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Summary. - In  this paper we investigate when the KSthe dual spaces Y '  and X '  are interpo- 
lation spaces with respect to couples of the Kdthe dual spaces (Y'o, Y~) and (X~, X~I), respec- 
tively, where X and Y are interpolation spaces with respect to given couples (Xo, X~) and 
( Y  o, Y~) o] Banach ]unction spaces. 

1. - I n t r o d u c t i o n .  

A pair A ~ (Ao, A1) of Bar~ach spaces is called a Banach couple if Ao aad  A1 

are b o t h  continuously imbedded in some Hausdorff  topological vector  space V. 
F o r  a Banach couple A = (Ao, At )  we can form the s u m  Ao -~ A~ and the in- 

] tersection Ao (~ A~. They are both  Banach spaces in the natural  norms llaLl~o+~l-- 

= in]  {[]aoL.+ iIa~l]~,: a = ao + a~, ao e A0, al e A1} for a e Ao + A~ and Ilall~~ 
---- m a x  (l]aIl~~ IlaiI~l) for a e A o  n A~. 

A Banach  space A is called aa  intermediate space between Ao a~d A~ (or with 
respect to A) if Ao n A~ c A c Ao -~ A~ with continuous inclusions. For  brevi ty,  the 
closure of Ao n A~ ia A will be denoted by  A ~ We write A ~ ~- (A~, A~) lor a B~aach 
couple A. I f  A o ~ A, A is called a regular couple a~d then the dual spaces A* and 
A* may  be regarded as subspaces of (Ao n A~)*. So (A*, A*) is a Baaach  couple 
which we denote by  A*. Since (Ao -~ A~)* ~-- A* n A* and (Ao n A~)* = A* ~ A* 
isometrically (see [2]), so if A is any  intermediate space with respect to A, such 
tha t  Ao (~ A1 is dense in A, then  A* is an intermediate space with respect to  A*. 

In  the t heo ry  of interpolatio~ spaces Banaeh function spaces are importance.  
We recall  some fundamenta l  notation.  

Le t  ([2, #) be a measure space with/~ complete and a-finite. We denote by  L ~ 
-~ s176 #) the space of all equivalence classes of /~-measurable real valued func- 
tions defined and finite #-a.e. on /2, equipped with the topology of convergence 
in measure oa #-finite sets. 

A linear subspace X of L ~ is called au ideal (in L ~ if IxI<~[yl/~-a.e. for x e L  ~ 
and y e X imply x ~ X. Note  tha t  every ideal X in L ~ with supp X ~--/2 (supp X 
is the  smallest measurable set outside of which all functions in X are equal to zero) 
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is super order dense in Z ~ i.e., for every  0~<x a L ~ there  exists a sequence (x~)c X 
such tha t  O<~x~x, #-a.e. (see [9], Lemma 1, p. 138). 

We say tha t  an ideal X in s is a Banach function space (ol! (~, #)) if X is a 
Banach  space with the  p roper ty  [xl<~ly ] ~t-a.e. for x, y c X  implies ilx[]x<~][yllx. 
Hence,  it  follows tha~ if 2~o and X~ are any two Banach  function spaces (on (~, #)) 
then  X = (Xo, X~) forms a Banach couple. 

~u say t ha t  the norm I] �9 ]~x of a Banach funct ion space X is continuous if x~ e X, 
04x~.~0, imply iIx~]lx -~ 0, semi-continuous if O<x~'x,  x e X ,  imply []x~][x ~ [!xllz, 
monotone complete if O<x~}x ~nd sup I[x~][x< c~, imply x E X .  I f  the norm of X 

is semi-continuous and monotone  complete, then  we say tha t  it  has the Fatou prop- 
erty. 

The K6the dval space (or associate space) X '  of X is defined by  

X '  ~- {x'~L~ s u p p x ' c  su p p X ,  <lxt, Ix'l> < ~ for all x ~ X ) ,  

where <x, ~'> =fxx'd# for (x, x') e Z x X ' .  
~2 

The space X '  is a Banaeh functio~ space oa (D, #) with the norm 

]ix'll~, -= sup {1<~, x'>l: I1~]!~<1}, 

whence follows the H6lder inequality 

i<x, x':>l < I[~]1~ [ix' i/~'. 

