
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 206, 1975

INTERPOLATION PROPERTIES OF GENERALIZED
PERFECT SPLINES AND THE SOLUTIONS
OF CERTAIN EXTREMAL PROBLEMS. I

BY

SAMUEL KARLINÍ1)

ABSTRACT. The existence of generalized perfect splines satisfying certain
interpolation and/or moment conditions are established. In particular, the exis-
tence of ordinary perfect splines obeying boundary and interpolation conditions
is demonstrated; precise criteria for the uniqueness of such interpolatory perfect
splines are indicated. These are shown to solve a host of variational problems
in certain Sobolev spaces.

1. Introduction. A perfect spline of degree « (« > 1) with r knots on [0,
1 ] is a function of the form

(1.1) P(x) = clx" + 2 ¿ (-l)'(x - £,.)?] + £ ajXl

where c, a0, ax, • • -, an_x  are real constants and the knots   {£,-} obey the con-
straints 0 < £j < %2 < • • • < Çr < 1. The perfect spline exhibits the property
that its «th derivative though changing sign at each knot maintains a constant ab-
solute value, in this case  Id«!. Glaeser appears to have been the first to empha-
size the class of perfect splines.  These functions are fundamental to the solution
of several types of extremal problems in certain Sobolev spaces, see e.g. Glaeser
[2], Tihomirov [12], Schoenberg [10], Schoenberg and Cavaretta [11], Karlin
[5]. Schumaker and others, call these bang-bang splines attributable to the con-
stant absolute value of P^"\x), and the property that this derivative changes sign
at the knots.  Considerable evidence points to the fact that perfect splines fea-
ture prominently in the solution of certain optimization problems occurring in
statistics, control theory and certain facets of numerical analysis.

We cite two typical problems:
1. Let W^[0, 1] be the Sobolev space comprised of all functions / de-

fined on [0, 1] where /("-1) is absolutely continuous and the maximum norm
of its «th derivative  D/^ II is finite.  Let xx <x2 < • • • <xn+r+x  be « +
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26 SAMUEL KARLIN

r + 1  prescribed points in [0, 1 ] involving no coincident block exceeding n
points and let   {a/}"+r+1  be given real numbers (not all zero).  Consider the sub-
set J[x, a] C W^ consisting of all fE W^  interpolating the data D = {aj}
at X= {x¡} i.e. fE J[x, a] entails that fEW^ satisfies

(1.2) /(*,) = «,-,       i = l,2, •••, n+r+1.

(When coincident x¡ occur, then the interpolation conditions are interpreted as
interpolation for the appropriate successive higher derivatives of that x value.)  A
problem of interest in approximation theory and elsewhere is to characterize the
minimizing function (or functions) yielding

(13) min    ll/<")|L.

The existence of a minimum in (1.3) can be established by functional analysis
techniques. A characterization of a minimum in (1.3) can also be obtained by
direct methods (see Karlin and Micchelli  [1975]). The methods of this paper pro-
ceed via a general covering theorem of deeper content and bearing widely on oth-
er applications. One of the applications will establish that the minimum (1.3) is
attained by a perfect spline (usually not necessarily uniquely when r > «) involv-
ing at most r knots. The special case where r = « - 1  and xx = x2 = • ■ • =
xn = 0, xn+x - xn+2 = • • • = x2n = 1, was investigated by Glaeser who exploit-
ed a special form of Taylor's expansion with a remainder formula combined with
some functional analysis and convexity arguments.

2. Consider the collection U(c) of all R^tO, 1] functions satisfying the
constraints

(1.4) J^fWdx = c¡,        i = 1, 2, • • -, t + 1  (t > «)

for given real constants c¡. The problem is to determine / E U (c) achieving

(1.5a) min   ll/<")|L.
/eu(c)

We establish in  § 7 that the unique minimizing / is a perfect spline of degree
« + t + 1   involving t -n knots.  Actually the special problem of (1.5a) can be
reduced to that of problem 1.

The above problems suggest a more general formulation encompassing both
cases.  Let px, p2, • ■ -, (xt+x  be t + 1  signed measures of bounded variation de-
fined on [0, 1].  Consider all fE W^ fulfilling the conditions

flf(x)dpi(x) - ct, I = 1, 2, • • -, t + 1, t > n.
Jo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERALIZED PERFECT SPLINES. I 27

Call this class  W(p, c).  Determine fE W(p, c) attaining

(15b) min     ll/<")|L.
f<EW(ß,c)

If the measures   {pj)  form a totally positive sequence as delimited in §7 then
the last minimum is achieved by a perfect spline exhibiting at most t — « knots.

