Tohoku Math. J.
60 (2008), 23—-36

INTERPOLATION OF MARKOFF TRANSFORMATIONS
ON THE FRICKE SURFACE

TAKESHI SASAKI AND MASAAKI YOSHIDA

(Received May 29, 2006, revised September 25, 2006)

Abstract. By the Fricke surfaces, we mean the cubic surfaces defined by the equation
p%4+q%+r2—pgr—k = 0inthe Euclidean 3-space with the coordinatesy, r) parametrized
by constank. Whenk = 0, it is naturally isomorphic to the moduli of once-punctured tori.
It was Markoff who found the transformations, called Markoff transformations, acting on the
Fricke surface. The transformation is typically given(y ¢, r) — (r, ¢, rq — p) acting on
R3 that keeps the surface invariant. In this paper we propose a way of interpolating the action
of Markoff transformation. As a result, we show that one portion of the Fricke surface with
k = 4 admits a GI2, R)-action extending the Markoff transformations.

Introduction. By the Fricke surface, we mearetspace defined by the equation
(0.1 p2+q2+r2—pqr—k=0

in the Euclidean 3-spadg® with the coordinatesp, ¢, r). It has attracted interest innumer-
ably often for over a century. Wheén= 0, it is naturally isomorphic to the moduli of once-
punctured tori, first considered by Fricke and Klein [2] and often called the Fricke moduli.
We refer to the papers [5] and [6] for the natural isomorphism.

It was Markoff who found the transformations, called Markoff transformations, acting on
the Fricke surface in relation with the theory of quadratic forms. The transformation, typically
given by

T:(p,q.,r)—~ (r.q,rq — p)
acting onR3, keeps the surface invariant. As we know that quite a few contributions were
made and are still in progress, in this paper we propose a way of interpolating the action of
Markoff transformation. As a result, we show that the spageq,r) ; p? + ¢ + r? —
pqr —4 = 0,p > 2,q > 2,r > 2} admits a Gl(2, R)-action extending the Markoff
transformations.

To give a more precise statement, we first considentlimes composition of the trans-
formationT':

T": (p,q,r) > (ba-1(q@)r — bp—2(q) . 4. bu(q)r — bu-1(q)p)

whereb, (¢) is ann-th Chebyshev polynomial. By defining the functidngg) with a con-
tinuous parametet, which interpolate the sequence of Chebyshev polynomials, we define a
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transformation

T : (p,q,r) = (bi—1(q)r — bi—2(q)p, q, b:(g)r — b;_1(q) p)

in Section 2. It gives rise to a one-parameter group and its action on the Fricke space is
also given in Section 2. By using the symmetry amongst the lettegsandr, we define

two similar one-parameter groups and thus have a gédbgpnerated by these one-parameter
groups.

Next, in Section 3, we compute the algebra generated by the infinitesimal automorphisms
of the one-parameter groups above. It is shown that only vithen4 is the algebra finite
dimensional and isomorphic to the Lie algebr@sR). A specific role of the caske = 4 is
also clarified in [3], where the Markoff transfoations are investigated as a dynamical system
on the surface.

In Section 4, we treat the cage= 4 and, by introducing an affine coordinate system
on the surface, we show explicitly that the group(@LR) includes the grou; and acts on
the spacd(p,q.r); p°?+q%+r°—pgr —4=0,p >2,q > 2,r > 2}.