In  the remainder  we assume th a t  supp X = / 2 .  
We note  the  useful remark  tha t  if X is a Baaach  function space, then  by  the  

super order density of any  ideM Y with supp Y = supp Z ia L ~ and Lebesgue dom- 
inated convergence theorem we get 

Ix'l',~, = sup {1<~, x'>l:  l i t t le<Z,  x e y }  

for all x'~X'. 

For  a given Banach couple X = (Xo, X1) of Banaeh funct ion spaces (Xo, X~') 
is a Banach  couple which we denote by  Xq 

I t  is well l ~ o w n  tha t  if X is a Banach funct ion space, then  llx[[x.---- [ix]]z for 
x e X, when the norm ][. ]Ix is semi-continuous. ~o reo v e r  X -~ X" and [Ix]Ix = llx]Ix,, 
if and only if the norm ef X has the Fa tou  proper ty  (see [9, 19]). In  part icular  
the  norm of X '  has the Fa tou  proper ty .  

Le t  A = (Ao, AI) and B = (Bo, B~) be two Banaeh couples. We denote by  
s B) the Banach space of all linear operators T:  Ao-~ A ~ - ~ B 0 - F  B1 such t h a t  
the restrictioll of T to the space A~ is a bounded operator  f rom A~ into B~, i ~- 0, 1, 
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with the  norm 

]1 TiI~(A,-) = max {I] TII~~ ]1 TIIx,-~} �9 

We say tha t  intermediate  spaces A and B (with respect to A and B, respec- 
t ively) are interpolation spaces with respect to A and B and we write (A, B) 

In t (A ,  B) if every  operator  f rom s B) maps A into B. I t  is a consequence 
of the closed graph theorem that ,  then  the  restriction of T to A is a bounded oper- 

a~or f rom A into B and 

for some positive constant  C independent  of T e s B). 
I f  A coincides with B, then  A is called an interpolation space with respect to 

A and B and we write A e l n t ( A ,  B);  if, moreover,  Ao = Bo and A1 = B1, then  A 
is called an interpolat ion space between A0 and A1 (or with respect to A), and we 

write A e Int  A. 
In  [2] A~o~szAJ~ and GAGLIA~D0 showed tha t  if A is a regular Banach couple 

such t ha t  A0 n A~ is a reflexive space and A e Int  A with Ao (~ A, dense in A, then  
A* is an interpolat ion space between A* and A*. In this paper  we investigate when 
(Y', X ' ) e  Int  (Y', X') if we know tha t  (X, Y ) e  Int(X,  Y), where X and Y are func- 

tiom Banach spaces intermediate  with respect to given couples X - ~  (Xo, X1) and 
Y : (Yo, Y1) of Banach funct ion spaces, respectively. 

2. - Regular operators. Basic properties. 

Let  X c L~ #1) and Y c Z~ be Banach function spaces. We say t h a t  
the operator  T:  X - +  Y is regular if there exists the operator T ' :  Y ' - + X '  (which 
we called the (order) ad]oint of T) such tha t  

< Tx, y'} = <x, T' y'> 

for all x e X  and y ' e  Y'. Mote tha t  if the operator  T:  X--->Y is regular, then T 
is linear, moreover if T is bounded, then  by  H61dcr inequali ty we get t ha t  T '  is 

a bounded operator  and IIT'lly,+x,< IIT][X~y. 
Now we give a useful theorem which characterizes regular operators. First  of 

all, let X be a Banach function space. Let  / '  denote the set of all linear continuous 
functionals defined on the space X by 

r =  = <x, x'>, x ' e X ' } .  

I t  is easy to see tha t  F is a tot~l linear set of the  dual space X*, so on the space X 
we can define the F- topology (which we denote by  a(X, X')) generated by  the fam- 
ily of semi-norms {p~,: x ' e X ' } ,  where p~,(x)= II~,(x)l. 
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TttEOI~EM 2.1. - Let X and Y be Banaeh function spaces. An  operator T: X -+ Y 
is regular if and only if the following condition holds 

(1) x,  -> x in a(X, X')  , imply Tx~ ~ Tx in a(Y, Y') . 

