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Interpolation of Linear Operators in the Kiothe Dual Spaces (%)

MIECZYSEAW MASTYLO

Summary. — In this paper we investigate when the Kithe dual spaces ¥’ and X' ave interpo-
lation spaces with respect lo couples of the Kithe dual spaces (¥, ¥y) and (Xg, X}), vespec-
tively, where X and Y are inlerpolation spaces with respect to given couples (Xy, X,) and
(¥y, Y1) of Bonach function spaces.

1. - Introduction.

A pair 4 = (4,, 4,) of Banach spaces is called a Banach couple if 4, and A,
are both continuously imbedded in some Hausdorff topological vector space V.

For a Banach couple 4 = (4,, 4,) we can form the sum A, + A4, and the in-
tersection A, N A,. They are both Banach spaces in the natural norms [af, , , =
= inf {a,] ,+ [@,|4: 0 = as+ a,, as€ 4, a;€ A,} for a € 4, + A, and o] ag0a,=
=max (a],,, |a],) for acd,n 4,.

A Banach space 4 is called an intermediate space between 4, and 4, (or with
respect to A) if 4, 4,c A c 4,-- A, with continuous inclusions. For brevity, the
closure of 4, N A in 4 will be denoted by A°. We write 4% = (49, A?) for a Banach
couple A. If 4°= A, A4 is called a regular couple and then the dual spaces AF and
AY may be regarded as subspaces of (4, N A,)*. So (4¥, 4%) is a Banach couple
which we denote by 4*. Since (4, + 4,)* = A¥ N A¥ and (4, N 4)* = AF - A%
isometrically (see [2]), so if A is any intermediate space with respect to A, such
that 4, N 4, is dense in A, then A* is an intermediate space with respect to A4*.

In the theory of interpolation spaces Banach function spaces are importance.
We recall some fundamental notation.

Let (L2, u) be a measure space with u complete and o-finite. We denote by L0 =
= I°(Q, u) the space of all equivalence classes of u-measurable real valued funec-
tions defined and finite u-a.e. on £, equipped with the topology of convergence
in measure on w-finite sets.

A linear subspace X of L° is called an ideal (in I°) if |z|<|y| p-a.e. for x e L°
and y € X imply o € X. Note that every ideal X in L° with supp X = Q (supp X
is the smallest measurable set outside of which all funetions in X are equal to zero)
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is super order demse in 10, ie., for every 0<x e L9 there exists a sequence (v,)c X
such that 0<ux,}e, p-a.e. (see[9], Lemma 1, p. 138).

We say that an ideal X in L° iy a Banach function space (on (2, u)) if X is a
Banach space with the property |o|<|y] p-a.e. for z,ye X implies [2|x<]y|x.
Hence, it follows that if X, and X, are any two Banach function spaces (on (£, u))
then X = (X,, X;) forms a Banach couple.

We say that the norm |-y of & Banach function space X is continuous if »,e X,
0<,)0, imply [@,]|x — 0, semi-continuous if 0<w,te, € X, imply |a,|x — ||z,

monotone complete if 0<x,tr and sup |@,[x < oo, imply #€ X. If the norm of X
n==1
is semi-continucus and monotone complete, then we say that it has the Fatou prop-

erty.
The Hothe dual space (or associate space) X' of X is defined by

X' = {a'e L*: supp #'c supp X, {Jz|, |#'|> < eo for all v X},

where {w, »"> :fwm’d,u for (z, 2 )e X xX'.
Q

The space X’ is a Banach function space on (£, u) with the norm
[0/ = sup {|<, @' | le<1},
whence follows the Holder inequality
[, 25| < ]2 |22 -

In the remainder we assume that supp X = Q.

We note the useful remark that if X is a Banach function space, then by the
super order density of any ideal ¥ with supp ¥ = supp X in I° and Lebesgue dom-
inated convergence theorem we get

@'z = sup {[<@, #>|: [w]x<1, e ¥}

for all #'e X',

For a given Banach couple X = (X,, X;) of Banach function spaces (Xg, X1)
is a Banach couple which we denote by X'.

