operator from A_i into B_i , i = 0, 1,

with the norm

$$||T||_{\mathfrak{L}(A,B)} = \max\{||T||_{A_0 \to B_0}, ||T||_{A_1 \to B_1}\}.$$

We say that intermediate spaces A and B (with respect to A and B, respectively) are *interpolation spaces* with respect to A and B and we write $(A, B) \in int(A, B)$ if every operator from $\mathfrak{L}(A, B)$ maps A into B. It is a consequence of the closed graph theorem that, then the restriction of T to A is a bounded operator from A into B and

$$\|T\|_{A\to B} \leqslant C \|T\|_{\mathfrak{L}(A,B)}$$

for some positive constant C independent of $T \in \mathcal{L}(A, B)$.

If A coincides with B, then A is called an interpolation space with respect to A and B and we write $A \in Int(A, B)$; if, moreover, $A_0 = B_0$ and $A_1 = B_1$, then A is called an interpolation space between A_0 and A_1 (or with respect to A), and we write $A \in Int A$.

In [2] ARONSZAJN and GAGLIARDO showed that if A is a regular Banach couple such that $A_0 \cap A_1$ is a reflexive space and $A \in Int A$ with $A_0 \cap A_1$ dense in A, then A^* is an interpolation space between A_0^* and A_1^* . In this paper we investigate when $(Y', X') \in Int(Y', X')$ if we know that $(X, Y) \in Int(X, Y)$, where X and Y are function Banach spaces intermediate with respect to given couples $X = (X_0, X_1)$ and $Y = (Y_0, Y_1)$ of Banach function spaces, respectively.

2. - Regular operators. Basic properties.

Let $X \subset L^0(\Omega_1, \mu_1)$ and $Y \subset L^0(\Omega_2, \mu_2)$ be Banach function spaces. We say that the operator $T: X \to Y$ is *regular* if there exists the operator $T': Y' \to X'$ (which we called the *(order) adjoint* of T) such that

$$\langle Tx, y' \rangle = \langle x, T' y' \rangle$$

for all $x \in X$ and $y' \in Y'$. Note that if the operator $T: X \to Y$ is regular, then T is linear, moreover if T is bounded, then by Hölder inequality we get that T' is a bounded operator and $||T'||_{Y' \to X'} \leq ||T||_{X \to Y}$.

Now we give a useful theorem which characterizes regular operators. First of all, let X be a Banach function space. Let Γ denote the set of all linear continuous functionals defined on the space X by

$$\Gamma = \{f_{x'} : f_{x'}(x) = \langle x, x' \rangle, \ x' \in X'\} \ .$$

It is easy to see that Γ is a total linear set of the dual space X^* , so on the space X we can define the Γ -topology (which we denote by $\sigma(X, X')$) generated by the family of semi-norms $\{p_{x'}: x' \in X'\}$, where $p_{x'}(x) = |f_{x'}(x)|$.

THEOREM 2.1. – Let X and Y be Banach function spaces. An operator $T: X \to Y$ is regular if and only if the following condition holds

(1)
$$x_n \to x \text{ in } \sigma(X, X'), \quad \text{imply} \quad Tx_n \to Tx \text{ in } \sigma(Y, Y').$$

PROOF. – Assume that an operator $T: X \to Y$ is regular. Then there exists an operator $T': Y' \to X'$ such that $\langle Tx, y' \rangle = \langle x, T'y' \rangle$ for all $x \in X$ and $y' \in Y'$. Let $x_n \to x$ in $\sigma(X, X')$, i.e. $\langle x_n, x' \rangle \to \langle x, x' \rangle$ for all $x' \in X'$. Thus

$$\langle Tx_n, y' \rangle = \langle x_n, T'y' \rangle \rightarrow \langle x, T'y' \rangle = \langle Tx, y' \rangle$$

for all $y' \in Y'$, whence $Tx_n \to Tx$ in $\sigma(Y, Y')$.

For the converse suppose that an operator $T: X \to Y$ satisfies the condition (1). Take a sequence (x_n) in X with $|x_n| \leq x, x \in X$ and $x_n \to 0$ a.e. Then $x_n \to 0$ in $\sigma(X, X')$, by Lebesgue dominated convergence theorem. Now, if we set $f_{y'}(x) = \langle Tx, y' \rangle$ for each $x \in X$, where $y' \in Y'$, we see that $f_{y'}(x_n) \to 0$ for each $y' \in Y'$ (by $Tx_n \to 0$ in $\sigma(Y, Y')$). It follows that $f_{y'}$ is an order continuous linear functional on X for each $y' \in Y'$. Therefore, there exists (exactly one) element $x' \in X'$ such that $f_{y'}(x) = \langle x, x' \rangle$ for all $x \in X$ (see [9]). Now it is enough to observe that if we set T'y' = x', then the map $T': Y' \to X'$ is linear and $f_{y'}(x) = \langle x, T'y' \rangle$. Thus $\langle Tx, y' \rangle = \langle x, T'y' \rangle$ for all $x \in X$ and $y' \in Y'$, so the operator T is regular.