1. Frickesurfaces. We define a function oR3 with coordinatesp, ¢, r) by

¢(p.q.1) =@ (p.q.1) = p* +q*+ 1% — pqr —k,
wherek is a real parameter and define a surface by

Vi ={(p,q,r) € R®; ppy =0},

called simply the Fricke surface with parameteWe refer to the book by Fricke and Klein
[2] and the articles [5] and [6].
The shape of the surface depends on the parameter. To have an intuitive image, we first
present four pictures; refer to Goldman [3] for further pictures.
Figure 1(a), wheré = 0, consists of four portions (and the origin) and each is asymptotic
to the hyperplanesp = +2}, {¢ = +2} and{r = +2} at infinity; the portion in the first
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FIGURE 1. Fricke surfaces with (& = 0 and (b)k = 4.
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(@) (b)

FIGURE 2. Fricke surfaces with (& = 2 and (b)k = 8.

octant is asymptotic to the hyperplarigs= 2}, {¢ = 2} and{r = 2} and so on. Figure 1(b),
wherek = 4, consists of five portions and thegeaouching each ber at the points2, 2, 2),
(=2,-2,2),(2,—-2,—-2)and(-2, 2, —2).

In the case& < 0, the surface looks like that with= 0 with the origin excluded. In the
case O< k < 4, it looks like Figure 2(a) wherke = 2. In the casé > 4, the surface has only
one component and is similar to Figure 2(b) whiere 8.

As is seen from the defining equation or from the figures, the surface has an apparent
symmetryK x Sz, whereSs is the group of permutations of the coordinateg; andr and
K = (Z2)*? is the Klein four-group generated by sign changes, r) — (p, —q, —r) and
(p,q,r) — (—p, g, —r); itintertwines the four non-compact components wken 4.

To have an extrinsic view more closely, we compute the second fundamental form of the
surface. We set

(1.1 $p=2p—qr, @;=2q9—pr, @ =2r—pq.

If we regard the surface as a covering of hg-plane, the third coordinateis a function of
(p, q) as long ag, # 0. Then the first derivatives afrelative to(p, ¢) are

¢ _ %

Pr Pr

Then the second derivatives are

rop = =292 + qeper + 92) /92 = —2(q* — H(g® — k) /2.
Fog = —(=r 2 + pop@r + q0e0r + 20,09) /9

= {r(p? — H(q? — ) — 22r + pg) (4 — K} /92,
rag = =202+ pegpr + 92 /97 = —2(p* — H(p* — k) /¢} .
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From this formula, a computation whén= 0 shows that
O rpprag — 15,) = —(p* — H(g® — H(r* — 4) + 32(p® + ¢° + r?) — 64,

which implies that the surface cannot be convex; this is not obvious as seen from Figure 1.
Whenk = 4, the determinant simplifies to

Foptaq — g = =2 = 8)/(p* = ) (g* — 4)) .
This expression and the similar expressions obtained by changing the pole ahdr imply

that the surface isoncavewhere|p| > 2, |q| > 2 and|r| > 2, convexwhere|p| < 2,|q| < 2
and|r| < 2 anddegenerate along six linesp = £2,4 = +2 andr = +2.

2. One-parameter groups acting on the surface V.
2.1. Definition of one-parameter transformations.  Any Fricke surface has a set of
simple automorphisms, called the Markoff transformations, which are defined as

T:(p.q,r)— (r,q,rq — p),

R : (psqu) = (psrvpr_q)a

S:(p.q.r) — (q.qr — p,r).
They satisfy the relatiod = T-1RT. Let Gz be the group generated iy R andS. The
functiongx, turns out to be invariant undéiz irrespective of the value @f, thus, itis a group
of automorphisms of the surfadé. Note thatGz does not commute with the Klein four-
group K and that it does not generally preserve the connected componevits lndwever,
the component in the box > 2, ¢ > 2 andr > 2 (when it exists) is invariant and so is the
component in the cubp| < 2, |¢| < 2 and|r| < 2 (when it exists). Refer to [5].

It is well known and easy to show that the correspondence

11 1 0
T+—><0 1) and R|—>(1 1)

gives an isomorphism betweé€éry and PSk(Z). We refer to [1, 3, 4]. We are curious about a
possible continuous group of automorphisms ®f having Gz as a subgroup.
We start by recalling one of the Chebyshev polynomials which we denaig(py. They are
determined by the difference equation

bp \ _(q -1\ (bu-1
bp—1) \1 0 /) \b,—2
with the initial conditionsho(¢) = 1 andb1(g) = ¢. This polynomial coincides witls;, (¢)

in [7] and is equal to the hypergeometric polynomi@H 1) F(n + 2, —n, 3/2; (2 — q)/4).
Induction onn leads to the following lemma.