It is well known that if X is a Banach function space, then x|y = x|z for
@ € X, when the norm || is semi-continuous. Moreover X = X" and 2]z = |2|x
if and only if the norm of X has the Fatou property (see[9,19]). In particular
the norm of X’ has the Fatou property.

Let A = (4,, 4,) and B = (B,, B;) be two Banach couples. We denote by
(A4, B) the Banach space of all linear operators 7: 4, + 4, — B, + B, such that
the restriction of T to the space A, is a bounded operator from A, into B;, ¢ = 0, 1,
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with the norm

“Tni:(A,B) = max {HT“A.,-—)B.ﬂ ”THAI_)BI} .

We say that intermediate spaces A and B (with respect to 4 and B, respec-
tively) are interpolation spaces with respect to 4 and B and we write (4, B)e€
€ Int(A, B) if every operator from €(4, B) maps A into B. It is a consequence
of the closed graph theorem that, then the restriction of T to 4 is a bounded oper-
ator from A into B and

1T 4 5< 01T ¢a,m)

for some positive constant C independent of T e £(4, B).

If A coincides with B, then A is called an interpolation space with respect to
A and B and we write 4 € Int (4, B); if, moreover, 4, = B, and 4, = By, then 4
is called an interpolation space between A, and 4, (or with respect to 4), and we
write A € Int A.

In [2] ARONSZAIN and GAGLIARDO showed that if 4 is a regular Banach couple
such that 4, N A, is a reflexive space and A € Int 4 with 4, N A4, dense in 4, then
A* is an interpolation space between A¥ and A7. In this paper we investigate when
(Y, X'ye Int(Y',X') if we know that (X, ¥)e Int (X, Y), where X and Y are func-
tion Banach spaces intermediate with respect to given couples X = (X,, X;) and
Y = (Y,, ¥,) of Banach funetion spaces, respectively.

2. — Regular operators. Basic properties.

Let X c L2y, w) and Y c L84, u.) be Banach function spaces. We say that
the operator T: X — Y is regular if there exists the operator 7': ¥'->X' (which
we called the (order) adjoint of T) such that

<Twy :’/’> = <.’,0, T,?/’>

for all xe X and y' ¢ ¥Y'. Note that if the operator 7: X —Y is regular, then 7
is linear, moreover if 7' is bounded, then by Holder inequality we get that T is
a bounded operator and [T'|y . o <|T|x,y-

Now we give a useful theorem which characterizes regular operators. First of
all, let X be a Banach function space. Let I' denote the set of all linear continuous
functionals defined on the space X by

I= {fo: fo(@) = <, 07, 2’ X7}

It is easy to see that I' is a total linear set of the dual space X*, so on the space X
we can define the I-topology (which we denote by o(X, X’)) generated by the fam-
ily of semi-norms {p.:’' € X'}, where p.(x) = |f.(2)].
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THEOREM 2.1. ~ Let X and Y be Banach function spaces. An operator T: X — ¥
is regulor if and only if the following condition holds

(1) o> in o(X, X'), imply Tw,—>Toin o(¥Y,Y).

PROOF. — Assume that an operator 7': X —Y is regular. Then there exists an
operator T': ¥'— X’ such that {Tx,y> = (&, T'y’> for all ze X and y' e Y. Let
2, —~ 2 in olX, X'), ie. {»,, 2> — {x, 2> for all 2’ X'. Thus

<Twm ?/’> = <wn7 T’yi> “*<my T,?/,> = <Tw7 y’>

for all y'€ ¥', whence Tw, - Tz in o(¥, Y').

For the converse suppose that an operator T': X — ¥ satisfies the condition (1).
Take a sequence (#,) in X with |»,/<#, v X and x, —0 a.e. Then z, =0 in
o(X, X'), by Lebesgue dominated convergence theorem. Now, if we set f,(z) =
= {Tz,y'> for each € X, where y'cY’, we see that f,(z,) — 0 for each y'c ¥’
(by Tz, — 0 in o(Y, Y')). It follows that f,  is an order continuous linear functional
on X for each y'e Y'. Therefore, there exists (exactly one) element 2’ € X’ such that
fo(@) = <, o> for all ze X (see [9]). Now it is enough to observe that if we set
T'y' = &', then the map T': Y — X' iy linear and f,(z)= (@, T'y'>. Thus
Tz, y'> = <@, T"y’> for all xe X and y'eY’, so the operator T is regular.