An extended version of the problem in (1.3) involves replacing the nth de-
rivative operator by an «th order differential operator of the form

u J    \dx wn(x) dx w„_j(x)       dx wx(x)J /w*

where w¡(x) E C"[0, 1] and wt(x) > 0, /= 1, 2, •••,«, on [0, 1].
A key to the characterization of the solution of the foregoing variational

problems (especially (1.3)) is the following more basic interpolation theorem, de-
duced as a consequence of the more general covering theorem stated later in this
introduction.

Theorem I. Let   {x¡}"+r+l   (n> \,r>0) be prescribed with 0 < x, <
x2 < • • • <xn+r+l < 1  involving no coincident block exceeding n points.  Let
{al}j+''+1  be any given real data satisfying E"=i"+1 a? > 0. Then there exists a

perfect spline P(x) (not necessarily unique) of the form (1.1) with at most r
knots such that P(x¡) = a¡, i = 1, 2, • • •, « + r + 1.

(Criteria for uniqueness are elaborated in § 6.)
The existence part of Theorem 1 (with emphasis on the property of "at

most r knots") appears to be nonelementary. Our analysis uses some topological
techniques and further properties akin to the total positivity nature of the kernel
*(*, ö=f>- m-

As mentioned earlier, the special case xx = x2 — • • • = xn=0, xn+1 =
xn+2 = • • • = x2n = 1  is considerably easier. In this case the solution is unique.
An explicit determination of the interpolating perfect spline for the interpolation
conditions P(0) = P'(0) = • • • = p("-'>(0) = 0, P(l) = 1, P'(l) = • • • =
P*"-1)(l) = 0 was given by Louboutin [9] where the knots can be identified as
"essentially" the zeros of the classical Tchebycheff polynomial of the second kind.

An extension of Theorem 1 allowing a more general prescription of interpo-
lating conditions at the boundary is the content of the next theorem.

Theorem 2. Let 0 < ix < i2 < • • • < ip < n - 1 and 0 </, </2 <
•••</'< n - 1  be p and q prescribed indices associated with the endpoints
0 and 1 respectively.  Let 0 < xx < x2 < • • • < xk < 1  be given with no co-
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 SAMUEL KARLIN

incident block exceeding n points.  Suppose p + k + q = n+r+l, « > 1. Let
{7,}i\ {ojf and  {5,}^ be given real values not all zero.  Then there exists a

perfect spline P(x) of the form (1.1) with at most r knots satisfying

1.2. • • ;p,

1,2, •••,*,

1.2, ••-,?,

provided the interpolation requirements in (1.6) obey the Pólya condition Le.,
the cumulative number of stipulations on P(x) and up to the mth derivative ex-
ceeds m, m = 0, 1, • • -, n.

For the relevance of the Pólya conditions to these kinds of considerations
consult Karlin and Karon [6].

A further generalization of Theorem 2 involving boundary conditions of the
type usually coupled to differential operators (cf. [4]) is also forthcoming. We
will not describe the corresponding results.

A consequence of Theorem 1 is:

Theorem 3. The perfect spline affirmed in Theorem 1 provides a minimum
in (1.3).

The lack of uniqueness in Theorems 1-3 prominent for r > « is discon-
certing and is mainly attributable to the fact that the system of functions

«*(8 - (** -Ö+ (0 < * < O * = 1. 2, • • -, r,
constitutes a weak Tchebycheff system (T. S.) rather than a bona fide Tchebycheff
system (T. S.).  (A T. S. is characterized by the property that every nontrivial real
linear combination v(x) = SJLj a¡v¡(x) vanishes at most n - 1  times and if its
number of zeros Z(v; [0, 1]) = « - 1, v(x) necessarily changes sign at every zero
interior to [0,1].)

The results of Theorems 1, 2 and Theorem 7.1 later, and other applications
will be deduced executing suitable adaptations on Theorem 4. We emphasize here
that this theorem encompasses our main global theorem and is more far reaching
than merely for the context of perfect splines.