COROLLARY 2.2. – Let X and Y be Banach function spaces. If the operator $T: X \rightarrow Y$ is regular and the norm of Y is semi-continuous, then T is bounded.

PROOF. - Let $x_n \to x$ in X. Then $x_n \to x$ in $\sigma(X, X')$, by the Hölder inequality. Since the operator $T: X \to Y$ is regular, it follows that for each $y' \in Y'$

(2)
$$|\langle Tx_n, y' \rangle| \to |\langle Tx, y' \rangle|$$
 as $n \to \infty$,

by Theorem 2.1.

234

Now let $\varepsilon > 0$. By semi-continuity of the norm $\|\cdot\|_{r}$, we have

$$||Tx||_{r} = \sup \{|\langle Tx, y' \rangle| : ||y'||_{r'} \leq 1\}.$$

Then the inequality

$$||Tx||_{\mathbf{Y}} < |\langle Tx, y_0' \rangle| + \varepsilon/2$$

holds for some $y'_0 \in Y'$ with $||y'_0||_{Y'} \leq 1$. Since there exists an $n_0 \in N$ with

$$|\langle Tx,\,y_{0}^{\prime}
angle|<|\langle Tx_{n},\,y_{0}^{\prime}
angle|+arepsilon/2$$

for all $n > n_0$, by (2), so from (3), we get

$$\|Tx\|_{\mathtt{Y}} < |\langle Tx_n, y_0' \rangle| + \varepsilon \leq \|Tx_n\|_{\mathtt{Y}} + \varepsilon$$

for all $n > n_0$. Since $\varepsilon > 0$ is arbitrary $||Tx||_{Y} \leq \liminf_{n \to \infty} ||Tx_n||_{Y}$ holds. Consequently, since T is linear our assertion follows from a well known fact that the linear operator S from a Banach space E into a normed space F is continuous if and only if $x_n \to x$ in E imply $||Sx||_{F} \leq \liminf ||Sx_n||_{F}$.

REMARK. – If X is a Banach function space, then the mapping $x' \mapsto f_{x'}$, where $f_{x'}(x) = \langle x, x' \rangle$ for $x \in X$ is a linear isometry from the Köthe dual X' of X onto X* if and only if X has continuous norm (see [9]). Hence, by applying Theorem 2.1, we obtain (cf. [8]) the following

THEOREM 2.3. – Let X and Y be Banach function spaces. A linear bounded operator from X into Y is regular if and only if X has continuous norm.

3. - Interpolation in the Köthe dual spaces.

Let X, Y be Banach function spaces. An operator $T: X \to Y$ is positive if $T(X^+) \subset Y^+$, where $X^+ = \{x \in X: x \ge 0\}$. Note that every additive operator $T_0: X^+ \to Y^+$ has a unique extension to a linear operator $T: X \to Y$. This extension is defined by the formula $T(x) = T_0(x^+) - T_0(x^-)$ (see [1], Theorem 1.7, p. 7). Note also that a positive linear operator $T: X \to Y$ is bounded (see [1], Theorem 12.3, p. 175).

Let $X = (X_0, X_1)$ and $Y = (Y_0, Y_1)$ be couples of Banach function spaces, then by $\mathfrak{L}_r(X, Y)$ we denote the subspace of all operators $T \in \mathfrak{L}(X, Y)$ such that the restrictions $T|_{X_i} := T_{X_i}$ are regular operators from X_i into Y_i , i = 0, 1. By $\mathfrak{L}_+(X, Y)$, we denote the set of all operators $T \in \mathfrak{L}(X, Y)$ such that $T_{X_i} : X_i \to Y_i$ (i = 0, 1)are positive operators.

If X and Y are Banach function spaces intermediate with respect to X and Y, respectively, then we write $(X, Y) \in Int_+(X, Y)$ if $TX \subset Y$ for all $T \in \mathfrak{L}_+(X, Y)$.

In this section we are interested in the problem, when $(Y', X') \in Int_+(Y', X')$ (Int(Y', X')) if we know that $(X, Y) \in Int_+(X, Y)(Int(X, Y))$. To answer this problem we need some propositions.

PROPOSITION 3.1. – Let $\mathbf{X} = (X_0, X_1)$ and $\mathbf{Y} = (Y_0, Y_1)$ be couples of Banach function spaces. If an operator $T \in \mathcal{L}_r(\mathbf{X}, \mathbf{Y})$, then there exists an operator $T' \in \mathcal{L}(\mathbf{Y}', \mathbf{X}')$ such that $T'|_{\mathbf{Y}'_i} = T'_{\mathbf{X}_i}$, where $T'_{\mathbf{X}_i}$ is the adjoint of $T_{\mathbf{X}_i}$, i = 0, 1.