COROLLARY 2.2. — Let X and Y be Banach function spaces. If the operator T: X — Y
is regular and the norm of Y is semi-continuous, then T is bounded.

ProoF. ~ Let #, — 2 in X. Then x, —x in ¢(X, X’), by the Hélder inequality.
Since the operator T: X —Y is regular, it follows that for each y'e Y’

(2) KT@ny y'>] = KT, y'>l a8 n—> oo,

by Theorem 2.1.
Now let ¢ > 0. By semi-continuity of the norm |-{y, we have

T2y = sup {KTz, y>|: |y'[» <1} .
Then the inequality
3) 1Ty < <T@, yoo| + /2

holds for some y €Y' with |y;l, <1. Since there exists an n,e N with
(KT, yop | < [<Tay yod| + /2
for all » > n,, by (2), so from (3), we get

T2y < KT yo>| + e< [ Taly + ¢
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for all n > n,. Since ¢> 0 is arbitrary |T#|r<liminf|7T,|y holds. Consequently,

H—> 00

since T is linear our assertion follows from a well known fact that the linear oper-
ator § from a Banach space F into a normed space F is continuous if and only if
@, > in E imply |8z]r<lim inf|Sz,|s.
> 00
REMARK. — If X is a Banach function space, then the mapping #' + f,., where
forl®) = <&, &’ for ® € X is a linear isometry from the Kothe dual X’ of X onto X*
if and only if X has continuous norm (see [9]). Hence, by applying Theorem 2.1,
we obtain (cf. [8]) the following

THEOREM 2.3, — Let X and Y be Banach function spaces. A linear bounded op-
erator from X into Y is regular if and only if X has continuous norm.

3. — Interpolation in the Kothe dual spaces.

Let X, Y be Banach function spaces. An operator T: X — Y is positive if
T(X*)c Y*, where X+ = {xe X: 4>0}. Note that every additive operator T,:
X* — ¥* has a unique extension to a linear operator 7: X — Y. This extension
is defined by the formula T'(x) = Ty(w+) — To(2~) (see [1], Theorem 1.7, p. 7 ). Note
also that a positive linear operator 7: X — Y is bounded (see [1], Theorem 12.3,
p. 175).

Let X = (X, X,) and Y = (¥,, ¥,) be couples of Banach function spaces, then
by £.(X,Y) we denote the subspace of all operators 7' e £(X, Y) such that the re-
strictions T'|y: = Ty, are regular operators from X, into ¥, i = 0,1. By £,.(X,Y),
we denote the set of all operators T e £(X,Y) such that Ty: X, — Y, (i =0,1)
are positive operators.

If X and Y are Banach function spaces intermediate with respect to X and Y,
respectively, then we write (X, Y)elInt (X,Y) if TXc ¥ for all Te £ (X, Y).

In this section we are interested in the problem, when (Y’, X')e Int, (Y, X')
(Int(Y', X)) if we know that (X, ¥) e Int, (X, Y)(Int(X,Y)). To answer this prob-
lem we need some propositions.

Prorosrrion 3.1. — Let X::_ (Xo, X;) and Y = (X,, ¥,) be couples of Banach
function spaces. If an operator T € L.(X,Y), then there ewists an operator T' € £(Y', X)
such that T'|y; = T%,, where T%, is the adjoint of Ty, i = 0,1.