Theorem 4. Let  {pi(x)}"+''+i be a family of functions such that
{v¡(x) = dui(x)/dx}"+r+1 are piecewise continuous.  Let  {ot¡}"+r+l  be real data
with 2 a? > 0. Suppose lU^II"^ j"*L*j  is a matrix with the property that for any
0 < 77j < 7j2 < • • • < r¡s < 1 and s < r + 1, the determinant

P0v\o) = yv,

(1.6) *(*,) = «,, / =

P°m)(D = 5m, p =
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GENERALIZED perfect SPLINES. I 29

Ali''"' Al,n>        "lOîl). • • -.UiOií)

(1 ?) ^21>'"-> A2,n>        V2(Vi), ■ ■ ', V2(r¡g)

• • • •

keeps a single strict sign.   Then, there exists a set of real values  {a¡}"-x and c,
2?= j af + c2 > O a«d O < £t < £2 < • • • < |s < 1, s < r (usually, we have
s = r) satisfying

t Ai¡a¡ + c\u,(l) + 2(-l)í+1 ¿ (rlfufä) + (-lr1«^)] = «f,
(1.8)   /=i L '=1 J

/= 1,2, • ••, « + r+ 1.
For any data   {aJ}"+''+1  not in the range of the matrix A = IU/fcll, the solution
of (1.8) entailing the minimal number of knots (we use the terminology knots
referring to the  {£,} even in the present general context) is uniquely determined.
For example, where the data  {a/}j+r+1  consists of all zero data but for one
component, then the system (1.8) is solved uniquely and involves r knots.

Remark. The uniqueness conditions applicable to Theorem 1 are considera-
bly weaker than the criteria set forth in Theorem 4.  (See  §6 for a complete
discussion.)

Note in (1.8) the appearance of the term u,(l).  For the special examples
of Theorems 1 and 2 we have i/f(l) = 0 and therefore the contribution of this
term is missing.

As mentioned above, Theorems 1 and 2 are not immediate consequences of
Theorem 3 since the collection of functions «,-(!) = (x¡ - £)", i = 1, 2, • • •, r,
in conjunction with the matrix  IU/Jtll = Ibcf-1 II and their derivatives u¿(£) =
-n(x¡ - I)"-1   do not strictly obey the requirement of (1.7).  Actually, no sign
change is possible for the determinants (1.7) in this case but they can be zero.
To deduce Theorems 1 and 2 we implement a standard smoofhening of «,(£) so
that Theorem 4 becomes applicable (§4).  A limiting process is then performed
leading to the conclusions of Theorem 1 but without the uniqueness statement
persisting even where c =£ 0.

Further topological arguments involving mainly applications of the Brouwer
fixed point theorem with reliance on the result of Theorem 4 will enable us to
establish the existence of the two special perfect splines described in the next
theorem.

Theorem 5. Let g(x) and h(x) be continuous positive and nonpositive,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



30 SAMUEL KARLIN

respectively, on [0, 1 ]. Let n and r be given and suppose that n + r = k.
Then, there exists two special perfect splines P(x) and P(x) with r knots, each
oscillating maximally between g(x) and h(x) in the following sense:

(ï)h(x)<P(x)<g(x) on [0,1];
(ii) there exists k + 1 points 0 < zx < • • • < zk+x < 1  such that

lg(zj),   i odd.
P¡?¡> =

ih(z¡),   i even.

Similarly, the perfect spline Pj[x) is characterized by the conditions (i) as above
and (ii'), arising from (ii) by interchanging the junctions g(x) and h(x).

Several important corollaries ensue out of Theorem 5.  We highlight one of
them.

Corollary 1. Let Q be any positive polynomial on [0,1] of degree
<«- 1. Let r be a given positive integer.   Then the unique representation
(1.9) Q(x) = P(x) + P(x)   for all x
prevails where P and P are the maximally oscillating splines of Theorem 5 as-
sociated with g(x) = Q(x) and h(x) = 0.

Specializing Theorem 5 to the case of h(x) = -1  and g(x) = 1  we obtain

Theorem 6. For given n and r there exists a unique perfect spline
P„ r(x) of degree « with r knots oscillating maximally over the interval [0,1]
between 1 and -1  in the sense of Theorem 5 and normalized by the condition
Pnr(0) = 1. It follows that Pnr(l) = (-l)n+r.

The construction of the special Pn r can be achieved without reliance on
the full force of Theorems 1 and 5 by appropriate application of the Brouwer
fixed point theorem. The case of Theorem 6 was announced by Schoenberg and
Cavaretta [11 ]. The function Pn r also features prominently in the work of
Tihomirov [12].