PROOF (cf. [2]). – Let $T \in \mathbb{C}_r(X, Y)$, then there exist operators $T'_{X_i}: Y'_i \to X'_i$ such that $\langle T_{X_i} x_i, y'_i \rangle = \langle x_i, T'_{X_i} y'_i \rangle$ for all $x_i \in X_i$ and $y'_i \in Y'_i$, i = 0, 1. Hence

$$\langle x, T'_{X_s}y'
angle = \langle T_{X_s}x, y'
angle = \langle T_{X_s}x, y'
angle = \langle x, T'_{X_s}y'
angle$$

for all $x \in X_0 \cap X_1$ and $y' \in Y'_0 \cap Y'_1$. Thus $\langle x, T'_{X_0}y' - T'_{X_1}y' \rangle = 0$ for each $x \in X_0 \cap X_1$. This implies that $\|T'_{X_0}y' - T'_{X_1}y'\|_{(X_0 \cap X_1)'} = 0$ for all $y' \in Y'_0 \cap Y'_1$, so

 $T'_{X_0} = T'_{X_1}$ on $Y'_0 \cap Y'_1$. Now, if we define the operator $T' \colon Y'_0 + Y'_1 \to X'_0 + X'_1$, by $T'y' = T'_{X_0}y'_0 + T'_{X_1}y'_1$ for $y' = y'_0 + y'_1$ with $y'_i \in Y'_i$, i = 0, 1. Then simply T'y' is independent of the choice of the decomposition $y' = y'_0 + y'_1$. Obviously $T'|_{Y'_i} = T'_{X_i}$ (i = 0, 1) and $T' \in \mathfrak{L}(Y', X')$.

The following useful Proposition follows immediately from Theorem 3.1 in [12].

PROPOSITION 3.2. – Let (X_0, X_1) be a couple of Banach function spaces, then $(X_0 + X_1)' = X'_0 \cap X'_1$ and $(X_0 \cap X_1)' = X'_0 + X'_1$ with equality of norms.

In the remainder let $X = (X_0, X_1)$ and $Y = (Y_0, Y_1)$ be couples of Banach function spaces.

THEOREM 3.3. – Let a couple $Y = (Y_0, Y_1)$ be such that the norm of $Y'_0 + Y'_1$ is continuous.

(a) If $Y''_i = Y_i$ (i = 0, 1) and $R \in \mathcal{L}_+(\mathbf{Y}', \mathbf{X}')$, then there exists an operator $T \in \mathcal{L}_+(\mathbf{X}, \mathbf{Y})$ such that T' = R.

(b) If $X_0 \cap X_1$ is dense in X_i (i = 0, 1), $Y''_0 \cap Y''_1 = Y_0 \cap Y_1$, the norms of Y_i are semi-continuous (i = 0, 1) and $R \in \mathfrak{L}(Y', X')$, then there exists an operator $T \in \mathfrak{L}(X Y)$ such that T' = R.

PROOF. - (a) Let an operator $R \in \mathcal{L}_+(Y' X')$. Then $R: (Y_0 \cap Y_1)' \to (X_0 \cap X_1)'$, by Proposition 3.2. Since $Y'_0 + Y'_1 = (Y_0 \cap Y_1)'$ has a semi-continuous norm, it follows from Theorem 2.3 that the operator $R: (Y_0 \cap Y_1)' \to (X_0 \cap X_1)'$ is regular. Thus there exists a linear and bounded operator $S: (X_0 \cap X_1)' \to (Y_0 \cap Y_1)' =$ $= Y_0 \cap Y_1$ satisfying the equality $\langle Ry', x'' \rangle = \langle y', Sx'' \rangle$ for all $y' \in (Y_0 \cap Y_1)'$ and $x'' \in (X_0 \cap X_1)''$. Hence it follows that S is a positive operator and

(4)
$$\langle Ry', x \rangle = \langle y', Sx \rangle$$

for all $y' \in (Y_0 \cap Y_1)' = Y'_0 + Y'_1$ and $x \in X_0 \cap X_1$, by $X_0 \cap X_1 \subset (X_0 \cap X_1)''$. Thus, by the semi-continuity of the norms in Y_i (i = 0, 1) and Hölder inequality we have

and

$$\|Sx\|_{Y_{1}} \leq \|R\|_{Y_{1}' \to X_{1}'} \|x\|_{X_{1}}$$

for all $x \in X_0 \cap X_1$.

