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Abstract. By the Fricke surfaces, we mean the cubic surfaces defined by the equation
p2+q2+r2−pqr−k = 0 in the Euclidean 3-space with the coordinates(p, q, r) parametrized
by constantk. Whenk = 0, it is naturally isomorphic to the moduli of once-punctured tori.
It was Markoff who found the transformations, called Markoff transformations, acting on the
Fricke surface. The transformation is typically given by(p, q, r) �→ (r, q, rq − p) acting on
R3 that keeps the surface invariant. In this paper we propose a way of interpolating the action
of Markoff transformation. As a result, we show that one portion of the Fricke surface with
k = 4 admits a GL(2, R)-action extending the Markoff transformations.

Introduction. By the Fricke surface, we mean the space defined by the equation

p2 + q2 + r2 − pqr − k = 0(0.1)

in the Euclidean 3-spaceR3 with the coordinates(p, q, r). It has attracted interest innumer-
ably often for over a century. Whenk = 0, it is naturally isomorphic to the moduli of once-
punctured tori, first considered by Fricke and Klein [2] and often called the Fricke moduli.
We refer to the papers [5] and [6] for the natural isomorphism.

It was Markoff who found the transformations, called Markoff transformations, acting on
the Fricke surface in relation with the theory of quadratic forms. The transformation, typically
given by

T : (p, q, r) �→ (r, q, rq − p)

acting onR3, keeps the surface invariant. As we know that quite a few contributions were
made and are still in progress, in this paper we propose a way of interpolating the action of
Markoff transformation. As a result, we show that the space{(p, q, r) ; p2 + q2 + r2 −
pqr − 4 = 0, p > 2, q > 2, r > 2} admits a GL(2, R)-action extending the Markoff
transformations.

To give a more precise statement, we first consider then-times composition of the trans-
formationT :

T n : (p, q, r) �→ (bn−1(q)r − bn−2(q)p, q, bn(q)r − bn−1(q)p) ,

wherebn(q) is ann-th Chebyshev polynomial. By defining the functionsbt (q) with a con-
tinuous parametert, which interpolate the sequence of Chebyshev polynomials, we define a
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transformation

Tt : (p, q, r) �→ (bt−1(q)r − bt−2(q)p, q, bt (q)r − bt−1(q)p)

in Section 2. It gives rise to a one-parameter group and its action on the Fricke space is
also given in Section 2. By using the symmetry amongst the lettersp, q andr, we define
two similar one-parameter groups and thus have a groupG generated by these one-parameter
groups.

Next, in Section 3, we compute the algebra generated by the infinitesimal automorphisms
of the one-parameter groups above. It is shown that only whenk = 4 is the algebra finite
dimensional and isomorphic to the Lie algebra sl(2, R). A specific role of the casek = 4 is
also clarified in [3], where the Markoff transformations are investigated as a dynamical system
on the surface.

In Section 4, we treat the casek = 4 and, by introducing an affine coordinate system
on the surface, we show explicitly that the group GL(2, R) includes the groupG and acts on
the space{(p, q, r) ; p2 + q2 + r2 − pqr − 4 = 0, p > 2, q > 2, r > 2}.

1. Fricke surfaces. We define a function onR3 with coordinates(p, q, r) by

ϕ(p, q, r) = ϕ(k)(p, q, r) = p2 + q2 + r2 − pqr − k ,

wherek is a real parameter and define a surface by

Vk = {(p, q, r) ∈ R3 ; ϕ(k) = 0} ,

called simply the Fricke surface with parameterk. We refer to the book by Fricke and Klein
[2] and the articles [5] and [6].

The shape of the surface depends on the parameter. To have an intuitive image, we first
present four pictures; refer to Goldman [3] for further pictures.