Designate p„ r as the constant value IIP^IL = Pñ,V(l) = ^"rí1)'- rt is
usually more convenient to normalize the «th derivative to 1. Accordingly, we
form

Qn.Áx) - Pn,rPn,Áx)     so that

(1.10) Hß„.rIL=P„.r = 0„,r(0) = (-l)"+'-ß„,r(l),   and

WQnnX - »•
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GENERALIZED PERFECT SPLINES. I 31

It can be proved that pn0 > p„ j > pn2 > ■ ■ ■ > p     —> 0 as r —*■ °°.
A more basic version of Theorem 6 is stated below whose proof falls back

on the interpolation property enunciated in Theorem 4 and some further topolo-
gical analysis.

Theorem 7. Let p be prescribed satisfying 0 < p < °°.   There exists a
unique perfect spline Q(x; p) of degree « satisfying \dQ^"\x; p)/dxn\ = 1,
\Q(x\ p)\ < p on  [0, 1] and Q(0; p) = p. Moreover, if pnr_x > P > Pn>r
(pn _j = + oo  by convention), Q(x; p)   involves exactly   r  knots and oscil-
lates n + r times between p and - p, as x traverses [0, 1]. Also, Q(x; p)
vanishes n+r times on  [0, °°), displaying at most one zero outside  [1,°°).
When, p = p„ r, of course, Q(x, p) = Qn¡r(x).

The perfect splines Q(x; p) enjoy several remarkable optimum properties.
We highlight three typical situations.

(a) Consider the class C(p) of all fE w£) defined on [0,1] obeying the
restrictions
(1.11) H/(n)t<l   and    ll/IKp,      p>0,
Then for any 1 <v <n - 1, nuxfeC(p)\f<v\0)\ = \Q^(0; p)\.

(b) Let 0 <x* < 1.  Consider the class C(p;x*) of / in  C(p) with the
further property that f(x*) = Q(x*, p).   Suppose ß'(x*, p) > 0.  (If negative,
replace max in (1.12) by min.) We have

(1.12) max    f'(x*)=Q'(x*\p).

(c) Let « + r = 2m.  Suppose fE W^ on  [0, b], b > I, satisfies the con-
straints   ll/(n)IL<l  on [0,ô] but   11/11 <p„_, on  [0,1].  Call this class of
functions  C„ ,.[0, b].  Then, we have

max     f(b) = \Qn¡r(b)\.

We now set forth the concept of a perfect spline associated with certain «th
order differential operators.

Let  {Wj(x)}"  be positive and of class C"  on [0,1].  Consider the «th
order differential operator Lnx> = DnDn_x   ■ -Dxv composed from the first order
differential operators

(Prtto-gfeL-ittyi= 1,2, • • -, «,

acting on w G C"[0, 1]. The solutions of Lnu = 0 analogous to the powers
{x%"1   are   {«,(x)}g_1, where u0(x) = wx(x),
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32 SAMUEL KARLIN

U¡(x) = wxQc)J^w2(t1)fo1 w3(t2) ■•fo' ' W/+j(t^dtidt^■ ■ -dtx,

i= 1,2, ••-,«- 1.

We let <pn(x; £) be the fundamental solution of Ln<p = 0.
A "generalized perfect spline" corresponding to the differential operator

Ln = D" (we have changed notation here) is an expression of the form

(1.13) c\un(x) + 2 t (-l)''0(x, if,)! + L*f«/C*)

where w„(x) satisfies Z)"w„(x) = 1  subject to the initial conditions «„(0) =
Dlu„(0) = • • • = Dn~lun(0) = 0, and <Kx, £) is the fundamental solution of the
operator Ln+Xf= d(Dnf)ldx. The analogues of Theorems 1 and 2 persist for
generalized perfect splines. The Sobolev space W^D"), Ln = D", is determined
as consisting of all functions such that Dnf is defined a.e. and  IID"/H<» is finite,
Theorem 3 admits the following version for W„(Ln).

Theorem 3'. Let J(x, a, D") consist of all fE W^D") interpolating
the data  {a,} at  {x¡}. Then min^j WfW^ is achieved by a "generalized per-
fect spline" of the form (1.13) interpolating the given data.

We conclude this introduction by indicating the organization of the paper.
The proof of Theorem 4 is relegated to  §3 while in §2 a number of an-

cillary lemmas are developed. The results of §2 enable us to verify the global
one to one character of a natural mapping associated With the equations (1.8).
The proof of Theorem 4 utilizes a variety of topological analyses.

§4 is devoted to the proof of Theorem 1. The problem of uniqueness of
the interpolating perfect spline, its scope, extent and limitations, is discussed in
§ 6.  A variety of auxiliary properties, possessing independent interest on perfect
splines are set forth in  §5.  For example, we locate the knots relative to the in-
terpolating points for certain cases.