ProOF (ef. [2]). ~ Let Tef/(X,Y), then there exist operators T%:Y! - X!
such that {T'x @;,y;> = <@, Tx,y;> for all 7;e X, and y,e Y}, ¢=0,1. Hence

@ Tx,y") = {Tx,2, 4> = Tx,2, ¥ = <@, Ty,y'>

for all ze X, N X, and y'e Y;NY;. Thus <&, Ty y — Tyy'>=0 for each we
€ X, N X;. This implies that |Tx y'— T% 4'|(x,nx,y =0 for all ¥e¥Y,;N Y}, so
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Ty,= Ty, on ¥Y;N Y;. Now, if we define the operator T': ¥, + Y7 - X’ 1 Xy,
by T'y'= T%yo+ Txy, for y' =y, + y; with y,e ¥Y!, i=0,1. Then simply
T'y" is independent of the choice of the decomposition y' = y} 4 y;. Obviously
Ty, = T%, (1=0,1) and I"e (Y, X").

The following useful Proposition follows immediately from Theorem 3.1 in [12].

ProrostTION 3.2. — Let (Xo, Xi) be & couple of Banach function spaces, then
(Xo -+ X3) = XoN X; and (X, N X,) = X + X} with equality of norms.

In the remainder let X = (X,, X;) and Y = (Y,, ¥;) be couples of Banach func-
tion spaces.

THEOREM 3.3. — Let a couple ¥ = (Y,, Y,) be such that the norm of Y, 4 Y! is
CONLENUOUS.
(@) If Y, =79, (i=0,1) and Relf (Y, X'), then there exists an operator
Tef (X,Y) such that T'= R.
(b) If Xy,N X, is dense in X, (i =0,1), Yo Y, = Y, Yy, the norms of
Y, ave semi-continuous (i =0,1) and RBeL(Y',X'), then there ewists an operator
Tel(X Y) such that T" = R.

PRroOF. - () Let an operator Re £ (Y’ X'). Then R: (¥,N Y,) - (X, N X}),
by Proposition 3.2. Sinee Y; -+ ¥; = (¥, N Y;) has a semi-continuous norm, if
follows from Theorem 2.3 that the operator R: (¥, N Y,) — (X, N X))’ is regular.
Thus there exists a linear and bounded operator §: (X, N X)) - (¥,N T,)" =
= ¥, N Y, satisfying the equality {(Ry', 2> = {y', 8z") for all y'e (Y, N Y;) and
v'e (X, N X;)’. Hence it follows that § is a positive operator and

(4) (By's @y = (', Su)

for all e (¥, N Y,)'=Y,+ ¥;and ve X, N X, by X,N X, c (X, N X;)". Thus,
by the semi-continuity of the norms in ¥, (¢ == 0,1) and Holder inequality we have
|82y, = sup {[<y" 8z [y |v;<1} = sup {[KBY' #)]: |y'[n<1}<
<sup {|BY'|x; [#]z,: |4 |, <1} = [ Bl v;ox; [,
and
(8w |y, < [Blyi—x @],
for all » e X, N Xj.

Now let fix e X, with #>0. Since X, N X, is an ideal, so there exists a se-
quence (z,) in X, N X, such that 0 <x,fw. Thus 0<8w»,}, by positivity of §. Since
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185, 1y, < 18] 2,5 7,1 %al 2, < 18] 2, v,]# ] x,, it follows from the Fatou property in ¥,

that
Soz: = 1lim Sz, e Y,

fA—> 00

and

[8o2]z, = lim |8z, v, < [S]xesv, Hm 2], < |81z vz, -

We show that the operator S,: Xj — Y7 is additive. To see this we first show that
8o = lim Sz,, where z € X{, is independent of the choice of the sequence (w,)c
c X, X, such that O<w,fw. Let we X[, (x,)c X,N X, with 0<®,f®. Then
o By'| < || [By'], Iy’ Szl <ly'|1Sa] and <Ryl [o]> < | Ry Lx;lells, < o0, <ly'| |Saly<
ly' [l %;] 82| ¥, < oo for all y’e ¥y, by Holder inequality. Hence {Ry', z,» — (Ry’, >
and ', Sz,> — {y', Syx)> as n — oo, by Lebesgue dominated convergence theorem.
Finally if we put Syz = y,, then