PROOF. - Assume t h a t  an opera tor  T :  X - >  Y is regular.  Then there  exists an  
opera tor  T ' :  Y'-> X '  such t h a t  <Tx, y'> ---- <x, T ' y ' }  for all x e X  and y ' e  Y'. Let  
x~ - > x  in ~(X, X'),  i.e. <xn, x'} --> <x, x'} for all x ' e X ' .  Thus 

<Tx,, y'} = (x~, T' y'} -~ <x, T'  y'} = (Tx,  y'} 

for all y~e Y~, whence Tx ,  ~ Tx in a(Y,  Y'). 

For  the  converse suppose t h a t  an opera tor  T :  X - > Y  satisfies the  condit ion (1). 
Take  a sequence (x~) in X with  [x~[<~x, x e X  and x~--~0 a.e. Then x ~ - + 0  in 

s(X,  X'),  b y  Lebesgue domina ted  convergence theorem.  Now, if we set f~,(x)= 
= <Tx~ y'> for each x s X ,  where y ' e  Y',  we see t h a t  ]~,(x,)-->0 for each y ' e  Y '  

(by Txn --> 0 in ~(Y, I7')). I t  follows t h a t  f~, is an order continuous linear funct ional  
on X for each y ' s  Y'.  Therefore,  there  exists (exactly one) e lement  x '  e X '  such t h a t  

f~,(x) = <x, x'> for all x 6 X (see [9]). Now it  is enough to observe t h a t  if we set  
T 'y '  = x', then  the  m a p  T ' :  Y ' - ~ X '  is linear and  f~,(x) -~ ( x , T ' y ' } .  Thus 

(Tx~ y'>-~ <x, T ' y ' }  for all x e X  and  y ' s Y ' ,  so the opera tor  T is regular.  

COROLLARY 2.2. -- Let X and Y be Banach function spaces. I f  the operator T: X -> Y 
is regular and the norm of Y is semi-continuous, then T is bounded. 

P~ooF. - Le t  x~ -> x in X.  Then x~ -~ x in G(X, X') ,  b y  the  t tSlder  inequal i ty .  
Since the  operator  T:  X - >  Y is regular,  i t  follows t h a t  for each y ' e  :Y' 

(2) 

b y  Theorem 2.1. 

Now let s > 0 .  

!<Tx., Y'>I -~ l<Tx, Y'>I as n -~ oo 

B y  semi-cont inui ty  of the no rm ]l'i[r, we have  

Then the  inequal i ty  

(3) 

! lTxl[~ = sup { l < T x ,  Y '> I :  l l Y ' i i , , < l }  �9 

]lTxll~ < t<~x, Y'o>l + ~I2 

I r !  I holds for some y~e Y' with ~[Yol~r,~l. Since there  exists an noe N with  

I( Tx, Y~}[ < l(Tx~, Y'o}i ~- e/2 

for all n > no.. b y  (2), so f rom (3), we get 

ilrxil~ < ]<Tx~, y'0>t + ~< IITx.ii, + 
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for all n > no. Since e > O is a rb i t rary  If Tx I[s" < lim in] if Tx~ II F holds. Consequently, 

since T is linear our assertion follows from a well known fact  t ha t  the linear oper- 
a tor  S f rom a Banaeh space E into a normed space iv is continuous if and only if 
x ~ - ~ x  ia E imply IISxll~<liminf[iSx,,llF. 

RE~IARK. -- I f  X is a Banach function space, then  the mapping x '  ~-~ ]~,, where 
]~,(x) = (x, x'> for x e X is a linear isometry f rom the Kbthe  dual X ~ of X onto X* 
if and  only if X has continuous norm (see [9]). Hence, by  applying Theorem 2.1, 
we obtain (cf. [8]) the following 

THE0~E~ 2.3. -- Let X and Y be Banach ]unction spaces. A linear bounded op- 
erator ]rom X into Y is regular i] and only i] X has continuous norm. 

3. - Interpolation in the K~ithe dual spaces. 

Let  X,  ~ be Banach funct ion spaces. An operator  T:  X - +  Y is positive if 
T (X+)c  7f +, where X + - -  - { x e X :  x>~0}. Note tha t  every additive operator  To: 
X + -+ :Y+ has a unique extension to a linear operator  T:  X -> [Y. This extension 
is defined by  the formula T(x) = To(x +) -- To(x-) (see [1], Theorem 1.7, p. 7). :Note 
also t ha t  a positive linear operator  T:  X -~ :F is bounded (see [1], Theorem 12.3, 
p. 175). 

