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Interpolation of Orlicz-valued function spaces and UNMID. property
by

D. L. FERNANDEZ (Campinas) and J. B. GARCIA (Campo Grande)

Abstract. We show that a variant of an interpolation functor introduced by J. Gustavsson and
1. Pectre commutes with LP. As a consequence, reflexive Orlicz spaces as well some other function
spaces modeled on Orlicz spaces (¢.g. Orlicz-Besov—-Hardy—Sobolev spaces and the Schatten—
Orlicz class) have the U.M,D. property.

1. Introduction. Let E be a Banach space, let (Q, o7, P) be a probability
space and let (#4)..z be an increasing sequence of sub-g-algebras which
generates 7 A sequence of E-valued random variables (d),5 1, With dg =0,
adapted to (), (i.e., d, is &% -measurable) is a sequence of martingale differences
if £(d,|#,..,) = 0. We say that an E-valued sequence of martingale differences
(d s>y 1s unconditional in IP{R, E), 1 < p < oo, if for all sequences (g}, with
g ==+ 1,

n
1% edy
k=1

n
rEE S CH > dk”LP(R,E)’ nzl,
x=1

where the constant C is independent of n. It is well known that all R-valued
martingale differences are unconditional, but this is not the case for a general
Banach space E. Thus, we say that a Banach space has the U.M.D. property
(Unconditional Martingale Differences property) or is a U.M.D. space if ail
E-valued sequences of martingale differences are unconditional. )

It turns out that the UM.D. property is also a necessary and sufficient
condition on a Banach space E in order that the Hilbert transform induces
a bounded linear mapping H from IP(R, F) into itself Moreover, Banach
spaces with the UM.D. property have a geometrical characterization, namely
they are the {-convex spaces (see Burkholder [5]).

From the scalar case and Fubini’s theorem it follows that the spaces
I4(X, 1), where p is a o-finite measure on X and 1 < g < co, are UM.D.
spaces. In particular, it follows that the sequence spaces ¥ and the weighted
spaces 4, are UM.D.,, 1 < g < oo. The Schatten class S, is also a U.M.D. space
(see Bourgain [27).
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24 D. L. Fernandez and J. B. Garcia

It is also well known that the U.M.D. property is stable by interpolation,
ie, if (E,, E,) is a compatible couple of U.M.D. Banach spaces then the
intepolation spaces [E,, E, 1, and (Ey, E,),, are also U.M.D. spaces, whenever
0<8<1and 1 <gq<w. Thus, Lorentz spaces IP? and Schatten—Lorentz
classes S, are also UM.D. spaces, for I < p,g < co0.

In [6], F. Cobos proved that reflexive Lorentz—Zygmund spaces L,,(log L)
are UM.D. spaces by stressing the use of the real interpolation method
with a function parameter. As a follow-up of that paper, F. Cobos and
the first-named author remarked in [7] that reflexive Besov spaces
and Hardy-Sobolev spaces, with a function parameter, are also U.M.D,
spaces.

In the present paper we shall focus our atlention on Orlicz spaces. It is
already known that reflexive Orlicz sequence spaces have the UM,D, property
(this follows from a result on the structure of these spaces ([11])). We shall
show that this remains true for general reflexive Orlicz spaces.

Our main tool will be a variant of the interpolation method introduced by
J. Gustavsson and J. Peetre in [11]. We begin by showing that this variant
commutes with I7. The UM.D. property for the reflexive Orlicz spaces will
then follow after a characterization of these spaces as interpolation spaces
between IF-spaces. It is interesting to point out that the Gustavsson-Pestre
interpolation method is modeled on spaces of unconditional sequences.

The present paper reports the definitive version of results presented to the
26° Semindrio Brasileiro de Andlise (Rio de Janeiro, Nov. 1987) (see [9]).

The authors are indebted to F. Cobos, of Madrid, for his criticism on an
early version of this paper.

2. The Gustavsson-Peetre interpolation methed. We now introduce our
variant of the Gustavsson—Peetre interpolation method. It will depend on
fonction parameters.

2.1. The function parameters. The function parameter we shall use will be
taken in Peetre’s class 27~ (see [11]), i.e., the class of pseudoconcave positive
functions ¢ on R, which satisfy

0] a(t) = sup o(st)/e(s) = o(max(1, 1)).