LEMMA 2.1. LetT" = T(T"~1) denotethen-timescomposition of 7. Thenitisgiven
by
T": (p,q,r) = (bp_1(q)r —by—2(q)p, q,by(q)r —by—1(q)p) .



INTERPOLATION OF MARKOFF TRANSFORMATIONS 27

Smilarly, for R and S,
R : (p,q,7r) = (P, bu—1(p)r — bu—2(p)q, bu(p)r — bu-1(p)q) ,
8" (p,q,1) > (ba-1(r)q — bp—2(r)p, b (r)q — by—1(r)p, 7).
We next define the functiob;(¢) for a continuous parameterso that it satisfies the

equation
b\ _ (¢ -1\ (1
bi-1) \1 O 0

and that it coincides witth, (¢) whens = n is an integer. Such a function is uniquely deter-
mined and an explicit expression is given by
1

Vq? -4
_q++Vg* -4
=T -

t+1 t+l)

(2.1) bi(q) = AR

where

q—Vq*>—4

—

Wheng?—4 < 0, we interpret/q2 — 4 asi /4 — ¢2. Interms of the hypergeometric function,
we haveb;(q) = (t + DF( + 2, —1,3/2; (2 — q)/4). It has the properties given in the
following lemma that can be verified by the use of (2.1).

ot and o_ =

LEMMA 2.2. Wehave the following properties:
(1) bip1+bi—1=qby;

(2) bsys = bsb; — by_1b;_1;

() (bi—1)?—bib_2=1;

@) (b)?+ (bi—1)? — qbb—1 =1

(5) bilg=2=1t+1.

Using the functiorb,, we define a one-dimensional continuous group by the action

T : (p,q,r) = (bi—1(q@)r — bi—2(q)p, q, b (q)r — b;_1(q)p) .

Property (2) of Lemma 2.2 implies thd@} form a one-parameter family of automorphisms,
i.e., Ty+s = Ty o Ty and Property3) assures thal; preserve the surface, for any fixedk.
Similarly, we definer, andsS; by

R : (p.q,r) = (p,bi_1(p)r — bi—2(p)q, b (p)r — b—1(p)q) ,
St (p,q,r) > (bi—1(r)q — by —2(r)p, b (r)g — by—2(r)p, 7).

They have similar properties as thoseTpf Furthermore, by Property (1) of Lemma 2.2, we
see thal R, T = ;.

In the following, we denote by the group generated [ and R, (so, also bys;).

Now, an important remark is in order. The functiby(gq) is defined forg > —2 and
is real-valued; it is singular at = —2. Hence, we need to restrict our consideration of the
automorphisms above to the part of the surface lying inthggey, r) e R®; p > =2, ¢ >
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—2, r > —2}; this part will be denoted by. We will see in the following section that the
surfaceV is invariant under these automorphisms.

2.2. Decomposition oV into G-orbits. In order to see the action@fonV, we study
the section ofV by a plane parallel to any one of the coordinate planes. Such a section is
generally a quadratic curve and the one-parameter subg{@up$R,} and{S;} preserve the
coordinate functiorg, p andr, respectively. To have an explicit description, we consifier
in some detail. It defines a motion on the quadratic curve for general fixed vajue of

First, we take care of the cage= 2. In this case(r — p)2 = k — 4. Since we have no
such points whek < 4, assumé& > 4. Thenys = p £+ 'k — 4. Since the image dfp, 2, r)
is(p,2,7) = (tr — @t —LDp,2, @+ r — tp) in view of Property (5) of Lemma 2.2, we
musthavep — p =t(r — p), 7 —r =t(r — p) andi — p = r — p. Hence, ifr # p, which is
possible only whek > 4, the point(p, 2, 7) runs on the two lines defined by= p++vk — 4
ast varies. Wherk = 4, we haver = p and the poin{(p, 2, p) is fixed underT;, i.e., the
whole line(p, 2, p) is pointwise fixed.