Figure 1(a), wherek = 0, consists of four portions (and the origin) and each is asymptotic
to the hyperplanes{p = ±2}, {q = ±2} and{r = ±2} at infinity; the portion in the first

FIGURE 1. Fricke surfaces with (a)k = 0 and (b)k = 4.
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FIGURE 2. Fricke surfaces with (a)k = 2 and (b)k = 8.

octant is asymptotic to the hyperplanes{p = 2}, {q = 2} and{r = 2} and so on. Figure 1(b),
wherek = 4, consists of five portions and they are touching each other at the points(2, 2, 2),
(−2,−2, 2), (2,−2,−2) and(−2, 2,−2).

In the casek < 0, the surface looks like that withk = 0 with the origin excluded. In the
case 0< k < 4, it looks like Figure 2(a) wherek = 2. In the casek > 4, the surface has only
one component and is similar to Figure 2(b) wherek = 8.

As is seen from the defining equation or from the figures, the surface has an apparent
symmetryK × S3, whereS3 is the group of permutations of the coordinatesp, q andr and
K ∼= (Z2)

×2 is the Klein four-group generated by sign changes(p, q, r) → (p,−q,−r) and
(p, q, r) → (−p, q,−r); it intertwines the four non-compact components whenk ≤ 4.

To have an extrinsic view more closely, we compute the second fundamental form of the
surface. We set

ϕp = 2p − qr , ϕq = 2q − pr , ϕr = 2r − pq .(1.1)

If we regard the surface as a covering of thepq-plane, the third coordinater is a function of
(p, q) as long asϕr �= 0. Then the first derivatives ofr relative to(p, q) are

rp = −ϕp

ϕr

, rq = −ϕq

ϕr

.

Then the second derivatives are

rpp = −2(ϕ2
r + qϕpϕr + ϕ2

p)/ϕ3
r = −2(q2 − 4)(q2 − k)/ϕ3

r ,

rpq = −(−rϕ2
r + pϕpϕr + qϕqϕr + 2ϕpϕq)/ϕ

3
r

= {r(p2 − 4)(q2 − 4) − 2(2r + pq)(4 − k)}/ϕ3
r ,

rqq = −2(ϕ2
r + pϕqϕr + ϕ2

q)/ϕ3
r = −2(p2 − 4)(p2 − k)/ϕ3

r .
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From this formula, a computation whenk = 0 shows that

ϕ4
r (rpprqq − r2

pq) = −(p2 − 4)(q2 − 4)(r2 − 4) + 32(p2 + q2 + r2) − 64,

which implies that the surface cannot be convex; this is not obvious as seen from Figure 1.
Whenk = 4, the determinant simplifies to

rpprqq − r2
pq = −(r2 − 4)/((p2 − 4)(q2 − 4)) .

This expression and the similar expressions obtained by changing the role ofp, q andr imply
that the surface isconcave where|p| > 2, |q| > 2 and|r| > 2, convex where|p| < 2, |q| < 2
and|r| < 2 anddegenerate along six linesp = ±2, q = ±2 andr = ±2.

2. One-parameter groups acting on the surface Vk.
2.1. Definition of one-parameter transformations. Any Fricke surface has a set of

simple automorphisms, called the Markoff transformations, which are defined as

T : (p, q, r) �→ (r, q, rq − p) ,

R : (p, q, r) �→ (p, r, pr − q) ,

S : (p, q, r) �→ (q, qr − p, r) .

They satisfy the relationS = T −1RT . Let GZ be the group generated byT ,R andS. The
functionϕ(k) turns out to be invariant underGZ irrespective of the value ofk; thus, it is a group
of automorphisms of the surfaceVk. Note thatGZ does not commute with the Klein four-
groupK and that it does not generally preserve the connected components ofVk; however,
the component in the boxp ≥ 2, q ≥ 2 andr ≥ 2 (when it exists) is invariant and so is the
component in the cube|p| ≤ 2, |q| ≤ 2 and|r| ≤ 2 (when it exists). Refer to [5].