For a function parameter pe 2% ~, we can replace (1) by 3(1) =

o(max(z, t179),
provided ¢ > 0 is small enough. Consequently, we have

c’fmim(l, 10 gt)di/t < oo,
o]

which implies
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") < oo,

@ S e@)2+ ¥ 00"

We shall also consider the sequence (Fu(*Wnez defined in [0, 1] by

F . {an
=
falaj—-1

where (r"(-)),,EZ+ 18 the sequence of Rademacher functions.

if n=0,
if n<0,

2.2. The interpolation spaces. Let (E,, E,) be a Banach couple. The space
(Eq, E »,,p is the linear space of all xe E,+ E, such that there is a sequence
(nez I Ey m E, which satisfies

() x= 3 u,

(convergence in E,+E,),

133 r

RACTc
Er

neJ

2) supf dt < co,

where the supremum is taken over all finite subsets of Z. Moreover, we shall
also assume that, for k = 0, 1, the sequence (7,() 25" u,/0(2")ez is IF([0, 1], E)-
summable,

We equip the space <{E,, E,>,, with the norm

kn

250 o

net

= inf max sup

3) ”x”(Eo.E;)ﬂ P
=01 J

>
LP(0,11,Ex)
where the infimum is taken over all admissible sequences (i,)pez-

2.3. TueoREM. Let (E,, E,) be a Banach couple, g€ 2~ and 1<

Then (Eg, E >, is a Banach space.

p < 0.

Proof Step 1. Write 4,, = A,,(E,, E;) for the linear space of all
sequences (#,),ez in Ey M E, such that

kn
F () — < cQ,
rEJ 9(2”) LP([0,1],Ex)

l(#)uez ]l 2., = max sup
£=0,1

and (" () 20, /0(2")nez is LF([0, 1], E;)-summable. It is not hard to show that
Ag,p 18 complete under the norm |||, ,. In fact, let (U7)yey = ((44) jexhnen e an
absolutely summable sequence in 4,,,. Thern, setting M, = max {o(2/), 0(2')/2/}
for each jeZ, we have

o

Z ”uJHEOJ‘\EI = M; (Z

(ZJ) ‘ o@h"
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knt

S ) )
LP{[0,1],Ew)

éMj(Z max sup - E@Tu)um
med

n=1k=0,1 J

MY U 4,,)s
n=1

ie. () is Eg m B -summable. Next, sotting u; = 3 o uf and U = (u);z, we
have Ued,,,. Indeed,

ki
U3, = max sup || 3 F(-}—
k=01 J |\jes (2 ) L2([0,11,E)
= max sup || 3. (- )
k0,1 J = e@) nzi L2(10, 11, B

o
= Z U4, < oo.

Le([0,1),E) n=

A~

jei 9(2’)

Now, in order to show that U =) 2, U"in 1,,, given & > 0, let n(g) be large
enough so that

20
< ) max sup
n=1k=0,1 J

=]

Y U, <e.

n=n{e)+ 1
Therefore,
n(e} @ P
i 2z Ulae =l 2 @i Z 104, <e.
n=n(e)+1 n=n{g}+ 1

]t remains to prove the I’-summability of (7.()2%u;/@(24);sz. Then, since
= (u})jez € Ap.p, for each neN, there exists a finite subset J* < Z such that
kj

2
Fi )=t
,,-EZJ Tle2h)
for all finite subsets J = Z with J~J? = @. Next, for n{e) as above, set
J, = Un®, Ji. Hence, for all finite subsets J = Z with J~J, = @, we have

Z?‘() 2.50)

— '}
Jjes g (2 J jet g (2 J‘) !

< gf2"

Lr(0,1],Ex)

[=+3 kj

g‘ “
LF([OnlLEk) =1

LP([0,1] Ex)
n{e) ]
Y.+ ¥
n=1 n=nie)+ L
n(z)
< Z /2" + Z [T, <&
n= n=n(g}41

Step 2. Consider the subspace 4" of all sequences u = (yhnez 1D 4, such
that ¥,z 4, = 0 in E,+ E,. We shall show that 4 is a closed subspace of 4, ,
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Lel (UM)jen = (hnez)ien be a sequence in 4 and U = (u )neze)gp be the
Agp-limit of (U )JeN We have to show that Ue.4". Thus, given &> 0, there
exists a f, such that for all neZ, we have

(1) {

kn
o (U — 1)

o(2%)

On the other hand, thgre exists a finite subset Ji* < Z such that for all finite
subsets J with J > J°, we have

(2) ”z un ||EQ+E1 <é&.

neJ

By

Consequently,

12 thollo vz, S |2 (e —u
net

ned
o) T
<Ly W wlet 2 ()
-1
02+ S oM +1),

Y

H= o0 a=0

n)HEu+E1+HZ u;","HEU +E,

”J'IEEE(]_i—E

where J, and J_ have the obvious meaning. Therefore, since ge 27~ and ¢ is
arbitrary, we get 3 .zt, = 0. Consequently, 4" is a closed subspace of 1,,, and
Agpl#" is a Banach space. Finally, since it can be shown that 4,,//4" is
isometric and isomorphic to (Ey, E,>,,, the assertion follows.