Le t  X = (2/0, X1) and Y = (I7o, Y~) be couples of Banach funct ion spaces, then  
b y  dr(X, Y) we denote the subspace of all operators T E s Y) such tha t  the  re- 
strictions TIx,: -= Tx, are regular operators f rom X~ into Y~, i ---- 0, 1. By  s Y), 
we denote the set of all operators T e s  Y) such tha t  Tx,:X~-> :F~ (i = 0, 1) 
are positive operators. 

I f  X and :F are Banach function spaces intermediate with respect to  X and IT, 
respectively, then  we write (X~ ~) e lnt+ (X, Y) if T X  < ~ for all T e s Y). 

In  this section we are interested in the problem, when (Y', X ' )e ln t+(Y '~X ' )  
(Int(Y' ,X'))  if we know tha t  (X, ~ )e In t+(X ,  Y)(Int(X, Y)). To answer this prob- 
lem we need some propositions. 

PROPOSITION 3.1. - Let X = (Xo, X~) and Y = (Y  o, Y1) be couples o] Banach 
]unction spaces. I] an operator T e s Y), then there exists an operator T' e s X') 
such that T'[s:~ = T'x,, where T~x, is the adjoint o] Tx, , i = O, 1. 

PROOF (cf. [2]). - Le t  T e s  then  there  exist operators T~c,: :F~-+X~ 
such tha t  <Tx, x~,y~)= (x~, T~:,y'~) for all x i e X  ~ and y~e Y~, i = 0 , 1 .  Hence 

<x, Tky '5  = <Tz,x, y'} = <Txx, y ')  = <x, Tky '5  

for a l l x e X o n X 1  and y ' e Y o n 1 7  i. Thus <x, ' ' ' ' ' T~~ --  T~ly>-- - -0  for each x e  
' ' ' ' " ' - Y ' N  e X o n X ~ .  This implies tha t  IIT'z.y - T&,y iI(x.oxl),= o for all y ~ o Izl, so 
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xo-- x~ on YoC~ Y~. Now, if we define the operator T ' : Y ~ q -  Y~->X~ ,-kX;,  
by  T~y'=T'xoy~o@T'x~y ~ for y ' = y ~ @ y [  with y~eYg~, i = O ,  1. Then simply 
T 'y  ~ is independent of the choice of the decomposition y ' =  y~ ~ y~'. Obviously 
T' lr  ~ = T~ (i = 0, 1) and T ' e  g(Y', X') .  

The following useful Proposition follows immediately from Theorem 3.1 in [12]. 

PROPOS!TION 3.2. - Let (Xo, X~) be a couple of Banach Junction spaces, then 
(Xo @ X~)' = X~o (5 X[ and (2(o ~ XI) '  = X~o @ X ~, with equality o/ norms. 

In  the remainder le~ X = (Xo, X~) and Y = (Yo, Y~) be couples of Banach func- 
t ion spaces. 

T~Eom~r 3.3. - Let a couple Y = (Yo, Y~) be such that the norm o] Yo ~- Y~ is 
continuous. 

,, _= fi "y'  (a) I] Iz~ Y~ (i = O, 1) and R e  +~ ,X ' ) ,  then there exists an operator 
T e s Y) such that Y ' =  R. 

(b) I] Xo53X~ is dense in X~ ( i = O , t ) ,  Y~(3 Y ~ =  Nor3 Y~, the norms oJ 
Y~ are semi-continuous (i = O, 1) and R e  g(Y ' ,X ' ) ,  then there exists an operator 
T e  fi(X Y) such that T ' =  R. 