It is well known and easy to show that the correspondence

T �→
(

1 1
0 1

)
and R �→

(
1 0
1 1

)

gives an isomorphism betweenGZ and PSL2(Z). We refer to [1, 3, 4]. We are curious about a
possible continuous group of automorphisms ofVk having GZ as a subgroup.
We start by recalling one of the Chebyshev polynomials which we denote bybn(q). They are
determined by the difference equation(

bn

bn−1

)
=

(
q −1
1 0

) (
bn−1
bn−2

)

with the initial conditionsb0(q) = 1 andb1(q) = q. This polynomial coincides withSn(q)

in [7] and is equal to the hypergeometric polynomial(n + 1)F (n + 2,−n, 3/2; (2 − q)/4).
Induction onn leads to the following lemma.

LEMMA 2.1. Let T n = T (T n−1) denote the n-times composition of T . Then it is given
by

T n : (p, q, r) �→ (bn−1(q)r − bn−2(q)p, q, bn(q)r − bn−1(q)p) .
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Similarly, for R and S,

Rn : (p, q, r) �→ (p, bn−1(p)r − bn−2(p)q, bn(p)r − bn−1(p)q) ,

Sn : (p, q, r) �→ (bn−1(r)q − bn−2(r)p, bn(r)q − bn−1(r)p, r) .

We next define the functionbt (q) for a continuous parametert so that it satisfies the
equation (

bt

bt−1

)
=

(
q −1
1 0

)t (
1
0

)

and that it coincides withbn(q) whent = n is an integer. Such a function is uniquely deter-
mined and an explicit expression is given by

bt (q) = 1√
q2 − 4

(σ t+1+ − σ t+1− ) ,(2.1)

where

σ+ = q + √
q2 − 4

2
and σ− = q − √

q2 − 4

2
.

Whenq2−4 < 0, we interpret
√

q2 − 4 asi
√

4 − q2. In terms of the hypergeometric function,
we havebt (q) = (t + 1)F (t + 2,−t, 3/2; (2 − q)/4). It has the properties given in the
following lemma that can be verified by the use of (2.1).

LEMMA 2.2. We have the following properties:
(1) bt+1 + bt−1 = qbt ;
(2) bs+t = bsbt − bs−1bt−1;
(3) (bt−1)

2 − btbt−2 = 1;
(4) (bt )

2 + (bt−1)
2 − qbtbt−1 = 1;

(5) bt |q=2 = t + 1.

Using the functionbt , we define a one-dimensional continuous group by the action

Tt : (p, q, r) �→ (bt−1(q)r − bt−2(q)p, q, bt (q)r − bt−1(q)p) .

Property (2) of Lemma 2.2 implies thatTt form a one-parameter family of automorphisms,
i.e.,Tt+s = Tt ◦ Ts and Property(3) assures thatTt preserve the surfaceVk for any fixedk.
Similarly, we defineRt andSt by

Rt : (p, q, r) �→ (p, bt−1(p)r − bt−2(p)q, bt (p)r − bt−1(p)q) ,

St : (p, q, r) �→ (bt−1(r)q − bt−2(r)p, bt (r)q − bt−1(r)p, r) .

They have similar properties as those ofTt . Furthermore, by Property (1) of Lemma 2.2, we
see thatT −1RtT = St .

In the following, we denote byG the group generated byTt andRt (so, also bySt ).
Now, an important remark is in order. The functionbt (q) is defined forq > −2 and

is real-valued; it is singular atq = −2. Hence, we need to restrict our consideration of the
automorphisms above to the part of the surface lying in the set{(p, q, r) ∈ R3 ; p > −2, q >
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−2, r > −2}; this part will be denoted byV . We will see in the following section that the
surfaceV is invariant under these automorphisms.