To show that {E,, E,>,, is an intermediate space between E, and E; we
need two lemmas.

24. LeMMA. For all Banach spaces E, we have (E, E},, = E.

Proof The embedding E = {E, E),, is immediate. On the other hand,
we have (E, E),, « E. It remains to prove that the embedding is bounded. Let
xe{E, E),, and let (1,) be an admissible sequence in E for x such that
ki

net

=2 ”xH(E.Eh-rJ'
Lp([o,lj,E)

sup
J

Hence, for each n in Z and k=0, 1, we have

2kn
—y
o) "
and, recalling 2.1(2), it follows that

0 oo -1
Ixlg< 3 le= 2 lulst 2 luale

< 201 ¢z 250,00

pe= H=0 n=— 00 _
o -1
< 2 “x“(E,E)m.p( Z Q(‘?’")/?‘n_*_ Z Q(zn}) S C“x”<E‘E>e.p'
. n=0 n=-—r0
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2.5. LemMa. Let (E,, E,) and (F,, F,) be Banach couples such that E, = F,,
k=0,1. Then {Ey, E ), p > {Fo, Fiypp

Proof Immediate,
2.6. THEOREM. If (E,, E,) is a Banach couple we have
Eon E, = (Eq, By Dy = Eo+Eq,
ie, {E,, E >, is an intermediate space between E, and E,.

Proof. The left embedding is clear. Now, since E, =+ E,+E,, Lemmas 2.4
and 2.5 yield the right embedding.

One basic fact is that the functor (E,, E,)1~{E,, E,J,, is an interpolation
functor.

2.7. THEOREM. Let (Ey, E,) and (F,, F,) be Banach couples, ge&P*~
and 1 < p < 0. Then, for all Te L(E,, F ),k =0, 1, we have Te L({(E,, E, ), .
(Fos F120,p)- Moreover, |T| < max[|T]o, | T},1.

Proof Let xe(Ey, E;up, let (#,)hez be an admissible sequence for x, and
set Mk = “T”L(Ek,Fk)a k = 0, 1.

Since the convergence in 2.2(1) is in E+E;, we have Tx =} ,.,Tu,
Hence, setting v, = Tu,, we see that ):,,ezvn converges in Fy+F, and is
a representation of Tx. Next, for k=0, 1, we get

Z 2kn 2kn
Fn(-)—nvn = HT( Fn ’ _un)
aer 02" 7| Lego,10,m rEI ( )Q(z") L?(0,1],Fx)
2kn
= M Fn()% u, ’
* ,Er e(2") L2([0,11,Ex)

and consequently {Tx| (g, z5,,., < Clxll¢EoE1,,- The proof is complete.

Actually, the spaces (E,, E,»,, do not depend on p. This fact will be
a consequence of a result due to J.-P. Kahane.

28. LemmA (Kahane, see [13, p. 741}, For every 1 < r < co, for any Banach
space E and every finite sequence ()<<, in E, we have

1 n 1 n
(1T roulede = (1| T ryyuffpdeys.
0 j=1 0 j=1

2.9. THEOREM. Let (Ey, E,) be a Banach couple, ge P~ and 1 < p, g < .
Then

<E0: E1>Q.p = <E03 El)g,ga
with norm equivalence.

Proof. This follows at once from Kahane’s theorem.
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.Next, we state a density theorem. It will be the sole result, in this section,
which depends on the If-summability requirement in Definition 2.2.

2.10. THEOREM. Let (Eg, E,) be a Banach couple, pe #*~ and 1 < p < .
Then EqnE, is dense in {Ey, E >, ..

Proof Let xe(E,, E;),, and let (1) be an admissible sequence in
EynE,; for x. Then, given &> 0, there exists J, such that
zkn

Fo( ) —=u, <&, k=01,
nez.:l' " e(2" LP([0,1).5x)

for all finite sets J' = Z with J'nJ, = . Next, setting X;= Y= jt,, We see
that x,eE, n E, and

. [n}>f
For j > j, = max{n||neJ }, set J;= {n||n| <j}. Then
2Im
Pl )ty
2 )9(2)

neJ

”x_xj“ {Eo,E1g,p < max sup
k=01 JnFi=@

LP([OJLE;:).
But JnJ, =@ implies J nJ, = &. Consequently, [x~—x;ll¢go,E5,, < &
 To close this section, we compare the Lions—Peetre interpolation method

with a function parameter with the variant of the Gustavsson—Peetre inter-
polation method.