PnOOF. - (a) Let  an operator R e g+(Y' X'). Then R: ( Y o n  Y~)' -~ (Xo 53 X~)', 
by  Propositio~ 3.2. Since Y~ @ Y; = (Yo (3 Y~)' has a semi-continuous norm, it 
follows from Theorem 2.3 tha t  the operator R: (I7o (3 Y~)'-~ (X. (3 X~)' is regular. 
Thus there exists a linear and bounded operator S: (Xo (~ X~)" -+ (Yo (3 I71)" = 
: [go n Y~ satisfying the equality <Ry', x"> : <y', Sx"> for all y ' e  (17o n Y~)' and 
x"e (Xo (~ X~)". Hence it follows tha t  S is a positive operator and 

(4) <Ry ~, x )  = <y', Sx> 

for all y ' e  (I/'o ~ Y~)'= I/~ @ I/[ and x e Xo ~ X~, by Xo r Xt c (Xo ~ X~) ". Thus, 
by  the semi-continuity of the ~orms in IZ~ (i ---- O, 1) a~d tI61der inequality we have 

[ Sx Sx>[: = {[<Ry' x>l= i sup{Ky; Ily'll ;<l} sup 

f r l  <sup   IIRy l!x; llxb,: Ily'lI ;<l} = IIRIl ;-, ; Ilxll . 

and 

'~1 ~xl[~l < [IRI]~:-.< lixbl 

for all x e Xo r X1. 

Now let fix x e Xo with x>~O. Since Xo (~ X1 is an ideal, so there exists a se- 
quence (x.) in Xo (~ X1 such tha t  O<~x.~x. Thus O<<.Sxn~, by positivity of S. Since 
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ll~x~lI~o< II~llxo~oilx~II~o< ll~llxo~foIIxl]z07 it follows from the Fa tou  property in 17o 

that 

S0x: ---- lira Sx~ ~ ~o 
~--> oo 

and 

llSoXHy o = l im llSx~lIyo< I1Sl[Xo_~Yo lira ]Ix~lIxo< ]lsiIXo_~y~ 

We show that  the  operator So: X + -+ I 5+ is additive. To see this we first show that  
SoX = l i m  Sx .  7 where x e X  +, is independent of the choice of the sequence (x~)c 

c X o r ~ X ~  such that  O<x.%x. Let xeX+o,  ( x ~ ) c X o ~ X ~  with O < x ~ x .  Then 
[x~Ry'l < lx[ [By'], ]y' Sx~] 4 lY'I I Sx] and <]By'[, ]x[)< [Ry' i]z;][x[]x. < ~ ,  <IY'I ISx[> 4 
]]y'l/~z]lSx][~o< ~ for all y ' e  lz~7 by  tISlder inequality. Hence (Ry ' ,  x . }  --> (Ry ' ,  x}  
and (y' ,  Sx~) --~ (y' ,  SoX} as n --> ~ ,  by Lebesgue dominated convergence theorem. 
Finally if we put  So x----Yo7 then 

(5) (Ry' ,  x )  = (y',  Yo) = (Y', l im Sx~) 

for all y '~  ~Y~ 7 by  (4). :Now if 0 ~ y ~ x  with (y.) c Xo (~ X~ 7 then l i ra  Sy,~ -~ ~/o ~ Yo 

and <Ry', x}  <Y', Yo>, <Ry'7 x} ---- <Y'7 Yo}7 by  (5). This implies tha t  <Y'7 Yo-- Yo> = 0 
for all y ' e  Y~ and consequently l i m  Sx~ = lira Sy . .  Hence, we obtain easily tha t  

the operator So: X + --> l z+ is additive. Thus, So has a unique extension to a linear 
operator do: Xo-->Yo defined by  the formula So(X)= So(X+) - So(X-) for x e X o .  
Obviously do is bounded and ]lSoX[iy~ ollxl]xo. Moreover 

(6) (Yo, Sox) = ' (y~,  Sox+) -- (y~, SoX-} -~ 

---- (RY'o7 x +) -- (Rye,  x-}  = (Ry'o, x§ -- x -}  = (Ry~o7 x )  

for all x ~ X o  and Y~eY'o, by  (5). 
Similarly, we define a Hnear operator S~: X1-> I71 with IIS~xl]r<-..211SIIx,~y~IlXl]x 

and 

(7) (y~', S z x )  = (Ry'~, x )  