Now let fix $x \in X_0$ with $x \ge 0$. Since $X_0 \cap X_1$ is an ideal, so there exists a sequence (x_n) in $X_0 \cap X_1$ such that $0 \le x_n \uparrow x$. Thus $0 \le Sx_n \uparrow$, by positivity of S. Since

 $\|Sx_n\|_{Y_0} \leq \|S\|_{X_0 \to Y_0} \|x_n\|_{X_0} \leq \|S\|_{X_0 \to Y_0} \|x\|_{X_0}, \text{ it follows from the Fatou property in } Y_0 \text{ that}$

$$S_0 x := \lim_{n \to \infty} S x_n \in Y_0$$

and

$$\|S_0 x\|_{Y_0} = \lim_{n \to \infty} \|S x_n\|_{Y_0} \leq \|S\|_{X_0 \to Y_0} \lim_{n \to \infty} \|x_n\|_{X_0} \leq \|S\|_{X_0 \to Y_0} \|x\|_{X_0}.$$

We show that the operator $S_0: X_0^+ \to Y_0^+$ is additive. To see this we first show that $S_0 x = \lim_{n \to \infty} Sx_n$, where $x \in X_0^+$, is independent of the choice of the sequence $(x_n) \subset C X_0 \cap X_1$ such that $0 \leq x_n \uparrow x$. Let $x \in X_0^+$, $(x_n) \subset X_0 \cap X_1$ with $0 \leq x_n \uparrow x$. Then $|x_n Ry'| \leq |x| |Ry'|, |y' Sx_n| \leq |y'| |Sx|$ and $\langle |Ry'|, |x| \rangle \leq ||Ry'||_{x_0'} ||x||_{x_0} < \infty$, $\langle |y'| |Sx| \rangle \leq ||y'||_{x_0'} ||Sx||_{x_0} < \infty$ for all $y' \in Y_0'$, by Hölder inequality. Hence $\langle Ry', x_n \rangle \to \langle Ry', x \rangle$ and $\langle y', Sx_n \rangle \to \langle y', S_0 x \rangle$ as $n \to \infty$, by Lebesgue dominated convergence theorem. Finally if we put $S_0 x = y_0$, then

(5)
$$\langle Ry', x \rangle = \langle y', y_0 \rangle = \langle y', \lim_{n \to \infty} Sx_n \rangle$$

for all $y' \in Y'_0$, by (4). Now if $0 \leq y_n \uparrow x$ with $(y_n) \subset X_0 \cap X_1$, then $\lim_{n \to \infty} Sy_n = \bar{y}_0 \in Y_0$ and $\langle Ry', x \rangle = \langle y', y_0 \rangle$, $\langle Ry', x \rangle = \langle y', \bar{y}_0 \rangle$, by (5). This implies that $\langle y', y_0 - \bar{y}_0 \rangle = 0$ for all $y' \in Y'_0$ and consequently $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Sy_n$. Hence, we obtain easily that the operator $S_0: X_0^+ \to Y_0^+$ is additive. Thus, S_0 has a unique extension to a linear operator $\bar{S}_0: X_0 \to Y_0$ defined by the formula $\bar{S}_0(x) = S_0(x^+) - S_0(x^-)$ for $x \in X_0$. Obviously \bar{S}_0 is bounded and $\|\bar{S}_0x\|_{Y_0} \leq 2\|S\|_{X_0 \to Y_0} \|x\|_{X_0}$. Moreover

(6)
$$\langle y'_0, \overline{S}_0 x \rangle = \langle y'_0, S_0 x^+ \rangle - \langle y'_0, S_0 x^- \rangle =$$

= $\langle Ry'_0, x^+ \rangle - \langle Ry'_0, x^- \rangle = \langle Ry'_0, x^+ - x^- \rangle = \langle Ry'_0, x \rangle$

for all $x \in X_0$ and $y'_0 \in Y'_0$, by (5).

Similarly, we define a linear operator $\overline{S}_1: X_1 \to Y_1$ with $\|\overline{S}_1 x\|_{Y_1} \leq 2 \|S\|_{X_1 \to Y_1} \|x\|_X$ and

(7)
$$\langle y'_1, \overline{S}_1 x \rangle = \langle R y'_1, x \rangle$$

for all $x \in X_1$ and $y'_1 \in Y'_1$. Obviously $\overline{S}_0 x = \overline{S}_1 x$ for $x \in X_0 \cap X_1$. We simply set $Tx = \overline{S}_0 x_0 + \overline{S}_1 x_1$ for $x = x_0 + x_1$, where $x_i \in X_i$, i = 0, 1, and show that Tx is independent of the choice of the decomposition $x = x_0 + x_1$. Since $\overline{S}_i : X_i \to Y_i$ (i = 0, 1) are positive operators, so $T \in \mathcal{L}_+(X, Y)$. By (6) and (7), we see that $T \in \mathcal{L}_r(X, Y)$ and $T'_{X_0} = \overline{S}'_0 = R_{Y'_0}, T'_{X_1} = \overline{S}'_1 = R_{Y'_1}$. From Proposition 3.1, we get that there exists an operator $T' \in \mathcal{L}(Y, X')$, such that $T' y' = T'_{X_0} y'_0 + T'_{X_1} y'_1$ for $y' = y'_0 + y'_1$ with $y'_i \in Y'_i$ (i = 0, 1). To finish the proof note that $T' y' = R_{Y'_0} y'_0 + R_{Y'_1} y'_1 = R(y'_0 + y'_1) = Ry'$ for all $y' \in Y'_0 + Y'_1$. Consequently T' = R.