2.11. Let (E,, E,) be a Banach couple, | < g < cc and ge#™ ~. We say that
x€ E,+E, belongs to the Lions—Peetre interpolation space (Ey, E ), 4,y if there
exists a sequence (i ez, in Ey;n E;, which satisfies

1 X= 3 u (bonyergence in Ey+E),
(2) (_un/ 0{2"nez € P(Ey),
(3) (un 2"/9 (2n))nsz el (El ) .

We equip the space (Eg, E,)pqs With the norm
(4) Illqass = inf max [/l 062"/ el ]-
For x&(Ey, Ei)eqs and (i,),ez satisfying 2.1(1) we have
) 5 lth 5o, < 0.

ned

Also, we say that xeE,+E, belongs to (Ey, E)g e if
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{6) Il = sup o)™ K(t, %) < o0,
>0

where K is Peetre’s K-functional.
Then, for all ge#*~ and 1< p < oo, we have

(7) (E09 El)g.l:.}’ d <E0a E1>g,p C_"(Ecp: El)o,w;x-

3. Interpolation of I7(E) spaces. We shall show that I7-spaces commute with
the interpolation space (E,, E,>,,. First we need some lemmas.

3.1, Lemma (Carlson). Let E be a Banach lattice, ge®™~ and 1 < p < 0.
Then if (u)1<;<n is a finite sequence in E, then

|“j| PN Lip ( (2f|uj|>p)1/p )
(1) Hfj‘l lu;lllEs(JR( (jgjl (Q(zj)) PR )

where R(s, ) = so(t/s).
Proof. Assume first 1 < p < co. Let () be a sequence in the Banach lattice
E. Following Lindenstrauss and Tzafriri [13], we have

(z|u|1’)1/-”~lub J[

J= 1

?

B

)<= R and ZIerP 1},

where the Lu.b. is taken with rekpect to the order of the lattice E. Therefore, the
following Hdlder inequality holds:

n
S lagel < (3, k) (3 g
i=1 =1 j=1

where the o; are scalars and the u; are elements of the lattice E.

Now, st
n ki )p)lfp
— (U
(Egm”

Then, upon taking A, = U and A, =V the proof follows exactly as in
Gustavsson—Peetre [[11].

Next, if p=1, since g is pscud.oconcave we have for xeR,
Iul

”Z .}”E ” Z ;“I“E‘H Z _]”E £ o(x) (2J Q(x) . 2J|uji

and the proof follows as in the case 1 <p < 0.

X j=1Q(2j) r
3.2. Lemma (Khinchin-Maurey, see [11, p. 49]). Let E be a g-concave
Banach lattice for some q < oo. Then there exists a constant C such that Jor
every sequence (u Jisjcn in E we have

1) 1Il 2 ) ”ZIIE<IHZT(ﬂuJH di <

, k=01

E

Ay =

< CI(T )2
i=t
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33. THEOREM. Let (Eg, E,} be a Banach couple of g-concave Banach lattices
for some g < oo. Then for all p, 1 < p < co, we have

(1) <LP(EO): LF(E1)>Q,p = Lp(<EO 3. E1>a,p)=
with equivalent norms.

Proof. Step 1. Let feI’(XE,, E,),,), and assume that f is a step
function. Then there are pairwise disjoint measurable sets B, , ..., By such that
f=YY 1a,xs, where a,e(Ey, E,),,. Since a,e{E,, El)w, i=1,...,N,
there are adrmssﬂ)le sequences (#)yez in Eqn El, j=1,..., N, such that

kn

PRAQE

nel 9(2")
N. Next, for each ne?Z, set

w, if xeB;, j=1,...,N,
un(x)= 0

if x¢| B,
j
Then w, is an E,n E;-valued step function. Moreover, u,eF(E,nE,)
= IP(Eg) n IP(E,), and f =Y nez u, with convergence in I7(E )+ IP(E,). In fact,
for all finite subsets J, < Z_ and J, = Z,, we have, for k=0, I,
22" ‘
1Y @y <2 T 2 BT 11 oo Ersen-

neJy nE I

@ 2060t > ma sup ‘ ,
LP{[0,1].Ex)

0.t g

for each j=1,...,

Consequently, (u),<o i8 LP(Eg)}-summable and (u,),-, is IP(E,)-summable.
Then setting f, == % - _ou, and f; = Y oi u, we have fo+f, =f and the
desired convergence follows.

The IP([0, 1], IP(Ey)-summability of (7,(-)2""u,/0{2")nez follows from the
([0, 1), E)-summability of (”n()2""uf/g(2“)),,ez, j=1,..,N. In fact, given
¢ > 0 there are finite subsets J{ = Z j=1,..., N, such that for all finite sub-
sets ' <& with ' nJi=@

kn P

N
<&’y wB), j=1,..,N.