for all x e X1 and y~ e :Y~. Obviously So x = Six  for x E Xo (~ X~. We simply set 
Tx  = SoXo ~- S~x~ for x = Xo ~ x~, where x ~  X~, i = O, 1, and show tha t  T x  is 
independent of the choice of the decomposition x ~ xo ~-x l .  Since S~: X~-'~ Y~ 
(i : 0, 1) are positive operators, so T e ~+(X, Y). B y  (6) and (7)7 we see tha t  
T e s Y) and T i o :  S~ = Ry~ 7 T ~ - ~  S'1 ~-- Rye. From Proposit ion 3.17 we get tha t  
there exists an operator T'  e s X'),  such tha t  T 'y '  -= T~oy' o -}- T'x~ Y~' for y~-= Y'o -}- Y~ 
with y'~eY~ (i = 071). To finish the proof note tha t  T ' y ' =  R E y '  o + l~f~y'~ = 
R(y '  o + y'~) = Ry '  for all y' e 17~ + I7'. Consequently T ' =  R. 

(b) Modyfing the proof of (a), we obtain easily the proof of (b). 
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PROPOS~TZO~-3.4. - Let X and ~ be Banaeh ]unction spaces intermediate with 
respect to X and Y, respectively. I] (X, ]~)~ In t (X ,  Y) and T ~ ~,(X, Y)~ then T'lr, 
is a bounded linear operator ]rom ~'  into X' .  

PRoof.  - Let  x e Xo (~ X~ and y'---- Y'o -~' y'~, with Yo' ~ Zo', Y~' ~ Y~" Then by the 
construction of the operator T '~  ~(Y', X')  (see Proposition 3.1) we have 

- ' ' ' ' -=  ~'xoYo § ~ , y ~  = ( x ,  ~ '  y ' ~ .  - -  ( x ,  T ~ o Y o )  § ( x ,  T ~ Y l )  ( x ,  ~ ' ' ' 

Thus (Txx ,  y!) = (x, 1"lr,y') for all x eXo n X~ and y '~ :Y', by  :Y'c Y~o ~ :Y~" Since 
Xo n X~ is am ideal it  follows from ~he H61der inequality tha t  

HT'y'ilx,= sup {l<x, T'y'>]: lixl[~<l, x ~ Z o n Z ~ }  = 

= sup {t</'~x, y':)l: / Ixl[~<l,  x e Xo n x~}<< llr/l:~s 

T~_EORE)[ 3.5. -- Let a Banaeh couple Y-~ (Yo, ~7~) be such that the norm o] 
~o § $~ is continuous. 

(a) I] Y:  : Y~ (i : 0, 1) and (X, Y) e Int+ (X, Y), then ( Y',  X ~) e lnt+ (Y', X!). 

(b) I] 2[o ~ X1 is dense in X~ (i = O, 1)~ ~Y: ~ :Y~ : Yo v~ Y1, the norms o/ Xi are 
semi-continuous (i : O, 1) and (X, Z) ~ Int  (X, Y), then ( Y' ,  X ')  e Int  (Y', X'). 

The proof is clear by  virtue of Theorem 3.3 ~nd Proposition 3.4. 

COROLLARY 3.6. -- Zet X~ = X.i, Y~ : Y~ i : O, 1 and let the norms o] Xo § X~ 

and Y~o § ~!1 be continuous. 

(a) 11 (X, Y) e Int  (X, Y), then (X !!, Y!!) ~ Int  (X, Y). 

(b) I] X !r : X and Y" : Y, then (X, 17) e Int  (X, Y) if and only i / (  Z ~, X')  e Int  (Y', X'). 

PROOF. - Since Xo • X~ is an ideal and the norm of Xo § X~ is conti~uous, so 
Xo (~ X~ is dense i~ Xo § X~. I~ consequence Xo (~ X1 is dense ia both Xo and X~ 

! ! ! 

(see [2]). Similarly we get t ha t  Xo c~ Y~ is dense in Y~ (i = 0, 1). Thus, Corollary 

follows easily from Proposition 3.2 and Theorem 3.5 (b). 

I~E~_~R~. - In  general X '  e ln t  (X'o, XO does not  imply X ~ Int  (Xo, X1). Name- 
ly, let L 1 ~ LI(0, co), L ~ -- L| c~). Russu has given an example of a symme- 
tric space X on (0, co) such tha t  X ~ Int  (Z!, L | (see [10], Theorem 5.11). Since 
the norm of a symmetric  space X'  has the Fa tou  property, so X ' e I n t ( L  r176 L ~) 
-~ In t  ((L~) ', (L~) ') (see [10], Theorem 4.9, p. 142). 
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In the  remainder  we need the following 

P~0POSITIO~ 3.7. - Let X be a Banach ]unction space in L~ I] Y c  X is a 
linear ideal in L ~ with supp :F= supp X = 52, then (yx), = X '  with e~uality o] norms. 