(5) (Ry', 2> = <Yy yor = {y', lim Sw,.»
Fo—> ©O

for all y'e ¥, by (4). Now if 0<y,te with (y.) c X, N X, then lim Sy, = §e Y,
and <Ry', x> =<y', Yoy, <RY'y &> =<y, §op, by (5). This implies that y',y,— Fo> =0
for all y'e Y, and consequently lim Sz, = Jim Sy.. Hence, we obtain easily that
the operator S,: Xy — Y is additive. Thus, S, has a unique extension to a linear
operator Sy: X,~>Y, defined by the formula Sy(x) = 8y(x*) — S,(z~) for ze X,.
Obviously S, is bounded and |S,z|y,<2]8|x, 7, |#]x,- Moreover

(6)  <why Bow) ="Ys, oty — Yy, Byt~ =
= (Ryy, "> — (Rys, 2> = {RBys, &+ — 47> = {Rys, )

for all ze X, and y €Yy, by (5).
Similarly, we define a linear operator S,: X; — ¥, with |S,2]y <2|8]xv[#]x
and

() @1, Suw)y = (RByi, x)

for all ze X, and y, €Y. Obviously Syw = 8,2 for xe X, N X,. We simply set
Ty = Syay + Sya, for = x, + x,, where z,€ X;, 1 = 0,1, and show that Tz is
independent of the choice of the decomposition @ = x, - 2,. Since S;: X;, Y,
(¢ = 0, 1) are positive operators, so Tef (X,Y). By (6) and (7), we see that
Tef(X,Y)and Ty = 8 = By, T, = §{ = Ey.. From Proposition 3.1, we get that
there exists an operator 7" e L(Y', X'), such that Ty’ = T§ y, - Tk, ¥, for y'= y+ y.
with y,eY; (¢ = 0,1). To finish the proof note that 7'y = Eyy, + Byyy =
By, + y;) = Ry’ for all y' €Y, 4 ¥!. Consequently 7'= R.

(b) Modyfing the proof of (@), we obtain easily the proof of (b).
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ProrositioN 3.4. — Let X and Y be Banach function spaces intermediate with
respect to X and Y, respectively. If (X, Y)eInt(X,Y) and T el (X,Y), then T'|y
is a bounded linear operator from X' info X'

Proor. ~ Let we X, N X, and y'=y, + y;, with y;e ¥, y;€Y;. Then by the
construction of the operator T'e £(Y’, X'} (see Proposition 3.1) we have

Tyz, Y = Ty, ?/(; -+ ﬁ’/;> = <TX1’7 y:)> + Ty, y;> = <TX0 @y ?/a> + <Txlm, ?/;,L> =

= (u, Tx yo> + <, Ty = <& Tx 9o + Txy0 = <&, T'y'> .

Thus {Txw, 4> =@, T'|py’) for all xe X,N X, and y'eY’, by Y'cY, + Y. Since
X, N X, is an ideal it follows from the Hoélder inequality that

1Ty | 5 = sup {[<w, T'y">]: [olx<1, we XN Xy} =

= sup {[{Tx@, yOl: lo]z<1, 1€ XN X} <[ T]xor|y'ly -
THEOREM 3.5. — Let a Banach couple Y= (Y,, Y,) be such that the norm of
Y, + Y, is continuous.

(a) If Y;’ =Y, (i=0,1) and (X, Y)e Int, (X, Y), then (Y, X') € Int (Y, X').

(b) If Xy X, is dense in X; (i = 0,1), YZ N YZ = Y, N Yy, the norms of X, are
semi-continuous (i = 0,1) and (X, Y) e Int(X, Y), then (Y', X') € Int (Y, X",

The proof is clear by virtue of Theorem 3.3 and Proposition 3.4.

COROLLARY 3.6. — Let X; = X,, Y, =Y, i = 0,1 and let the norms of Xo--2X;
and Y, -+ Y, be continuous.

@) If (X, Y)eInt(X,Y), then (X', ¥')€ Int(X, Y).
®) If X"= X and Y'= Y, then (X, ¥) € Int (X, Y) if and only if (¥', X') eInt (Y, X').