2.2. Decomposition ofV intoG-orbits. In order to see the action ofG onV , we study
the section ofV by a plane parallel to any one of the coordinate planes. Such a section is
generally a quadratic curve and the one-parameter subgroups{Tt}, {Rt } and{St } preserve the
coordinate functionq, p andr, respectively. To have an explicit description, we considerTt

in some detail. It defines a motion on the quadratic curve for general fixed value ofq.
First, we take care of the caseq = 2. In this case,(r − p)2 = k − 4. Since we have no

such points whenk < 4, assumek ≥ 4. Then,r = p ± √
k − 4. Since the image of(p, 2, r)

is (p̄, 2, r̄) := (tr − (t − 1)p, 2, (t + 1)r − tp) in view of Property (5) of Lemma 2.2, we
must havep̄ − p = t (r − p), r̄ − r = t (r − p) andr̄ − p̄ = r − p. Hence, ifr �= p, which is
possible only whenk > 4, the point(p̄, 2, r̄) runs on the two lines defined byr = p±√

k − 4
as t varies. Whenk = 4, we haver = p and the point(p, 2, p) is fixed underTt , i.e., the
whole line(p, 2, p) is pointwise fixed.

We next consider the case whereq > 2 and introduce new coordinates(P,R) on the
pr-plane by

P = (p − r)
√

q + 2/2 and R = (p + r)
√

q − 2/2 .

Then(p, q, r) ∈ V if and only if (P,R) is on the hyperbola

P 2 − R2 = k − q2 .

We assume further thatq2 > k for the moment and introduce a parameterρ on the hyperbola
by

P =
√
q2 − k sinhρ and R =

√
q2 − k coshρ .

Let (p̄, q, r̄) be the image of(p, q, r) underTt andP̄ andR̄ the corresponding values ofP

andR. We then define the valueα depending ont by

coshα = qbt−1(q) − 2bt−2(q)

2
and sinhα = −1

2

√
q2 − 4bt−1(q) .

This can be done, because Property (4) of Lemma 2.2 assures(coshα)2 − (sinhα)2 = 1. By
the definition ofbt , we have coshα = (σ t+ + σ t−)/2 and sinhα = (−σ t+ + σ t−)/2. Then, we
can check that

P̄ = P coshα + R sinhα and R̄ = P sinhα + R coshα .

That is, relative to the parameterρ, the motion byTt is the translation by the amount ofα.
Whent tends to infinity, the value ofα also tends to infinity in both sides. Indeed, we can see
thatα = t (log(q − √

q2 − 4)/2).
Whenq2 < k, we only need to replace the role ofP with that ofR. Whenq2 = k > 4,

the hyperbola reduces to two lines that are written asr = σ±p. We then see thatpt = p(σ+)t

on the liner = σ+p andpt = p(σ−)t on the liner = σ−p.
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FIGURE 3. Section ofV by the plane (a)q = 3 and (b)q = 3/2.

If q2 < 4, we defineP andR by

P = (p − r)
√

2 + q/2 and R = (p + r)
√

2 − q/2 ;
we haveP 2 +R2 = k − q2. Hence, the case whereq2 > k does not occur and the case where
q2 = k leads to(p, q, r) = (0, q, 0), which is a fixed point. So, we need to consider the case
whereq2 < k. Then(P,R) lies on a circle. By introducingρ by

P =
√
k − q2 sinρ and R =

√
k − q2 cosρ

andα by

cosα = qbt−1(q) − 2bt−2(q)

2
and sinα = 1

2

√
4 − q2bt−1(q) ,

we see that the motion underTt is a rotation on the circle by angleα.
The curves drawn in Figure 3(a) are sections of the surfaceV by planes parallel to thepr-

plane whenq = 3; the parameterk takes the values 0, 4, 9 and 16. In Figure 3(b), the curves
are sections whenq = 3/2; the parameterk takes the values 4, 8 and 16.