§§7 and 8 present the solutions of the extremal problems of (1.5a) and
(1.5b).  Here, some further variational problems and representation theorems con-
nected with perfect splines, not described in this introductory section, are settled.
The elaboration of the proofs of Theorems 5—7 and further ramifications and
applications of the theory of perfect splines are deferred to a separate publication,

After completing this paper in 1972, the work of Fisher and Jerome [1] was
brought to our attention. They achieve a local result in characterizing the solu-
tions of the variational problems of the kind (1.3) under more general interpola-
ting conditions.  The solutions involve perfect splines subject to the gross bound
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GENERALIZED PERFECT SPLINES. I 33

of at most « knots between each two interpolating points.  Therefore, for
n + r + 1  interpolating points, their solution could conceivably have «(« + r+ 1)
knots.  Our results are global in character providing the exact bound of r knots
in the case of « + r + 1  Hermite interpolating data. Moreover, the covering The-
orem 4 can be used for other applications and transcends the context of interpo-
lation by polynomials.

Added in proof. We have achieved (in collaboration with C. Michelle) a vari-
ational approach to Theorem 4.

2. Measures induced by knots of perfect splines and orthoganility properties.
§§3 and 4 are devoted to proofs of the main interpolation Theorems 1  and 4,
(stated in  §1) and several extensions.  The relevance and need for the following
lemmas will become manifest during the later developments. The reader not wish-
ing to be encumbered by technical details can pass directly to  §3 and return
later here.

Lemma 2.1. Consider two collections of ordered numbers

(2.1)     l>aj >a2>--->a2m_j > 0,    1 > ßx > ß2 > • • ■ > ß, > 0.

(Note that the a's and ß's appear in decreasing magnitude.)
Regroup the numbers of (2.1) into the two sets Sx  and S2 as follows:

Sx = {l,a2,a4,a6,- • -, a2m_2, ßx, ß3, ■ ■ -,^.,0},

!l if I is odd,
l-l  if I is even.

S2 = {aj,a3,a5,- • -, a2m_x, ß2, 04, ß6, ■ ■ -,ßf},

l-l  if I is odd,

I if I is even.

Let c > 1. Construct the increasing step function F(x) whose points of increase
are those of S\  with upward jumps of magnitude 2c and 2 at the points a2/
and ß2i+x, respectively, the jump c - 1 at I, and jumps c - 1 at 0 if I is
odd and c + 1 if I is even.    When an a point coincides with a ß, then cumu-
late the jumps.

Next construct the increasing step function G(x) associated with S2 with
jumps of size 2c at a2l+1 and magnitude 2 at ß2i. Then F(x) - G(x) chan-
ges sign at most 2m - 1  times.

Proof. Note that F(0-) = G(0~) = 0, and F(l) = G(l) = 2cm + 2[//2].
Also

/ =
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34 SAMUEL KARLIN

IC - 1     if /  is odd,
c + 1    if / is even,

and F(l) -F(l-) = c - 1  accordingly.
As x decreases from 1 towards aj, G(x) - F(x) takes the values c - 1

c + 1, changing from one to the other as successive j3f points are encountered (if
they are encountered at all). The relevant fact is that G — F is nonnegative af-
ter ax. At aj, G jumps by 2c so that G - F drops down to -(c + 1) or
-(c - 1) just before ax. As x proceeds downward toward o^, G - F alternates between
these two latter values, the jumps occurring at the ß's (if there are any in (a2,
aj)). Thus, G -F is nonpositive on (a2, ax).  At a2- another sign change oc-
curs back to the value c + I  or c - 1.  In summary, G -F strictly changes sign
possibly at the 2m - 1  points ax, a2, • • -, a2m-1  and nowhere else. This
clearly remains valid, if any of the ß's coincide with any of the a's (by a stan-
dard continuity argument).  The proof is complete.

Lemma 2.2. Let the sets  {a(} and   {/?,.} be given as in Lemma 2.1. Here
form the sets

S l  =   {l.a2> a4> ' ' '. a2m-2»02>04> ' ' '>0f,O},

S2 =   {<*l>a3>' ' '>Q2m-l»01>03> ' ' "'I3,»)-

(Note that now Sx   includes the points ß2i instead of ß2i_x.) Let F(x) be
constructed with upward jumps of amount 2c at a2l- and of magnitude c+ 1
(c - 1) at 0 if I is odd (even) 2 at ß2i and a jump of magnitude c + 1 at 1.
Let G(x) be the increasing step function with jumps of magnitude 2c at ot2i_x
and 2 at ß^t-f  Then F(x) - G(x) changes sign at most 2m - 1  times.