PROOF. — Since X, N X, is an ideal and the norm of X, + X, is continuous, so
X, X, is dense in X, - X;. In consequence X, N X, is dense in both X, and X,
(see [2]). Similarly we get that ¥, N Y, is dense in ¥; (i = 0,1). Thus, Corollary
follows easily from Proposition 3.2 and Theorem 3.5 (b).

REMARK. ~ In general X'e Ini (X}, X,) does not imply X e Int(X,, X,). Name-
ly, let L' = L'(0, o), L = L>(0, oc). Russu has given an example of a symme-
tric space X on (0, oc) such that X ¢ Int (LY, L®) (see [10], Theorem 5.11). Since

the norm of a symmetrie space X’ has the Fatou property, so X'e Int (L®, L) =
= Int ((I*), (L)) (see [10], Theorem 4.9, p. 142).
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Tn the remainder we need the following

PROPOSITION 3.7. — Let X be a Banach function space in I p). If YcX isa
linear ideal in L° with supp ¥ = supp X = Q, then (Y*) = X' with equality of norms.

ProoF. — Let E = Y*. Obviously F is a Banach function space and X'c E’
with |2/ |z < ||y for all a'e X'. Now let #'c E', then

(8) Clyl, l'[> < o0

for all ye E. Let xe X. Since Y is a linear ideal in I°, so there exists a sequence
(y,)c Y such that 0<y,}|»| u-a.e. Hence by (8)

fl«’v’lyn du< ||z |yalz = '] |yalz<]2"|=|2]x

and consequently, by Levy’s Lemma <|z|, |#'[>< |#'|x|#|z<< co. Thus 2’'€ X’ and
2|z < | |z and the proof is finished.

From Theorem 3.5 and Proposition, 3.7 we obfain the following

COROLLARY 3.8. — Let a couple Y= (¥, Y,) be such that the norm of ¥, + ¥,
is continuous, ¥y N Y, =Y,N Y, and the norms of Y, are semi-continuous (i = 0, 1).
If (X, Y)YeInt(X,Y) implies (X° Y°) e Int (X" Y°), then (¥Y', X') e Int(Y', X').

The next result is a consequence of Corollary 3.6 and Ogasawara’s Theorem
(see [1], Theorem 14.22, p. 240) from which it follows that a Banach function space
I is reflexive if and only if the norms of ¥ and E' are continuous and " = H.

COROLLARY 3.9. — Let X, and X, be reflexive Banach function spaces. Then X ¢
€ Int(X,, X,) if and only if X'eInt(X,, X,).

4. — Interpolation in special Banach function spaces.

In this section we give applications of our results to concrete function Banach
spaces. Let 4 be a couple of Banach spaces. Denote by L®, respectively L , the
space of all measurable functions # on R, such that |x(s)|, respectively |z(s)|/s, is
essentially bounded. Put L® = (L®, L;}). For any Banach function space & in-
termediate with respect to L, the real interpolation space (or K space) A, is de-
fined to consist of all @ € 4, + 4, such that K(-,a; 4) € §, with the norm [a], =

= || K(+, a; A)||p, Where for a € 4, 4, and ¢>0

EK(t,a; A) = inf {|a,] 4, + tla,]4,: 6 = 60+ ay, ag€ Ao, a;€ A3}

is the K-functional of Peetre.
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Let 4 and B be two Banach couples. We say that 4 has the Calderdén property
relative to B if the condition

K@ b; B)<K(t, a; A) for all t> 0

implies the existence of an operator 1 € £{4, B) (whose norm depends only on the
couples 4 and B) such that T'a =b.

THEOREM 4.1. — Let X = (X,, X;) and Y= (Y,, Y;) be Banach funciion spaces
and let 'Y be such that Y, Y. has continuous norm, Y ,NY, =Y NY, and the
norms of Y, are semi-continuous (i = 0,1). If Ec Xp and F > Ys are Banach func-
tion spaces infermediate with respect to X and Y, respectively, then (F', ') € Int (Y, X').
In porticular, if X has the Calderén property relative to Y and (X, Y)e Int(X,Y),
then (Y, XY e Int(Y', X').