LP([0,1].Ex) 1“1

‘jj ) —om 9(2")

Hence, setting J, = UJ 1 Jg, for all finite subsets J' = Z with J'nJ, =& we
also have
kn

T PIACFcg

( r
LI’([Q 11.LP(Er)} i=1B;0 ||nss*

s 2kn

ifp
dtdu) < &.

Thus (1,),.z 18 an admissible sequénce for f. Consequently, from (2) we get

|0,

ne

Hf[] CLP{EQLLP(E1)Y 0,0 £ Imax sup dudt

k=0,1 J

Oty b
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k P
LP([G, L],Er)

PRAC T

et (Zn)

<21 f N romss,,, 4.
X

{x)

< || max sup
¥ \k=0,1 J

Finally, by density we conclude that
3) D(CEy, Eypyp) 5 CIP(Eg), IF(E )}y p-

Step 2. Let fe (I(E,), [P(E,)>, ., and let (i,).z be an admissible sequence
for f such that

2kn

(4) max |37, ()=r=-u, <2 ,
k=01 rg e(27) LP{[O,l],LP(E;c)]\ 17 cerzase.s
for all finite subsets J = Z. For each J we set v, = y,u, and we see that
Yux)= Y p,(x} (in E,+E),
net n=—r0o

(F, () 20, (x)/0(27) is IF([0, 17, Ek)-summable and, since v, =0 for néJ,

Z ( ) 2n) u(x) < 0,

nel LP({0,1],Er)
for all finite subsets I = Z. Hence, by Lemma 3.2,

kn

1Y ) ¢Bomrye,, < max sup | Y 7 ()=

neJ k=0,1 I nel Q(zn) "

(x)

L?([0,1],Ex)

2kn 2N\ 1,2
< C max sup ( (—;—Iv x))
sz aae) ) .,
(Z( 2 3 2N\ 142
< C max v, (x ) )
R AR A
Z 2kn
& C max Ful ) —u, (%) ;
k=01 | yer e(29 “ Le(00.11.E)
Therefore, by Fubini’s theorem and (4), we get
P
(5) J”Z“ ()| |2 50, E13,, A1 < Cmax 2 F n() o Uy
=01 || gy 2(2") LP{O, 1], LEEr))

< ClS o1 Lo B3, p-

Now, since (7,(*) 2°'%,/0 2"z is ([0, 11, IP(E,))-summable, k = 0, 1, the first
inequality in (5) implies the IP((E,, E,;), ,)-summability of (u,),. Moreover,
Theorem 2.6, Step 1 and the identity IF(E,+E,) = IP(Ey)+ IF(E,) (see [9])
ensures that f= 372 _ u, in I?({E,, E 17e.0)- Hence, after passing to the limit,
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the second inequality in (3) gives

IS otz iy S ClI Hiro@EorirE e,
as desired.

34. Remark. The problem of finding interpolation functors which
commute with If-spaces was raised by J. Peetre. For the Lions—Peetre
interpolation method, a commutation result like Theorem 3.3 holds without
additional assumptions on the Banach couple (E,, E,). A similar result for
another interpolation functor and with different hypotheses on the Banach
lattices E, and E, was announced, with no indication of proof, in [3].

4. Characterization of Orlicz spaces. {n this section we show that reflexive
Orlicz spaces can be characterized as interpolation spaces between LP-spaces.
This is a converse of Gustavsson—Peetre’s Theorem [11, Theorem 7.3].

By an Orlicz function we mean a convex and continuous function
®: [0, 00)—=[0,.00) with &0} =

4.1, THEOREM. Let @ be an Orlicz funciion and let I®(E) be the corresponding
E-valued Orlicz space on a o-finite measure space, where E is a g-concave Banach
lattice, with q < oo. Suppose that @ and the conjugate function $* satisfy the
A,-condition. Then there exist py and p,, with 1 < p; < p, < co, such that

1) (IPO(E), PME)),, = L?(E), where
e no) o~ 1 ppoptflpo— 1) t > 0,
@ e ={; ( bt

and 1 < p < oo.
Proof Step 1. From the A,-condition it can be seen that
3} 1< gy < Pp <0,

where

= igg e, Po= sup to{t)/ P(1),

and ¢ = D, (P). Moreover, if O0<s<1 and 1 <r<g, or s>1 and

“Pp < T < o0, We have

)] s @~ Ly) < O (s
Step 2. Choose p, and p, such that
1<‘P1<Q¢$PZ¢<P0<003
with the (not essential) additional restrictions