P~ooF. - Le t  E = YZ. Obviously E is a Banach funct ion space and X ' c  E '  

with tlx'II~,< Hx']lw for all x ' e X ' ,  lqow let $ ' e E ' ,  then  

(s) <lyI, Ix'l> < 

for all y e E.  Le t  x e X. Since 17 is a linear ideal in L ~ so there exists a sequence 

( y . ) c l z  such tha t  O<y~lx l  #-a.e. Hence by  (8) 

ii 'II.'IlY-ll. = II 'll,'lly.ll,< lix'll,.llxil, 
/2 

and consequently,  by  Levy's  Lemraa (]xl, Ix'I}< IIx'llwllxllz< oo. Thus x ' e X '  and 

Ilx'llx,< IIx'tlE, and the  proof is finished. 

F r o m  Theorem 3.5 and Proposit ion 3.7 we obtain the following 

r 
COROLLI~Y 3.8. -- Z e t a  couple Y =  (Y o, ]z~) be such that the norm of Y~ -~ ~ 

If  
is eontinuous~ ~ ~ ~ --~ Yo (~ Y~ and the norms o] Y~ are semi-continuous (i -~ O, 1). 
I] (X, ~) e Int  (X, Y) implies (X  ~ ~o) e Int  (X ~ yo), then (Y',  X ' )  e Int  (Y', X'). 

The next  result is a consequence of Corollary 3.6 and Ogasawara's Theorem 
(see [1], Theorem 14.22, p. 240) f rom which it follows tha t  a Banach funct ion space 
E is reflexive if and only if the norms of E and E '  are continuous and E" = E. 

COEOLLAEY 3.9. -- Zet Xo and XI  be re]lexive Banach ]unction spaces. Then X e 
e Int  (Xo, XI) i/ and only i] X ' e  Int  (X'o, X'~). 

4. - Interpolation in special Banach function spaces. 

In  this section we give applications of our results to concrete funct ion Banaeh 
spaces. Le t  A be a couple of Banach spaces. Denote  by  L ~, respectively LI~, the  
space of all measurable functions x on R+ such tha t  [x(s)l , respectively [x(s)I/s, is 
essentially bounded. P u t  L ~--- (L ~, L~/8). For  any Banach funct ion space ~ in- 
termediate  with respect to L ~, the real interpolation space (or K space) A v  is de- 
fined to consist of all a c A .  q- A~ such tha t  K(- ,  a; A) e 4 ,  with the norm IIat]A = 
-~ tlK(., a; A)IIr , where for a e A o  q-A~ and t >  O 

K(t ,  a; A) = { l l a o L . +  tlialih : = ao + al ,  a o e A o ,  aleA } 

is the K-funct ional  of Peetre.  
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Let  A and B be two BaI~ach couples. We say tha t  A has the Calderdn property 
relative to B if the condition 

K(t, b; B)<K(t ,  a; A) for all t > 0  

implies the existence of an operator T e ~(A, B) (whose norm depends only on the 
couples A and B) such tha t  / ' a  = b. 

TI~01~E~ 4.1. - _Let X - ~  (Xo,X~) and Y-~ (Y  o, Y~) be Banaeh /unction spaces 
g It 

and let Y be such that ~ + Y'I has continuous norm, ~o ~ ~ ~- ~o ~ Y~ and the 
norms o/ Y~ are semi-continuous (i -~ O, 1). I f  E c X~ and ~' ~ Y~ are Banaeh /unc- 
tion spaces intermediate with respect to X and Y, respectively, then (F', E') e Int (Y', X'). 
In  particular, i/ X has the Calderdn property relative to Y and (X, ~ )~  Int (X, Y), 
then (Y'~ X') e fnt  (Y'~ X'). 