The consideration above shows that the global behavior of the transformation changes
depending on the value ofk. Referring to the notation(1.1), we setϕpt = 2pt − qrt , ϕqt =
2q − pt rt andϕrt = 2rt − qpt . Then we see that(ϕpt )

2 = (q2 − 4)(r2
t − 4) + 4(k − 4),

(ϕqt )
2 = (r2

t − 4)(p2
t − 4) + 4(k − 4) and(ϕrt )

2 = (p2
t − 4)(q2 − 4) + 4(k − 4). Hence, if

k < 4, thenp2
t − 4,q2 − 4 andr2

t − 4 have the same sign, which means that the cube|p| < 2,
|q| < 2, |r| < 2 and the boxp > 2, q > 2, r > 2 are invariant underTt . If k > 4, then
q2 > k > 4, which means that such an isolation as ink < 4 is not possible. Indeed, on the
curve withq2 > k, the values ofp andr are unbounded in both directions and, although the
transformationTt is defined on this curve, the transformationRt (resp.St ) becomes undefined
when the valuep (resp.r) is less than or equal to−2.
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We summarize the behavior of the action ofG in the case wherek ≤ 4 as follows.

PROPOSITION 2.3. We have the following cases.
• Casek < 0. The surface is included in the domain p2 > 4, q2 > 4 and r2 > 4 and

the argument for the hyperbola case applies. In particular, the action of the group G on the
surface lying in the box p ≥ 2, q ≥ 2, r ≥ 2 is transitive.

• Case 0≤ k < 4. Points on the surface belong to the domain p2 > 4,q2 > 4, r2 > 4
or to the cube |p| < 2, |q| < 2, |r| < 2. The point (0, 0, 0), when k = 0, is isolated and fixed
by G. The actions of the group G on the surface lying in the box p > 2, q > 2, r > 2 and
that on the surface lying in the cube |p| < 2, |q| < 2, |r| < 2 are transitive.

• Casek = 4. The surface includes the lines {(a, a, 2)}, {(a,−a,−2)}, {(a, 2, a)},
{(a,−2,−a)}, {(2, a, a)} and{(−2, a,−a)}. The three lines {(a, a, 2)}, {(a, 2, a)}
and {(2, a, a)} are pointwise fixed by St , Tt and Rt , respectively. In particular, the point
(2, 2, 2) is fixed by the group G. The part of the surface lying in the box p ≥ 2, q ≥ 2, r ≥ 2,
with (2, 2, 2) deleted, is one orbit of the group G.

2.3. Invariant area form. We study some local properties of transformations inG.
We first remark that the Jacobian of every transformation regarded as a transformation of
R3(p, q, r) is always equal to 1 by Property (2) of Lemma 2.2. We next consider the area
form

ω = −dp ∧ dq

ϕr

defined on the set whereϕr �= 0. Owing to the identityϕp dp +ϕq dq +ϕr dr = 0, it is equal
to −dq ∧ dr/ϕp and−dr ∧ dp/ϕq where they are defined. Thus, we can regardω as an area
form away from the set{ϕp = ϕq = ϕr = 0}.

PROPOSITION 2.4. The form ω is invariant under the action of G.

PROOF. We setTt (p, q, r) = (pt , q, rt ), wherept = bt−1(q)r − bt−2(q)p andrt =
bt (q)r − bt−1(q)p. Then,dpt ∧ dq = (∂pt /∂p) ∧ dq = (bt−1(q)rp − bt−2(q))dp ∧ dq. On
the other hand,

2rt − ptq = 2bt(q)r − 2bt−1(q)p − bt−1(q)rq + bt−2(q)pq

= 2r(qbt−1 − bt−2) − (2p + qr)bt−1 + pqbt−2

= −(2p − qr)bt−1 − (2r − pq)bt−2

= −ϕpbt−1 − ϕrbt−2 .

Sincerp = −ϕp/ϕr , we havedpt ∧ dq/(2rt − ptq) = dp ∧ dq/(2r − pq). �

Whenk = 0, this formω is known to be the Weil-Petersson Kähler form; we refer to
Wolpert [8]. For general values ofk, the form determines a Poisson structure; we refer to, for
example, [4].