‘iqapo = = 1
1< <& L < < - < Q0.
P1 . Q‘dﬁ p(b 2pQ

3 — Studia Mathematica 99.1
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With such a choice of p, and p, fixed, the function ¢ given by 4.1(2) belongs to
the class 221 ~. Indeed, setting &= p,/(p,—p,), it can be seen that g()/t* is
increasing and p(g)/¢' ~® is decreasing. Consequently,
o) <max(s, 179, () = o(max(l, t)).
Step 3. Set @,(t) = t#° and &, (t} = t"'. We have
&1 = 5t o(05 /057

Following Gustavsson—Peetre [11, Theorem 7.1], let A{z) =
Then

{3} P(z) = Po(z/o(h(z))) =

Thus, given feL”(E) with |f|Leq < 1, for each neZ, we put
B,={xeX: |f(®)zeh (2" ", 29)}, B.u={xeX:|f)|=

The B, are p-measurable, digjoint and X =), B, a.e. We define

%ngm

We see that (1), is an admissible sequence for [. Indeed, for all finite subsets
Jo o Z_ (J, c Z,, respectively), from (5) and recalling that ¢ is pseudocon-
cave, we have, for k=0, 1,

k(n k) Pie
T Y, ol < ZJ(Qnuu h)dﬂ

((p(z))l/m ~1ipo,

b, (zhiz)/o(h(z)).

if xeB,,
otherwise.

- n§k§n<g(h 70 )Hf( M| dr

=3 fo(lflpde <=

nel. By,

if J,nJ,=@ and J, is a finite subset of Z such that

Y el fxl)de < e

ngJg By

This can be done since

I S f ()l ) d <

Hencs, (#,) <o 15 IP°(E}summable and (1), is [P (E)-summable. Then settmg

fo=3R--wu, and f; =3 u, we have fy+f,=f and f=Y"__u, in
IFe(EY+ LP(E). Next, since v 2

icm
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( kn kin =k} tNex
Fl )=t (x ) du < ( - {x)] ) du
EH0gae),) <L\ e/,

< 2, [ (1) du

net By

it follows as before that (7{-)2"u,/0(2wez is IP([0, 1], IF*(E)}-summable,
k=0,1. Finally, it can be analogously shown that

Ejfn(l)mun

This yields I2(E) s (IPUE), LP*(E)>,p.
Step 4. Let fe{IP(E), IHE)),, With || flzrum.crimyen < 1 and choose

kn i
max sup
k=0,1 J

< 2.
L0, 2], LP(E))

{4, )uez» an admissible sequence for f such that

"}kn
(6} max sup lz 7o) l <1
k=01 J {ipes (2 ) LP([O 1), LPR{ED
Since (F,() 2" 11,/0(2 ez, is IF([0, 1], IF*(E))-summable, given & >0, there

exists a finite subset J, = Z such that for all finite subsets J' = Z with

F ], =@, we have
2kn 2\ 172
|
(2 ()

(after using the Khinchin-Maurey inequality!). Now, setting

2Fm 2N 124
(Z (am'“"“‘)') )

iE
and A(x) = max; .1 (4,(x)/2e)™, from Lemma 3.1 and the fact that ofr)ft is
nonincreasing we get

Ap(x) )
H,g s < C Zax Q(A (;))
< LA oA ) = Com

< glipe
LPy(E)

(N

Aylx) =

YA ).
Therefore, by (7)

( H’; iy x)“]:) dp < I((AOE(X) )pn+(A18(x))pl) du<l.

This implies that ||2,,du|LL@(E}\2Ca ie, the sequence (u,), satisfies
the Cauchy condition in I*(E). By the first embedding (Step 3) and Theorem
2.6 we have feI®(E). Moreover, by a straightforward modification of
the above calculation we have | flier < C, and the second embedding
follows.
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5. Besov-Orliez spaces and Hardy-Sobolev-Orlicz spaces. The following
Orlicz space version of Triebel's multiplier theorem (see [14]) holds.

3.1. THEOREM. Let K = (K; ) joz be a matrix, with K, ; in LMR") n %' (R").
Suppose that F K, ;is a regular distribution having classical derivatives in R {0}
up to order [n/2]+1, i,je Z. Further, assume that there exists ¢ number B such
that for R >0 and all multi-indices a with o) < 14+[n/2],

(1) [ X IDFK )P dr < BRE 21,

RIZE||S2R ijeZ

Then the operator X,
2) (Af)x) = [ K(x—y)f(p)dy,

where f={(f)es is a quasi-null sequence of CZ(R")-functions, has a bounded
extension from LP(R", I°) into itself, for all Orlicz functions & which satisfy,
together with their conjugate functions ©*, the A,~condition. Moreover,. if
additionally K, ;=0 if i #j, then & has also a bounded extension ﬁ'm‘n
L2(R", I) into itself, for all r with 1 <1 < co. -

Proof. The assertions hold for () = t*, 1 < p < 0. Since ' is a g-concave
Banach lattice the result follows from Theorem 4.1,

5.2. Let (p,), be a sequence in the Schwartz class S (R% such that
(1) supp Fo, < {271 < € 2", n=1,2,..,
2) supp F o, < {jt| < 2};
(3} F o, =C,>0 if 2—e) 12" <t < (2—e}2", n=1,2, ..
@ Fp@l=C>0  if i <2—e
(5 D’ F (0] < C,27¥1  for all feN? and neN;

(6)

"

18

Fep, () = 1.
i3

il

n

The sequence (¢,) is called a system of test functions.