(b) Modyfing the proof of (a), we obtain easily the proof of (b).

PROPOSITION 3.4. – Let X and Y be Banach function spaces intermediate with respect to X and Y, respectively. If $(X, Y) \in Int(X, Y)$ and $T \in \mathfrak{L}_r(X, Y)$, then $T'|_{Y'}$ is a bounded linear operator from Y' into X'.

PROOF. – Let $x \in X_0 \cap X_1$ and $y' = y'_0 + y'_1$, with $y'_0 \in Y'_0$, $y'_1 \in Y'_1$. Then by the construction of the operator $T' \in \mathcal{L}(Y', X')$ (see Proposition 3.1) we have

$$\begin{split} \langle T_{\mathbf{X}}x, y'\rangle &= \langle T_{\mathbf{X}}x, y'_{\mathbf{0}} + y'_{\mathbf{1}}\rangle = \langle T_{\mathbf{X}}x, y'_{\mathbf{0}}\rangle + \langle T_{\mathbf{X}}x, y'_{\mathbf{1}}\rangle = \langle T_{\mathbf{X}_{\mathbf{0}}}x, y'_{\mathbf{0}}\rangle + \langle T_{\mathbf{X}_{\mathbf{1}}}x, y'_{\mathbf{1}}\rangle = \\ &= \langle x, T'_{\mathbf{X}_{\mathbf{0}}}y'_{\mathbf{0}}\rangle + \langle x, T'_{\mathbf{X}_{\mathbf{1}}}y'_{\mathbf{1}}\rangle = \langle x, T'_{\mathbf{X}_{\mathbf{0}}}y'_{\mathbf{0}} + T'_{\mathbf{X}_{\mathbf{1}}}y'_{\mathbf{1}}\rangle = \langle x, T' | y'\rangle \,. \end{split}$$

Thus $\langle T_x x, y' \rangle = \langle x, T' |_{Y'} y' \rangle$ for all $x \in X_0 \cap X_1$ and $y' \in Y'$, by $Y' \subset Y'_0 + Y'_1$. Since $X_0 \cap X_1$ is an ideal it follows from the Hölder inequality that

$$\begin{split} \|T'y'\|_{X'} &= \sup \left\{ |\langle x, T'y' \rangle| \colon \|x\|_{x} \leqslant 1, \ x \in X_{0} \cap X_{1} \right\} = \\ &= \sup \left\{ |\langle T_{x}x, y' \rangle| \colon \|x\|_{x} \leqslant 1, \ x \in X_{0} \cap X_{1} \right\} \leqslant \|T\|_{X \to Y} \|y'\|_{Y'} \,. \end{split}$$

THEOREM 3.5. – Let a Banach couple $Y = (Y_0, Y_1)$ be such that the norm of $Y'_0 + Y'_1$ is continuous.

- (a) If $Y''_i = Y_i$ (i = 0, 1) and $(X, Y) \in Int_+(X, Y)$, then $(Y', X') \in Int_+(Y', X')$.
- (b) If $X_0 \cap X_1$ is dense in X_i (i = 0, 1), $Y_0'' \cap Y_1'' = Y_0 \cap Y_1$, the norms of Y_i are semi-continuous (i = 0, 1) and $(X, Y) \in Int(X, Y)$, then $(Y', X') \in Int(Y', X')$.

The proof is clear by virtue of Theorem 3.3 and Proposition 3.4.

COROLLARY 3.6. - Let $X''_i = X_i$, $Y''_i = Y_i$ i = 0, 1 and let the norms of $X_0 + X_1$ and $Y'_0 + Y'_1$ be continuous.

- (a) If $(X, Y) \in Int(X, Y)$, then $(X'', Y'') \in Int(X, Y)$.
- (b) If X'' = X and Y'' = Y, then $(X, Y) \in Int(X, Y)$ if and only if $(Y', X') \in Int(Y', X')$.

PROOF. - Since $X_0 \cap X_1$ is an ideal and the norm of $X_0 + X_1$ is continuous, so $X_0 \cap X_1$ is dense in $X_0 + X_1$. In consequence $X_0 \cap X_1$ is dense in both X_0 and X_1 (see [2]). Similarly we get that $Y'_0 \cap Y'_1$ is dense in Y'_i (i = 0, 1). Thus, Corollary follows easily from Proposition 3.2 and Theorem 3.5 (b).