ProOF. — First we note that (&, F)e Int(X,Y). Since K(t, a; A), A)) = K(t, a;
Ay, Ay) for all ae (4, + 4,)° = A2+ A4S, so Eoc (X, X))y = (X, X7)p and F°O
5 (¥, ¥y) = (Y9, ¥")5. Hence (E° F°)eInt(X° Y?) and consequently (¥, E')e
e Int (Y, X'), by Corollary 3.9.

If X has the Calderén property relative to Y and (X, Y) € Int(X, Y), then there
exists a Banach function space @ € Int L” such that X c Xp and ¥ > Y» (see [4, 15]).
Thus the proof of the theorem is complete.

It is well known (see [5, 7,16, 18]) that the couple (L™, L™) has the Calderdén
property relative to (L%, L"), where 1<p,<g< oo and 1<p;<gqi<co. Thus, by
Theorem 4.1 we get the following

COROLLARY 4.2. — Let X = (L7, I*) and Y= (L%, L"), 1<po<p<< 00, 1P <
<q< oo, g, v £ L. If (X, ¥)eInt(X,Y), then (¥, X') € Int (L%, L), (L%, I#%)),
where 1/p; + 1/p;=1/g; + 1jg; =1 (i =0, 1).

If a Banach function space @ & Int L satisfies some conditions, then, it is pos-
sible to show that for any couples of Banach function spaces X and Y we have
(Y, X')e Int(Y', X'), where X ¢ Xo and Y > Ys are Banach function spaces inter-
mediate with respect to X and Y, respectively. Namely, let @* be the dual space

to @ under bilinear form
1\ dt
(f9) = f f(t)g(;)7 :
Ry

By Jy, we denote the J-method of interpolation (see [3, 4, 6], for more details). Thus
the above assertion follows from the following theorem (see [14])
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THEOREM 4.3. — Assume that (X,, X,) is a couple of Banach function spaces. If
a Banach function space @ € Int L is such that @ N L* = L* N Ly and & N Ly +
= L° N L3, then (Xy, X))g = Jau(X,, X,).

Before proving the next result we recall that the Marcinkiewicz space M, on
the interval I = (0,1), 0 < I< oo, with Lebesgue measure, is defined by

13

1
M, = {meLO: lelly = osgtgl(a(—tj m*(s)ds)< oo},
0

where the function ¢:R, —R, is quasi-concave (p(s)<max {1,s/t}p(t) for all
s,teR,) and «* is the nonincreasing rearrangement of the function ». It is well
known, (see [10]) that if ¢(0,) = 0, then the Kothe dual of M, is the Lorentz space
defined by

Ay ={oe I o), = f a(5) dp(s) < oo

moreover M, = M,. It is easy to verify that if I < oo (I = co), then A, has
continuous norm if and only if (0 +)=0 (p(0+)=0 and ¢(oc) = oo). In what
follows we assume that @(0 4)=0 and @(c0) = oo if I = co. Now we apply the
Theorem 4.1 to obtain the following result (cf. [11,17]).

THEOREM 4.4. — (4,,A4,) € Int ((4,,,4,), (4,,,4,) if and only if there exists a
constant ¢ > 0 such that for all s,tel

(9 —-<Lemax %(S), 2(5) .

P(?) {wo(t) wl(t)}
®(s)

PrOOF. — The inequality (9) is equivalent to the following condition (see [11,13]):
() < polt) F(w1 () [wo(?)), @olt) flea(t)/po(t)) <c(t) for some quasi-concave function f,

¢>0 and all teI. Hence, applying the reiteration theorem (see [4]), we obtain
M‘P c M‘{"of(q’l/‘?’o): (pro’ M‘Pl)‘p

and
M2 My 0,190y = (Myyy My )o 5

where @ = L. Sinee A, + A, = A 00 p9r We have M, + M, = A ., . and

so Theorem 4.1 applies. A necessary condition (9) is well known to be a necessary
condition for the interpolation of symmetric spaces (see [11]).
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