REMARK 2.5. The set{ϕp = ϕq = ϕr = 0} consists only of one point(0, 0, 0) when
k = 0 and of four points{(2, 2, 2), (2,−2,−2), (−2, 2,−2), (−2,−2, 2)} when k = 4.
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Otherwise, it is empty. Since the action ofG is transitive on the part lying in the boxp ≥ 2,
q ≥ 2, r ≥ 2 whenk ≤ 4 as well as in the cube|p| < 2, |q| < 2, |r| < 2 whenk < 4, the
2-form invariant underG is unique up to a constant.

3. Infinitesimal automorphisms. In this section, we compute the infinitesimal gen-
erators of the transformationsTt , Rt andSt , hoping to unveil the structure of the groupG.

We define two vector fields∂p and∂q by

∂p = ∂

∂p
− ϕp

ϕr

∂

∂r
and ∂q = ∂

∂q
− ϕq

ϕr

∂

∂r
;

both are defined whereϕr �= 0. The operators∂p and∂q are derivations relative top andq,
respectively, of functions on the surface by regarding the variabler as a function of(p, q).
Hence,[∂p, ∂q ] = 0.

The infinitesimal generator of the one-parameter group{Tt } is the tangent vectorX of
the curve

c : t �→ Tt (p, q, r) = (bt−1(q)r − bt−2(q)p , q , bt (q)r − bt−1(q)p) = (pt , q, rt ) ,

for any fixed(p, q, r). We set

λ(p, q, r) = ∂pt

∂t

∣∣∣∣
t=0

and ν(p, q, r) = ∂rt

∂t

∣∣∣∣
t=0

.

Then we have

X = λ
∂

∂p
+ ν

∂

∂r
= λ∂p .

Here we have used the identityϕpλ+ϕrν = 0, which follows as the pointTt (p, q, r) is lying
on the surfaceV . Similarly, for {Rt }, by exchangingp andq, we have

Y = µ∂q ,

whereµ = µ(p, q, r) = λ(q, p, r). Our interest here is to see how large the algebra of vector
fields generated byX andY is. (We do not need to worry about{St } since its infinitesimal
generator is included in this algebra because ofSt = T −1RtT .) By a computation, using
[∂p, ∂q ] = 0, we have

H := [X,Y ] = λµp · ∂q − µλq · ∂p ,

and

[H,X] = (2λµpλq + λµλpq − µλqλp)∂p − λ(λpµp + λµpp)∂q ,

and−[H,Y ] is equal to the right-hand side of the above with the exchangep ↔ q and
λ ↔ µ.

We set

f (q) = ∂bt−1(q)

∂t

∣∣∣∣
t=0

and g(q) = ∂bt (q)

∂t

∣∣∣∣
t=0

.
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By the recurrence relation(1) of Lemma 2.2, we see that∂bt−2(q)/∂t|t=0 = g(q) and by
Property (3) of Lemma 2.2, we haveg(q) = qf (q)/2. Hence, we get

λ = 1

2
f (q)ϕr and µ = 1

2
h(p)ϕr ,

whereh is the functionf with variablep in place ofq. We set

κ = k − 4 .

Then,ϕ2
r = (p2 − 4)(q2 − 4) + 4κ , ∂pϕr = p(q2 − 4)/ϕr and∂qϕr = q(p2 − 4)/ϕr . By the

definition ofbt (q), we see that

f (q) = 2 log((q +
√
q2 − 4)/2)/

√
q2 − 4 .

(Whenq2 < 4, assume that
√

q2 − 4 = i
√

4 − q2; in other words, defineθ by cosθ = q/2
and sinθ = √

4 − q2/2 where 0< θ < π and setf (q) = θ/ sinθ .) Hence,

(q2 − 4)fq + qf = 2 and (q2 − 4)fqq + 3qfq + z = 0 .