REMARK. – In general $X' \in Int(X'_0, X'_1)$ does not imply $X \in Int(X_0, X_1)$. Namely, let $L^1 = L^1(0, \infty)$, $L^{\infty} = L^{\infty}(0, \infty)$. Russu has given an example of a symmetric space X on $(0, \infty)$ such that $X \notin Int(L^1, L^{\infty})$ (see [10], Theorem 5.11). Since the norm of a symmetric space X' has the Fatou property, so $X' \in Int(L^{\infty}, L^1) = Int((L^1)', (L^{\infty})')$ (see [10], Theorem 4.9, p. 142).

238

In the remainder we need the following

PROPOSITION 3.7. – Let X be a Banach function space in $L^0(\Omega, \mu)$. If $Y \subset X$ is a linear ideal in L^0 with supp $Y = supp X = \Omega$, then $(\overline{Y}^X)' = X'$ with equality of norms.

PROOF. - Let $E = \overline{Y}^x$. Obviously E is a Banach function space and $X' \subset E'$ with $\|x'\|_{E'} \leq \|x'\|_{X'}$ for all $x' \in X'$. Now let $x' \in E'$, then

$$(8) \qquad \langle |y|, |x'| \rangle < \infty$$

for all $y \in E$. Let $x \in X$. Since Y is a linear ideal in L^0 , so there exists a sequence $(y_n) \in Y$ such that $0 \leq y_n \mid |x| \mid \mu$ -a.e. Hence by (8)

$$\int_{\Omega} \|x'\|y_n d\mu \leqslant \|x'\|_{E'} \|y_n\|_E = \|x'\|_{E'} \|y_n\|_{X} \leqslant \|x'\|_{E'} \|x\|_{X}$$

and consequently, by Levy's Lemma $\langle |x|, |x'| \rangle \leq ||x'||_{E'} ||x||_{\mathcal{X}} < \infty$. Thus $x' \in X'$ and $||x'||_{\mathcal{X}'} \leq ||x'||_{E'}$ and the proof is finished.

From Theorem 3.5 and Proposition 3.7 we obtain the following

COROLLARY 3.8. – Let a couple $\mathbf{Y} = (Y_0, Y_1)$ be such that the norm of $Y'_0 + Y'_1$ is continuous, $Y''_0 \cap Y''_1 = Y_0 \cap Y_1$ and the norms of Y_i are semi-continuous (i = 0, 1). If $(X, Y) \in Int(\mathbf{X}, \mathbf{Y})$ implies $(X^0, Y^0) \in Int(\mathbf{X}^0, \mathbf{Y}^0)$, then $(Y', X') \in Int(\mathbf{Y}', \mathbf{X}')$.

The next result is a consequence of Corollary 3.6 and Ogasawara's Theorem (see [1], Theorem 14.22, p. 240) from which it follows that a Banach function space E is reflexive if and only if the norms of E and E' are continuous and E'' = E.

COROLLARY 3.9. – Let X_0 and X_1 be reflexive Banach function spaces. Then $X \in \in Int(X_0, X_1)$ if and only if $X' \in Int(X'_0, X'_1)$.

4. - Interpolation in special Banach function spaces.

In this section we give applications of our results to concrete function Banach spaces. Let A be a couple of Banach spaces. Denote by L^{∞} , respectively $L_{1/s}^{\infty}$, the space of all measurable functions x on \mathbb{R}_+ such that |x(s)|, respectively |x(s)|/s, is essentially bounded. Put $\mathbf{L}^{\infty} = (L^{\infty}, L_{1/s}^{\infty})$. For any Banach function space Φ intermediate with respect to \mathbf{L}^{∞} , the real interpolation space (or K space) A_{Φ} is defined to consist of all $a \in A_0 + A_1$ such that $K(\cdot, a; A) \in \Phi$, with the norm $||a||_{A_{\Phi}} = ||K(\cdot, a; A)||_{\Phi}$, where for $a \in A_0 + A_1$ and t > 0

$$K(t, a; A) = \inf \{ \|a_0\|_{A_0} + t \|a_1\|_{A_1} : a = a_0 + a_1, \ a_0 \in A_0, \ a_1 \in A_1 \}$$

is the K-functional of Peetre.

240

Let A and B be two Banach couples. We say that A has the Calderón property relative to B if the condition

$$K(t, b; \mathbf{B}) \leq K(t, a; \mathbf{A})$$
 for all $t > 0$

implies the existence of an operator $T \in \mathcal{L}(A, B)$ (whose norm depends only on the couples A and B) such that Ta = b.

THEOREM 4.1. – Let $\mathbf{X} = (X_0, X_1)$ and $\mathbf{Y} = (Y_0, Y_1)$ be Banach function spaces and let \mathbf{Y} be such that $Y'_0 + Y'_1$ has continuous norm, $Y''_0 \cap Y''_1 = Y_0 \cap Y_1$ and the norms of Y_i are semi-continuous (i = 0, 1). If $E \subset X_{\Phi}$ and $F \supset Y_{\Phi}$ are Banach function spaces intermediate with respect to \mathbf{X} and \mathbf{Y} , respectively, then $(F', E') \in Int(\mathbf{Y}', \mathbf{X}')$. In particular, if \mathbf{X} has the Calderón property relative to \mathbf{Y} and $(X, Y) \in Int(\mathbf{X}, \mathbf{Y})$, then $(Y', X') \in Int(\mathbf{Y}', \mathbf{X}')$.