We next consider the case where> 2 and introduce new coordinatég, R) on the
pr-plane by

P=(p—r)g+2/2 and R=(p+r)/q—2/2.
Then(p, q,r) € V ifand only if (P, R) is on the hyperbola
P2 —R?=k—q°.
We assume further thaf > k for the moment and introduce a parametem the hyperbola
by
P =g?—ksinhp and R=q?—kcoshp.

Let (p, g, ) be the image ofp, ¢, r) underT; and P and R the corresponding values &
andR. We then define the valuedepending om by

gb;—1(q) — 2b;—2(q)
2
This can be done, because Property (4) of Lemma 2.2 as&sisr)? — (sinha)2 = 1. By

the definition ofp;, we have cosh = (¢} + ¢!)/2 and sinhw = (-0’ + ¢’ )/2. Then, we
can check that

cosho =

1
and sinhy = -5 g% —4bi_1(q) .

P = Pcoshe + Rsinha and R = P sinha + R cosha .

That is, relative to the parameter the motion byT; is the translation by the amount of
Whent tends to infinity, the value af also tends to infinity in both sides. Indeed, we can see
thata = t(log(g — +/q2 — 4)/2).

Wheng? < k, we only need to replace the role Bfwith that of R. Wheng? = k > 4,
the hyperbola reduces to two lines that are written asox p. We then see that; = p(o1)’
on the liner = o4 p andp, = p(o_)" onthe liner = o_p.



INTERPOLATION OF MARKOFF TRANSFORMATIONS 29

FIGURE 3. Section ofV by the plane (a§y = 3 and (b)y = 3/2.

If 4% < 4, we defineP andR by

P=(p—r)2+q/2 and R=(p+r)/2—q/2;

we haveP? + R? = k — ¢°. Hence, the case whegé > k does not occur and the case where
g% =k leads to(p, ¢, r) = (0, ¢, 0), which is a fixed point. So, we need to consider the case
whereg? < k. Then(P, R) lies on a circle. By introducing by

P =k —qg?sinp and R = k—qg°cosp
anda by

b — 2b,_ . 1
cosa = It 14) 5 -2(d) and sinx = 5‘/4_ q%bi-1(q) .

we see that the motion undéris a rotation on the circle by ange

The curves drawn in Figure 3(a) are sections of the surfaleg planes parallel to ther-
plane whery = 3; the parametet takes the values 0, 4, 9 and 16. In Figure 3(b), the curves
are sections wheq = 3/2; the parametek takes the values 4, 8 and 16.

The consideration above shows that the global behavior of the transformation changes
depending on the value &f Referring to the notatio(il.1), we sety,; = 2p; — g7y, 941 =
2q — prr andegy, = 2r, — qp;. Then we see thatp,)? = (¢ — 4% — &) + 4k — 4),
(0g)% = (r2 = B(p? — 4) + 4k — 4 and(g1)? = (p? — 4 (g% — 4) + 4(k — 4). Hence, f
k < 4,thenp? — 4,92 — 4 andr? — 4 have the same sign, which means that the ¢pbe: 2,
lg] < 2,|r| < 2 and the boxp > 2,9 > 2,r > 2 are invariant undet;. If k > 4, then
g% > k > 4, which means that such an isolation ag ir: 4 is not possible. Indeed, on the
curve withg? > k, the values of andr are unbounded in both directions and, although the
transformatior?; is defined on this curve, the transformati®n(resp.S;) becomes undefined
when the valug (resp.r) is less than or equal te 2.
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We summarize the behavior of the action®in the case wherk < 4 as follows.