From these identities, we get

λp = p(q2 − 4)f (q)/2ϕr , λq = (p2 − 4 + 2κfq)/ϕr ,

µp = (q2 − 4 + 2κhp)/ϕr , µq = q(p2 − 4)h(p)/2ϕr .

Hence,

2H = −h(p)(p2 − 4 + 2κfq)∂p + f (q)(q2 − 4 + 2κhp)∂q .(3.1)

A straightforward calculation of[H,X] using the formulas above leads to

[H,X] = −1

2
κϕrf (q)2hpp∂q + f (q)ϕr(1 + κhpfq)∂p .(3.2)

Similarly,

[H,Y ] = 1

2
κϕrh(p)2fqq∂p − h(p)ϕr (1 + κhpfq)∂q .

The last two formulas reveal that the algebra generated byX andY shows a distinctive
character depending on whetherκ = 0 or not.

PROPOSITION 3.1. The algebra generated by X and Y is infinite dimensional unless
κ = 0. When κ = 0, the algebra is isomorphic to sl(2, R).

PROOF. The latter statement is easy to see because, whenκ = 0,

H = [X,Y ] , [H,X] = 2X , [H,Y ] = −2Y .

To prove the former statement, wepay attention to the vector fields(AdX)k+1(Y ) =
(AdX)k(H). We set (AdX)k(H) = Ak∂q + Bk∂p. Then it is easy to seeAk+1 =
(1/2)f (q)ϕr(Ak)p. SinceA1 = (1/2)κf (q)2ϕrhpp, we have

Ak = κf (q)(f (q)/2)kDk(hp) , where D = ϕr∂p .
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We note thathp = (2 − ph(p))/(p2 − 4) and it satisfies the differential equation
(p2 − 4)hppp + 5phpp + 4hp = 0. If X andY generate a finite-dimensional algebra, then we
must have a linear relation overR amongst the coefficients{A1, A2, . . . , Ak} for somek. Let

ckAk + ck−1Ak−1 + · · · + c1A1 = 0

be one of linear relations withck �= 0. If κ �= 0, thenh(p) satisfies a differential equation

ck(f (q)/2)kDk(hp) + · · · + c1(f (q)/2)D(hp) = 0

for any value ofq. We pay attention to the highest-order term,

ck(f (q)ϕr/2)k(∂p)k(hp) ,

that is actually dependent onq. Its growth order relative top and q is easily seen to be
O(((logq)k logp)/p2). This means that such a relation cannot be non-trivial. �

REMARK 3.2. We interpolated the iterationT n of the Markoff transformationT byTt ,
by regarding the Chebyshev polynomialbn as a special case of the hypergeometric
function bt . Then we found that the Lie algebra generated byX and Y is isomorphic to
sl(2, R) if and only if k = 4. Note that the properties we used forbt were only(1) and(3) of
Lemma 2.2. Here we pose the following problem.

PROBLEM. Find another interpolationTt of the Markoff transformationsT n so that the
Lie algebra generated by infinitesimal generators ofTt andRt is isomorphic to sl(2, R) when
k �= 4.

4. The case where k = 4.
4.1. Linearization of the action ofG. In this section we describe the action ofG

explicitly on the part of the surfaceV4 lying in the boxp ≥ 2, q ≥ 2, r ≥ 2; this part will be
denoted byS.

A key idea is to consider the mapφ : R3(x, y, z) �→ R3(p, q, r) defined by

p = 2 coshx , q = 2 coshy , r = 2 coshz .

Since, whenk = 4,

ϕ(φ(x, y, z)) = 4((coshx)2 + (coshy)2 + (coshz)2) − 8 coshx coshy coshz − 4

= −e−x−y−z(1 − ex+y+z)(1 − e−x+y+z)(1 − ex−y+z)(1 − ex+y−z) ,

the map restricted to the plane

X : x + y + z = 0

has its image on the surfaceS. Thus, we have a map

φ : X � (x, y, z) �→ (2 coshx, 2 coshy, 2 coshz) ∈ S ,

which is two-to-one except for the origin.
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The action ofTt can lift to the planeX as follows. Let(xt , y, zt ) denote the point corre-
sponding toTt (p, q, r) = (pt , q, rt ) as in the following diagram.