5.3. DeFivrTioN. Suppose seR and let {¢,) be a system of test functions. We
define, for 1 < g < o,

(1) o Hoy=Ho (R = { fe 5" (RY | (p,» f), € IP(0);
and, for 1< g o0, we set

(2) vq = Bo (RY) = {fe & R | (p,* f),c B(L?).
We equip the spaces Hy, and Bp, with the norms
3) 1 e, = Noa® Pallzoagy = [|(@y* Hallg
“@ o ”f”ﬁf,,,q == i!(qo"*f),.tlzgm) = ”(ii%*f”m)n

Le®,

iz
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54. It follows from Theorem 5.1 that the spaces Hy, and B, do not
depend on the particular system of test functions used to define them.
As in the usual Hardy-Sobolev and Besov spaces we have

5.5. THEOREM. Let seR and let ® be an Orlicz function as before. Then:

A Hg, is a retract of IP(l) for 1 < g < oo.
B. By, is a retract of B(IP) for 1 € q< o0o.

5.6. COROLLARY. The spaces Hy, and By, are complete.
5.7. For seR the Bessel (potential) operator J° is defined on f e ¥ (R%) by
Ff=F L+ PP,

Here, # ™! is the inverse of the Fourier transform % on %'(R%). As in the usual
cases the Bessel operator J° is an isomorphism from Hb, (B, respectively)
onto Hg,; (B, . respectively), 1 < g < 0.

Next, we recall the definition of the Sobolev--Orlicz spaces and we show
that they are the same as the spaces Hj 5.

58. DeFmiTIoN. Assume seR and let @ be an Orlicz function. The

~ Sobolev-Orlicz space Hj = H%(RY) is the linear space of all { ' #(R?) such that

JfelPRY).
The space Hy is equipped with the norm
1 g, = 1S o
A relationship between the Hardy—Sobolev—Orlicz spaces and the Sobolev—
Orlicz spaces is a consequence of the following theorem of Littlewcod-Paley
type.

59, TuroreM. Let (¢}, be a system of test functions as before. Assume that I*
is an Orlicz space where the Orlicz function © and its conjugare function satisfy
the A,-condition. Then there exists a constant C > 0 such that for all feLP,

W) C M f e < | i}ifpn*ﬂﬂ‘” o < Cl1flle.

5.10. CoroLLaRY. For all seR and every Orlicz function ® which satisfies,
together with its conjugate funciion @%, the 4,-condition, we have

(2 ' Hp = H.

Proof It follows from 5.7 that J* is an isomorphism from Hg , onto
H$ ; and it is obvious that it is an isormorphism from Hj onto Hg = L. But
the Littlewood—Paley theorem says that HY, = L*.

To close this section we show that the Hardy-Sobolev-Orlicz spaces
HS, and the Besov—Orlicz spaces Bp,, can be characterized as interpolation
spaces between usual Sobolev and Besov spaces, respectively.
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5.11. 'TH.EOREM. Let @ be an Orlicz function which satisfies, together with its
conjugate function @%, the A,-condition. Then there exist p, and p,, with
1 < pg, py < 0, such that

(1) (Hyya Hi1-q>u,p = Hp,g
(2) <B;n.qﬁ B;1,4>D,IJ = pr.q’
where g is given by 4.1(2).

Proof This follows from Theorems 5.5 and 4.1.

6. The U.MLD. property. As a consequence of Theorems 3.3 and 4.1 it can be
seen that reflexive Orlicz spaces are UM.D. spaces.

We recall that a Banach space E is U.M.D. or has the U.M.D. property (see
Burkholder [5]) if and only if the Hilbert transform has a bounded extension
from [P(R, E) into I*(R, E). Consequently, by the foregoing, we have

- 6.1. TI:!EOREM. Let (Ey, E,) be a Banach couple of U.M.D. spaces. Then the
interpolation space {E,, E,>,, is also a UM.D. space.