PROPOSITION 2.3. We have the following cases.

e Casek < 0. Thesurfaceisincluded in the domain p2 > 4,¢2 > 4and r2 > 4 and
the argument for the hyperbola case applies. In particular, the action of the group G on the
surfacelyinginthebox p > 2,q > 2,r > 2istransitive.

e Case O< k < 4. Pointson the surface belong to the domain p2 > 4,¢% > 4,r% > 4
or tothecube |p| < 2,|q| < 2,|r| < 2. Thepoint (0, 0, 0), when k = 0, isisolated and fixed
by G. The actions of the group G on the surface lying inthebox p > 2,4 > 2,r > 2 and
that on the surface lying in the cube |p| < 2, |q| < 2, |r| < 2 are transitive.

e Casek = 4. The surface includes the lines {(a, a, 2)}, {(a, —a, —2)}, {(a, 2, a)},
{(a, -2, —a)}, {(2,a,a)} and{(—=2,a,—a)}. The three lines {(a,a, 2}, {(a,2 a)}
and {(2, a, a)} are pointwise fixed by S;, T, and R;, respectively. In particular, the point
(2, 2, 2) isfixed by the group G. The part of the surfacelyinginthebox p > 2,g > 2,r > 2,
with (2, 2, 2) deleted, is one orbit of the group G.

2.3. Invariant area form.  We study some local properties of transformatio@s in
We first remark that the Jacobian of every transformation regarded as a transformation of
R3(p, ¢, r) is always equal to 1 by Property (2) of Lemma 2.2. We next consider the area
form

_ dpndg
e
defined on the set wheyg # 0. Owing to the identity, dp + ¢, dg + ¢ dr = 0, itis equal
to —dq Adr/¢, and—dr A dp/, where they are defined. Thus, we can regaab an area
form away from the seflp, = ¢, = ¢, = 0}.
PROPOSITION 2.4. Theformw isinvariant under the action of G.

PrROOF. We setT;(p,q,r) = (p:,q,r:), wherep, = b,_1(q)r — b;—2(q)p andr; =
bi(q)r — bi-1(q)p- Thendp; Adq = (3p:/dp) Ndg = (bi—1(q)rp — bi—2(q))dp A dg. On
the other hand,
2ry — prq = 2bi(q)r — 2b;-1(q)p — bi—1(q)rq + bi—2(q) pq
= 2r(qgbi—1—bi—2) — 2p + qr)bi—1+ pqb:—2
=—2p —qr)bi—1— (2r — pq)b;—2
=—@pbi—1— @b 2.
Sincer, = —¢,/¢r, We havedp, Adq/(2r; — piq) = dp Ndq/(2r — pq). 0
Whenk = 0, this formw is known to be the Weil-Petersson Kéahler form; we refer to

Wolpert [8]. For general values &f the form determines a Poisson structure; we refer to, for
example, [4].

REMARK 2.5. The sefg, = ¢, = ¢, = 0} consists only of one poin®, 0, 0) when
k = 0 and of four points((2, 2, 2), (2, =2, —2), (—2,2, —-2), (=2, —2,2)} whenk = 4.



INTERPOLATION OF MARKOFF TRANSFORMATIONS 31

Otherwise, it is empty. Since the action@fis transitive on the part lying in the bgx > 2,
qg > 2,r > 2whenk < 4 as well as in the cubgp| < 2, |q] < 2,|r| < 2 whenk < 4, the
2-form invariant undet is unique up to a constant.