(x, y, z)
T̃t ��

φ

��

(xt , y, zt )

φ

��
(p, q, r)

Tt �� (pt , q, rt )

Since
√

(2 coshy)2 − 4 = 2|sinhy| by referring to(2.1), we see thatbt (q) = (e(t+1)y −
e−(t+1)y)/(ey − e−y). Therefore,pt = bt−1(q)r − bt−2(q)p implies

ext + e−xt = bt−1(q)(ex+y + e−x−y) − bt−2(q)(ex + e−x) ,

from which we get the identityxt = ±(x + ty). Relative tort , we havezt = ±(z − ty).
Namely, the affine transformation

T̃t : (x, y, z) �→ (x + ty, y, z − ty)

in the planeX covers the transformationTt . Similarly, we can see that the actions ofRt and
St lift to

(x, y, z) �→ (x, y + tx, z − tx) and (x, y, z) �→ (x + tz, y − tz, z) ,

respectively. Therefore, we have seen the following proposition.

PROPOSITION 4.1. The action of G on S lifts to the linear action on X ; this action
coincides with the linear action of SL(2, R).

REMARK 4.2. We can extend the action to that of GL(2, R). In fact, for any linear
transformation, sayg, onX , we get a transformation onS via the mapφ, sinceg transforms
(−x,−y,−z) to −g(x, y, z). The action of the one-parameter subgroup

(
s 0
0 s

)
on S is given

as follows. In the spaceX , the action is written as

(x, y, z) �→ (sx, sy,−sx − sy) .

The(p, q, r)-coordinates of its projection are, by definition,

ps = esx + esx , qs = esy + e−sy , rs = es(x+y) + e−s(x+y) .

Then it is not difficult to see

ps = cs(p) , qs = cs(q) , rs = cs(r) ,

wherecs is a function

cs(p) =
(

p + √
p2 − 4

2

)s

+
(

p − √
p2 − 4

2

)s

,

which is a continuous extension of the Chebyshev polynomial denoted byCn(p) in [7].
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REMARK 4.3. The action on the part where|p| ≤ 2, |q| ≤ 2 and|r| ≤ 2 is not defined
globally, because the transformation, sayTt , is singular atq = −2. However, the description
of the action outside the union of three line segmentsp = −2, q = −2 andr = −2 is
similarly given. It is enough to consider the map(x, y, z) �→ (2 cosx, 2 cosy, 2 cosz), which
is defined on the set{(x, y, z) ∈ (R/2πZ)3 ; x + y + z ≡ 0 (mod 2π)}.

4.2. Invariant 1-form. The 2-formω onS simplifies relative to the coordinates(x, y)

onX : it is equal to−dx ∧dy. We defineθ = (−x dy +y dx)/2. Then, obviously,dθ = φ∗ω
and it is easy to see that the formθ is invariant under the action of SL(2, R). Any integral
curve of θ = 0 is nothing but a line through the origin. If we express it by the equation
x/a = y/b = z/c wherea + b + c = 0, then its push-down on the spaceS is written as the
curve of the form(

p + √
p2 − 4

2

)1/a

=
(

q + √
q2 − 4

2

)1/b

=
(

r + √
r2 − 4

2

)1/c

.

Such a curve starting from the point(2, 2, 2) lifts to a half line starting from the origin. We
call such a curve a ray. The half line onS defined by the equationp = 2, q = 2 or r = 2 is
one of the rays. The set of rays is parametrized by a circle and the surfaceS is foliated by the
rays.

REMARK 4.4. Whenk �= 4, there exists no 1-formτ invariant under the action ofG
so thatdτ = ω.
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