PROOF. - First we note that $(E, F) \in Int(X, Y)$. Since $K(t, a; A_0^0, A_1^0) = K(t, a; A_0, A_1)$ for all $a \in (A_0 + A_1)^0 = A_0^0 + A_1^0$, so $E^0 \subset (X_0, X_1)_{\phi}^0 = (X_0^0, X_1^0)_{\phi}^0$ and $F^0 \supset (Y_0, Y_1)_{\phi}^0 = (Y_0^0, Y_1^0)_{\phi}^0$. Hence $(E^0, F^0) \in Int(X^0, Y^0)$ and consequently $(F', E') \in Int(Y', X')$, by Corollary 3.9.

If X has the Calderón property relative to Y and $(X, Y) \in Int(X, Y)$, then there exists a Banach function space $\Phi \in Int L^{\infty}$ such that $X \subset X_{\Phi}$ and $Y \supset Y_{\Phi}$ (see [4, 15]). Thus the proof of the theorem is complete.

It is well known (see [5, 7, 16, 18]) that the couple (L^{p_1}, L^{p_0}) has the Calderón property relative to (L^{q_0}, L^{q_1}) , where $1 \leq p_0 \leq q_0 \leq \infty$ and $1 \leq p_1 \leq q_1 \leq \infty$. Thus, by Theorem 4.1 we get the following

COROLLARY 4.2. - Let $X = (L^{p_0}, L^{p_1})$ and $Y = (L^{q_0}, L^{q_0}), \ 1 \leq p_0 \leq q_0 < \infty, \ 1 \leq p_1 \leq \leq q_1 < \infty, \ q_0, \ q_1 \neq 1$. If $(X, Y) \in Int(X, Y)$, then $(Y', X') \in Int((L^{q'_0}, L^{q'_1}), (L^{p'_0}, L^{p'_1})),$ where $1/p_i + 1/p'_i = 1/q_i + 1/q'_i = 1$ (i = 0, 1).

If a Banach function space $\Phi \in Int L^{\infty}$ satisfies some conditions, then it is possible to show that for any couples of Banach function spaces X and Y we have $(Y', X') \in Int(Y', X')$, where $X \subset X_{\Phi}$ and $Y \supset Y_{\Phi}$ are Banach function spaces intermediate with respect to X and Y, respectively. Namely, let Φ^1 be the dual space to Φ under bilinear form

$$(f, g) = \int_{\mathbb{R}_+} f(t) g\left(\frac{1}{t}\right) \frac{dt}{t}.$$

By J_{Ψ} we denote the *J*-method of interpolation (see [3, 4, 6], for more details). Thus the above assertion follows from the following theorem (see [14])

THEOREM 4.3. – Assume that (X_0, X_1) is a couple of Banach function spaces. If a Banach function space $\Phi \in Int \mathbf{L}^{\infty}$ is such that $\Phi \cap L^{\infty} \neq L^{\infty} \cap L^{\infty}_{1/s}$ and $\Phi \cap L^{\infty}_{1/s} \neq L^{\infty} \cap L^{\infty}_{1/s}$, then $(X_0, X_1)_{\Phi} = J_{\Phi^1}(X'_0, X'_1)$.

Before proving the next result we recall that the *Marcinkiewicz space* M_{φ} on the interval $I = (0, l), 0 < l \leq \infty$, with Lebesgue measure, is defined by

$$M_{arphi} = \left\{ x \in L^{\mathfrak{o}} \colon \|x\|_{arphi} = \sup_{\mathfrak{o} < t < l} \left(rac{1}{arphi(t)} \int_{\mathfrak{o}}^{t} x^{st}(s) \, ds
ight) < \infty
ight\},$$

where the function $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$ is *quasi-concave* $(\varphi(s) \leq \max \{1, s/t\} \varphi(t)$ for all $s, t \in \mathbb{R}_+$) and x^* is the nonincreasing rearrangement of the function x. It is well known (see [10]) that if $\varphi(0_+) = 0$, then the Köthe dual of M_{φ} is the *Lorentz space* defined by

moreover $M'_{\varphi} = M_{\varphi}$. It is easy to verify that if $l < \infty$ $(l = \infty)$, then Λ_{φ} has continuous norm if and only if $\varphi(0+) = 0$ $(\varphi(0+) = 0$ and $\varphi(\infty) = \infty)$. In what follows we assume that $\varphi(0+) = 0$ and $\varphi(\infty) = \infty$ if $l = \infty$. Now we apply the Theorem 4.1 to obtain the following result (cf. [11, 17]).