PI~OOF. - Firs t  we note tha t  (E, F) e ln t (X,  Y). Since K(t, a; A~, A~ ~ K(t, a; 
Ao, A~) for all a e (Ao + A~)o = A ~ + A ~ so ~o c (Xo, X~)~ = (Xo ~ X~ and /~o 

(Yo, ](1)~ = ( ~ o ,  oo :V~)r Hence (E ~ 2 ~~ e Int (X ~ yo) and consequently (F', E') 
e Int (Y', X'), by  Corollary 3.9. 

I f  X h~s the Calder6n property relative to Y alld (X, ~) e Int (X, Y), then there 
exists a Banach function space ~b e Int L ~ such tha t  X c Xo a~d Y ~ Yo (see [4, 15]). 
Thus the proof of the theorem is complete. 

I t  is well known (see [5, 7, 16, 18]) tha t  the couple (L ~, L ~) has the CMder6It 
property relative to (Lq~ where l < p 0 < q o < ~  and l<p~<.q~<c~. Thus, by  
Theorem 4.1 we get the following 

COROLLARY 4.2. -- Zet X ~ (L ~~ Z ~1) and Y :  (L q., Lq~ l < p 0 < q o <  c% l < p 1 <  
<q1< c% qo, qi V: 1. I /  (X, Y) e ln t (X,  Y), then (Y', X') ~ Int ((Lq;, Zql), (L~;, L~;)), 
where 1/p~ + 1/p~ = 1/q~ + 1/q~ = 1 (i : O, 1). 

If ~ Banach function space ~b e Int L | satisfies some conditions, then it is pos- 
sible to show t h a t  for any  couples of Banach function spaces X and Y we have 
(Y', X ' ) e  I~t(Y' ,  X'), where X c X~ and ~Y ~ Y~ are Banach function spaces inter- 
mediate with respect to X and  Y, respectively. ~Tamely, let q~l be the dual space 
to ~b under  bilinear form 

f, ( / ,g)-~ (t)g ~ --{. 

Ir 

By J~  we denote the J-method of interpolation (see [3, 4, 6], for more details). Thus 
the above assertion follows from the following theorem (see [14]) 
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THEOREI~ 4.3. - Assume that (X0, X~) is a couple o] Banach ]unction spaces. I]  
a Banach ]unction space r e In t  L ~ is such that r rh .L ~ # L ~ rh L~/~ and ~ (h .L~/~ # 

,/~, then (Xo, X, )o  Jr X'~). 

Before proving the next  result we recall tha t  the Marcinkiewicz space M r on 
the interval I = (0, l), 0 < l <  0% with Lebesgue measure, is defined by 

t 

: ~ 
o<,<~\~v( ) 

0 

where the function ? :  R+ ->R+ is quasi-concave (~(s )<max (1, s/t}W(t) for all 
s, t e R+) and x* is the nonincreasing rearrangement of the function x. I t  is well 
known (see [10]) tha t  if ~(0+) = 0, then  the KSthe dual of My is the Zorentz space 

defined by 

l 

0 

I f  = moreover M r My. I t  is easy to verify tha t  if l <  co (1----oo), then Ar has 
continuous norm if and only if ~(0 -F) = 0 (~(0 -F) 0 and ?(oo) = oo). In  what  
follows we assume tha t  ~(0-F) = 0 and W(oo)---- oo if 1---- oo. Now we apply the  
Theorem 4.1 to obtain the following result (el. [11, 17]). 

THEO:~EI~ 4.4. -- (A~ ,A~)e ln t  ((Ayo,Ar) , (A,o, A~,)) i] and only i] there exists a 
constant c > 0 such that ]or all s, t E I 

< c  ma , 

P~oor.  - The inequality (9) is equivalent to the following condition (see [11,13]) : 
y~(t) < y~o(t) ](~(t)/y~o(t)), ~o(t) ](~ol(t)/%(t)) < c~(t) for some quasi-concave function f, 
c > 0 and all t e I .  Hence, applying the reiteration theorem (see [4]), we obtain 

M+ c M+j(+,/+o)= (M+., M+:)+ 

and 

! ! 

where ~ = Zl~ f. Since A~o -F A~, = Amin(~0,wl) , we have Mvo -F Mr, = Amin(eo,~l) an4 
so Theorem 4.1 applies. A necessary condition (9) is well known to be a necessary 
condition for the interpolation of symmetric spaces (see [11]). 
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