3. Infinitesimal automorphisms.  In this section, we compute the infinitesimal gen-
erators of the transformatiori, R, ands;, hoping to unveil the structure of the grogp
We define two vector fields, andd, by

,,:i—(p—"’i and 9, = — — ——;
ap @ Or aq  @p Or
both are defined wherg. # 0. The operators, andd, are derivations relative tp andg,
respectively, of functions on the surface by regarding the variakle a function of p, q).
Hence[d,, 9,] = 0.
The infinitesimal generator of the one-parameter grdp is the tangent vectoX of
the curve

3_(pq3.

cit=>Ti(p,q,r) = (bi—1(@)r —bi—2(q)p . q ., bi(q@)r — bi—1(q)p) = (p1.q.711),
for any fixed(p, g, r). We set

rp,q,r) = % Y and v(p,q,r) = % .
Then we have
X = Ai + vi = A0, .
ap  or b

Here we have used the identity A + ¢, v = 0, which follows as the poirif; (p, ¢, r) is lying
on the surfacé& . Similarly, for{R,}, by exchanging andg, we have
Y = poy,

whereuw = u(p, q,r) = A(q, p, r). Ourinterest here is to see how large the algebra of vector
fields generated b andY is. (We do not need to worry abogs;} since its infinitesimal
generator is included in this algebra because,o= T71R;T.) By a computation, using
[0p, 3,1 = 0, we have

H:=[X,Y]=Aup- 05 — purg -0y,
and
[H, X] = Chpipry + Apdpg — purgrp)dp — A(Apitp + Alpp)dy ,
and —[H, Y] is equal to the right-hand side of the above with the exchange ¢ and
A< U
We set

db,_ ab
1—1(q) and ¢(q) = (q) .
at =0 at t=0

flg) =
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By the recurrence relatio(l) of Lemma 22, we see thalb,_2(q)/dt|:=0 = ¢g(g) and by
Property (3) of Lemma 2.2, we hayéqg) = ¢ f(q)/2. Hence, we get

1 1
A= f(@e and p= Eh(p)fpr,

T2
wherer is the functionf with variablep in place ofg. We set
k=k—4.

Then,p? = (p?> — 4)(¢* — 4) + 4, 8,0, = p(g® — 4/, anddyg, = q(p* — 4)/¢,. By the
definition ofb,(g), we see that

f(@) =2log((q + g% — 4/2)/\q* — 4.

(Wheng? < 4, assume thay/q2 — 4 = i /4 — ¢?2; in other words, definé by cost = ¢/2
and sird = /4 — g2/2 where O< 6 < m and setf(g) = 6/ sind.) Hence,

@ =Df,+af =2 and @G® -4 f,,+3qf, +z=0.
From these identities, we get

Ap = @2 = D@20, g =(P*—d42L)/0r,

1y =(q%—a+2chy) /o, g =q(p?—Hh(p)/2¢, .

Hence,

(3.1) 2H = —h(p)(p® — 4+ 2f,)0p + f(q)(q* — 4+ 2ch )0, .

A straightforward calculation dfH, X] using the formulas above leads to
1

(3.2) [H, X] = _EKfprf(Q)zhppaq + f(@erA+ thfq)ap .

Similarly,

1
[H,Y] = Ewrmp)zquap — h(p)pr (L4 khp f1)d, -

The last two formulas reveal that the algebra generatedd bpdY shows a distinctive
character depending on whethet= 0 or not.

PropPOSITION 3.1. The algebra generated by X and Y isinfinite dimensional unless
« = 0. When « = 0, the algebra isisomorphic to sl(2, R).

PrROOF. The latter statement is easy to see because, whkef,

H=I[X,Y], [H X]=2X, [HY]=-2Y.