6.2. THEOREM. Let I be an Orlicz space such that the Orlicz Sunction @ and
the conjugate function & satisfy the A,-condition. Then I? has the UM.D
property. - S

Proof The spaces I9, 1 < g < co, are UM.D. Hence, for 1 < Go, 4, < o0
we have o !

H: (-2, i=1,2,
where H stands for the Hilbert transform. Consequently,
He SELE), DY)y — CE(ER), (L)), .

N.ow, by Theorems 3.3 and 4.1 it follows that H: IP(L®) - 12(1*), and so IP
with the above assumptions, is a UM.D. space. 7

6.3. COROLLARY. Let & and ¥ be Orlicz functions sutisfying the A,-condition

together with their conjugate functions &% and ¥*. Then LF(IP) is also a UM.D
space. ' T

Proof. The Calderén space X(E) is UM.D. if and only if X and E are
U.M.D. spaces.

3 s 5 . :
Besides Hg,, and B, we can also consider the spaces Hgy and BY o,

6.4. (_:OROLLARY. Let & and ¥ be as in Corollary 6.3. Then the Besov—Orlicz
Spaces By w and the Hardy-Sobolev—Orlicz spaces Hgpyw (i.e. Besov and Hardy -
Sobolev spaces modeled on Orlicz spaces) are also U.M.D. spaces.

Proof. It follows from Theorem 4.1 and Trisbel's multiplier theorem ([147)
that the spaces Hpy are retracts of I*(i¥) spaces. On the other handl

Interpolation and U.M.D. praperty 3%

from Cobos-Fernandez [7, Prop. 6.2] we know that retracts of U.M.D. spaces
are U.M.D. spaces., Consequently, the Hardy-Sobolev-Orlicz spaces are
UM.D. spaces. An analogous reasoning shows that the Besov—Orlicz spaces
are also UM.D. spaces.

6.5. COrOLLARY. Let & be an Orlicz function satisfying the A,-condition
together with its conjugate function @*. Then the Schatten—Orlicz class Sg is also
a UM.D. space.

Proof This follows from a result of Arazy [1].
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Added in proof (April 1991). L. Condition 2.2(2) implies convergence of the serics in 2.2(1)
and the summability assumption implies condition 2.2{2). However, & large part of the theory
holds assuming only 2.2(1)~(2). The summability assumption is required lor the density result
(Theorem 2.10) and to commutate the interpolation functor and IP (Theorem 3.3), '

IL Thearem 2.6 can be proved directly (without appeal to Lemmas 2.4 and 2.5) by means of
decomposition and ideas similar to the ones already used in Theorem 2.3.

III. The interpolation result 2.7 can be improved to obtain the consiant 2M, §(M /M ). One

has to follow Gustavsson-Peetre’s ideas and recall the symmetry properties of the Rademacher
fimctions,
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On two classes of Banach spaces with
uniform normal structure

by
J1 GAOQO (Philadelphia, Penn} and K A-SING LAU {Pittsburgh, PPenn.)

Abstract, We give two classes of Banach spaces X that have uniform normal structure. The
first class is closed under duality, and contains the uniformly convex spaces as well as the uniformly
smooth spaces. The second class is defined by J(X) < 3/2, where J{X) = sup{ix+yl A [x—y]:
lxff = llyll = 1}. Both classes of spaces are uniformly nonsquare, their properties are being studied.

§ 1. Introduction. A Banach space X is said to have normal structure [2, 8] if

for each bounded closed convex subset K in X that contains more thah one
point, there exists a point xeK such that

sup{[lx—yl: yeK} < diam K.

X is said to have uniform normal structiwe if there exists 0 < ¢ < 1 such that for
any subset K as above, there exists xeK such that

sup{[lx~y|: yeK} < cdiam K.

It is well known that uniform convexity in every direction implies normal
structure [8, 28], whereas uniform convexity and uniform smoothness imply
uniform normal structure {8, 27]. Our main purpoese in this paper is to give two
new classes of Banach spaces with uniform normal structure and study their
relevant properties. .

Let $(X) = {xeX: |x| =1} be the unit sphere of X. For xeX, let P,
denote the set of noerm 1 supporting functionals f of S(X) at x. In [16] Lau
introduced the following notion to study the Chebyshev subset of X:

DerNTIoN 1.1, A Banach space X is called a U-space if for any & > 0, there
exists & >0 such that _
1.1y Vx,peSX), |(x+y)2l >1=6 = (f,y> > 11—, Vfel,

Some of the properties of U-spaces in [16] are summarized in the following
theorern.
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Rey words and phrases: Asplund space, diameter, Fréchet differentiable, normal structure,
radius, strongly exposed points, uitrafilter, ultraproduct, yniformly convex, uniformly nonsquare,
uniformly smooth.