THEOREM 4.4. $-(\Lambda_{\varphi}, \Lambda_{\varphi}) \in Int((\Lambda_{\varphi_0}, \Lambda_{\varphi_1}), (\Lambda_{\varphi_0}, \Lambda_{\varphi_1}))$ if and only if there exists a constant c > 0 such that for all $s, t \in I$

(9)
$$\frac{\psi(t)}{\varphi(s)} \leqslant c \max\left\{\frac{\psi_0(t)}{\varphi_0(s)}, \frac{\psi_1(t)}{\varphi_1(s)}\right\}.$$

PROOF. – The inequality (9) is equivalent to the following condition (see [11, 13]): $\psi(t) \leq \psi_0(t) f(\psi_1(t)/\psi_0(t)), \ \varphi_0(t) f(\varphi_1(t)/\varphi_0(t)) \leq c\varphi(t)$ for some quasi-concave function f, c > 0 and all $t \in I$. Hence, applying the reiteration theorem (see [4]), we obtain

$$M_{\varphi} \subset M_{\varphi_0 f(\varphi_1/\varphi_0)} = (M_{\varphi_0}, M_{\varphi_1})_{\varPhi}$$

and

$$M_{\psi} \supset M_{\psi_0 f(\psi_1/\psi_0)} = (M_{\psi_0}, M_{\psi_1})_{arphi},$$

where $\Phi = L_{1/f}^{\infty}$. Since $\Lambda_{\psi_0} + \Lambda_{\psi_1} = \Lambda_{\min(\psi_0, \psi_1)}$, we have $M'_{\psi_0} + M'_{\psi_1} = \Lambda_{\min(\psi_0, \psi_1)}$ and so Theorem 4.1 applies. A necessary condition (9) is well known to be a necessary condition for the interpolation of symmetric spaces (see [11]).

REFERENCES

- [1] C. D. ALIPRANTIS O. BURKINSHAW, *Positive Operators*, New York, Academic Press (1985).
- [2] N. ARONSZAJN E. GAGLIARDO, Interpolation spaces and interpolation methods, Ann. Math. Pure Appl., 68 (1965), pp. 51-118.
- [3] J. BERGH J. LÖFSTRÖM, Interpolation spaces. An introduction, Grundlehren der mathematischen Wissenschaften, 223, Springer, Berlin - Heidelberg - New York (1976).
- [4] JU. A. BRUDNYI N. JA. KRUGLJAK, Real interpolation functors, Soviet Math. Dokl., 23 (1981), pp. 5-8.
- [5] M. CWIKEL, Monotonicity properties of interpolation spaces, Ark. Mat., 14 (1976), pp. 213-236.
- [6] M. CWIKEL J. PEETRE, Abstract K and J spaces, J. Math. Pures et Appl., 60 (1981), pp. 1-50.
- [7] V. I. DMITRIEV, On interpolation of operators in L_p spaces, Soviet Math. Dokl., 24 (1981), pp. 373-376.
- [8] JU. I. GRIBANOV, Banach function spaces and integral operators, II, Izv. Vyssh. Uchebn. Zaved. Mat., 2 (55) (1966), pp. 54-63 (Russian).
- [9] L. V. KANTOROVIČ G. P. AKILOV, Functional Analysis, Moscow, Nauka, 1977 (Russian).
- [10] S. G. KREIN JU. I. PETUNIN E. M. SEMENOV, Interpolation of linear operators, Moscow, Nauka, 1978 (Russian, English transl. AMS, Providence, 1982).
- [11] G. G. LORENTZ T. SHIMOGAKI, Interpolation theorems for operators in function spaces, J. Functional Analysis, 2 (1968), pp. 31-51.
- [12] G. JA. LOZANOVSKII, Transformations of ideal Banach spaces by means of concave functions, in: Qualitative and approximate methods for investigation of operator equations, Yaroslavl (1978), pp. 122-148 (Russian).
- [13] M. MASTYLO, Interpolation of linear operators in Calderón-Lozanovskii spaces, Comment. Math. Prace Mat., 26 (1986), pp. 247-256.
- [14] M. MASTYLO, The universal right K-property for some interpolation spaces, Studia Math., 90 (1988), pp. 117-128.
- [15] P. NILSSON, Interpolation of Calderón and Ovčinnikov pairs, Ann. Mat. Pura Appl., 134 (1983), pp. 201-232.
- [16] V. I. OVCHINNIKOV, The method of orbits in interpolation theory, Math. Reports, 1 (1984), pp. 349-515.
- [17] R. SHARPLEY, Interpolation of operators for Λ spaces, Bull. Amer. Math. Soc., 80 (1974), pp. 259-261.
- [18] G. SPARR, Interpolation of weighted L_p-spaces, Studia Math., 62 (1978), pp. 229-271.
- [19] A. G. ZAANEN, Integration, Amsterdam, North-Holland, 1967.