To prove the former statement, wsay attention to the vector fieldAdx ) *1(Y)
(Ady)*(H). We set(Adx)*(H) = Axd, + Bid,. Then it is easy to seeli1 =
(1/2) £ (@)¢r(Ar) . SinceAr = (1/2)k f (q)*prh pp, We have

Ak = kf (@) (f(q)/2*D*(hy,),  where D = ¢,3,.
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We note thath, = (2 — ph(p))/(p? — 4) and it satisfies the differential equation
(p? = Dhppp + 5phyp + 4, = 0. If X andY generate a finite-dimensional algebra, then we
must have a linear relation ovBramongst the coefficien{si1, Ao, ..., A} for somek. Let

ckAk + cp—1Af—1+---+c1A1=0
be one of linear relations witty, # 0. If « # 0, thenk(p) satisfies a differential equation
cx(f(@)/2} D (hy) + -+ c1(f(9)/2)D(hy) =0
for any value ofy. We pay attention to the highest-order term,
cx(f @er /2" @p) ()

that is actually dependent an Its growth order relative tp andgq is easily seen to be
0(((logg)* log p)/p?). This means that such a relation cannot be non-trivial. O

REMARK 3.2. We interpolated the iteratidi’ of the Markoff transformatioff by 77,
by regarding the Chebyshev polynomia}, as a special case of the hypergeometric
function b;. Then we found that the Lie algebra generatedXownd Y is isomorphic to
sl(2, R) if and only if k = 4. Note that the properties we used fpwere only(1) and(3) of
Lemma 22. Here we pose the following problem.

PrROBLEM. Find another interpolatiofi; of the Markoff transformationg” so that the
Lie algebra generated by infinitesimal generator$;aind R, is isomorphic to g2, R) when
k # 4.

4. Thecasewherek = 4.

4.1. Linearization of the action afi.  In this section we describe the action Gf
explicitly on the part of the surfack, lying in the boxp > 2,9 > 2,r > 2; this part will be
denoted bys.

A key idea is to consider the map: R3(x, v, z) — R3(p, ¢, r) defined by

p=2coshk, g =2coshy, r=2cosh.
Since, wherk = 4,
9(p(x,y,2)) = 4((coshx)? + (coshy)? + (coshz)?) — 8 coshr coshy coshz — 4

— e YT — I (L — TR (L — e TV (L — YT

the map restricted to the plane
X:ix+y+z=0

has its image on the surfase Thus, we have a map

¢: X > (x,y,72)— (2coshx, 2coshy, 2costy) € S,

which is two-to-one except for the origin.
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The action of7; can lift to the planet’ as follows. Let(x;, y, z;) denote the point corre-
sponding tal; (p, g, r) = (p:, g, r:) as in the following diagram.

T;
(X, y,2) —— (X1, ¥, 21)

ok

T
(P, q, 1) ——= (p1,q, 1)

Since+/(2 coshy)2 — 4 = 2|sinky| by referring to(2.1), we see thab;(g) = (eTDY —
e~ tHYy /(¥ — e7Y). Thereforep;, = b;_1(q)r — b,_2(¢) p implies

e e = b_1(g) (@ + e ) — b_alg) (e e,

from which we get the identity; = +(x + ty). Relative tor,;, we havez;, = +(z — ty).
Namely, the affine transformation

T,:(x,y,z)|—> (x+ty,y,z—ty)

in the planet’ covers the transformaticfi. Similarly, we can see that the actionsgfand
S; lift to

(x,y, )+ (x,y+tx,z—tx) and (x,y,2) > (x+1z,y —1z,2),

respectively. Therefore, we have seen the following proposition.

PrOPOSITION 4.1. The action of G on S lifts to the linear action on X’; this action
coincides with the linear action of SL(2, R).

REMARK 4.2. We can extend the action to that of @QLR). In fact, for any linear
transformation, say, on X', we get a transformation afivia the mapp, sinceg transforms
(—x,—y, —2) to —g(x, y, 2). The action of the one-parameter subgr@gy ) on S is given
as follows. In the spacé’, the action is written as

(x,y,2) = (sx,8y, —sx —8Y).
The(p, ¢, r)-coordinates of its projection are, by definition,
ps=et+et, gi=eV+e, r = ST | pmsxty)
Then it is not difficult to see
ps=cs(p), gs=cs(q), rs=c(r),
wherec; is a function

cs(p) =

(T (=

which is a continuous extension of the Chebyshev polynomial denotéy ¢ in [7].
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REMARK 4.3. The action on the partwherg < 2,|¢| < 2 and|r| < 2is not defined
globally, because the transformation, dayis singular ay = —2. However, the description
of the action outside the union of three line segments —2, ¢ = —2 andr = -2 is
similarly given. Itis enough to consider the m@p y, z) — (2 cosx, 2 cosy, 2 cosz), which
is defined on the sdtx, y, z) € (R/272)%: x + y + z = 0 (mod 21)}.

4.2. Invariant 1-form. The 2-forne on S simplifies relative to the coordinatés, y)
onX’: itis equal to—dx Ady. We define@d = (—x dy + ydx)/2. Then, obviouslydt = ¢*w
and it is easy to see that the formis invariant under the action of $2, R). Any integral
curve of @ = 0 is nothing but a line through the origin. If we express it by the equation
x/a = y/b = z/c wherea + b + ¢ = 0, then its push-down on the spagés written as the
curve of the form

p+\/p27_41/a q_'_ml/b F 4 rZ = A\Ye
(2):(2):<2)‘

Such a curve starting from the poi¢&, 2, 2) lifts to a half line starting from the origin. We

call such a curve a ray. The half line drdefined by the equatiop = 2,g =2 orr = 2is

one of the rays. The set of rays is parametrized by a circle and the sSriaéeliated by the

rays.

REMARK 4.4. Whenk # 4, there exists no 1-form invariant under the action a
so thatdt = w.

Acknowledgments. The authors began collaboration on the study of interpolating transformations
acting on the Fricke surfaces whileey were both visiting Max-Plakdnstitut fir Mathematik, Bonn,
from April to May 2005; they would like to extend thigyratitude to the Institute. We also express our
thanks to our colleague W. Rossman for the support in drawing pictures. This work is supported by
JSPS-Kakenhi (Grant-in-Aid for Scientific Research) C17540076 and B14340049.

REFERENCES

[1] B.H.BowbITCcH, Markoff triples and quasifuchsian groups, Proc. London Math. Soc. 77(1998), 697—-736.

[2] R. FrICKE AND F. KLEIN, Vorlesungen uber die theorie der amorphen functionen, Band 1 and 2, B. G.
Teubner, Leibzig und Berlin, 1897 and 1912.

[3] W. GoLbMAN, The modular group action on real &)-characters of a one-holed torus, Geom. Topol.
7(2003), 443-486.

[4] K.lwAsakl, An area-preserving action of the modular group on cubic surfaces and the Painlevé VI equation,
Commun. Math. Phys. 242(2003), 185-219.

[5] L. KEEN, On fundamental domains and the Teichmuller madgiroup, Contributions to Analysis (eds. L.
Ahlfors, I. Kra, B. Maskit and L. Nirenberg), pp.185-194, Academic Press, New York, 1974.

[6] L.KEEN, H. E. RauCH AND A. T. VASQUEZ Moduli of punctured tori and the accessory parameter of
Lame’s equation, Trans. Amer. Math. Soc. 255(1979), 201-230.

[7] TH.J. RVLIN, Chebyshev Polynomials, Second edition, PAppl. Math. (N.Y.), John Wiley & Sons, Inc.,
New York, 1990.

[8] S. WOLPERT, On the Kahler form of the moduli space of @enpunctured tori, Comment. Math. Helv. 58
(1983), 246-256.



36 T. SASAKI AND M. YOSHIDA

DEPARTMENT OFMATHEMATICS DEPARTMENT OFMATHEMATICS
KOBE UNIVERSITY KYUSHU UNIVERSITY

ROKKO ROPPONMATSU
KoBE657-8501 FukuokA 810-8560

JAPAN JAPAN

E-mail address: sasaki@math.kobe-u.ac.jp E-mail address: myoshida@math.kyushu-u.ac.jp