The proof paraphrases that of Lemma 2.1.
We record now the versions of Lemmas 2.1 and 2.2 when there appears an

even set of points.

Lemma 2.3. Let 1 > ax > a2 > ■ ■ ■ > a2m > 0 and 1 > ßx > ß2 >
• • • > ßl > 0.  Consider the sets

Sx = {l,a2, a4, • • •,a2m,ß1,ß3, ■ ■ -, fy»},
(2.2)

S2 =   {al>a3>' " '>a2m-l>02>04>' ' ''Pf,®)-

Let c > 1. Form the increasing step functions:
F(x) jumps 2c at a2/, 2 at j32/_j  and c - 1   at  1.
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GENERALIZED PERFECT SPLINES. I 35

G(x) jumps 2c at a2i_x, 2 at ß2i and c - 1 at 0 if I = even, c + 1
at 0 if I = odd.

Then F(x) - G(x) changes sign at most 2m times.

Lemma 2.4. Consider  {a¡} and  {ßj} as in Lemma 2.3. Let c > 1 and
form

S, = {l,a2,a4, • • -,a2m,ß2,/34,- ■ \ßj},

S2 = {aj,a3,- • ;a2m-i,ßi,ß3,- ' -.^«.O}.

Construct F(x) analogous to F(x) but having a jump of c + 1 at 1, G(x) is
correspondingly changed from G(x) in that it exhibits a jump of magnitude
c + 1  or c - 1 at O (according as I is even or odd). Then, F(x) - G(x) exhi-
bits at most 2m sign changes.

Remark 2.1. The conclusions of the above Lemmas 2.1—2.4 remain in
force when dealing with a single set
(2.3) 1 > aj > a2 > • • • > ar > 0 (r = 2m - 1  or 2m).

For r = 2m - 1, we form the sets

5j = {l,a2,a4)- • -,a2m_2,0},   52 = {aj,a3, • • •,a2m_x}.

Then construct F(x) with unit jumps at 0 and  1  and of size 2 at the points
Oj,; G is determined with jumps of size 2 at a2/_j. Again F(x)-G(x) chan-
ges sign at most 2m - 1  times. An analogous result applies for the case r = 2m.

The following lemma complements the information encompassed in Lemmas
2.1-2.4.

Lemma 2.5. Let H(x) £ 0 be right continuous on [0, 1] with H(-z) =
H(\ + z) = 0 for z > 0, and suppose

(2.4) flle u¡(x)dH(x) = 0,       í = 1, 2, • • -, n,

where v¡(x) = du¡(x)/dx, i = 1, 2, • • -, «, constitute a Tchebycheff system on
[0,1].  77ie« H changes sign at least n times.

Proof. Integrating by parts in (2.4), the boundary terms vanish yielding

(2.5) f1 H(x)v¡(x)dx = 0,        i = 1, 2, • • -, «.

Suppose H changes sign only r <« - 1  times on [0, 1].  Let the sign changes
occur at the points fj, f2, • • -, fr.  It is possible to construct a real continuous
polynomial u(x) = 2"=1a/i;I.(x) (see [7, Chapter 1]) which changes sign exactly
at the ff and nowhere else. The relations (2.5) entail flv(x)H(x)dx = 0.

On the other hand, the integrand is one sign and nonzero on sets of posi-
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tive measure. The obvious contradiction implies the desired conclusion of the
lemma.

The result of the lemma does not necessarily apply if  {v¡(x)} constitute a
"weak" Tchebycheff system.

3. Interpolation by generalized perfect splines. We have prepared the back-
ground ingredients for the proof of the principal interpolation Theorem 4. There
are two main steps in the analysis. We first establish an essential global one to
oneness of a certain nonlinear mapping in Euclidean m space, Em  (m = n +
r + 1). The second phase involves a topological argument ultimately demonstrat-
ing the fact that the mapping covers all of Em.

For later purposes it is convenient to develop the results in a more general
framework.  Let   {u¡(x)}x+r+l  comprise a family of continuous differentiable
functions defined on [0, 1] and set v¡(x) = d[u¡(x)]/dx, i= 1, 2, • • -, n +
r + 1.  Let A = IU/fcll be an (« + r + 1) x « matrix (i = 1, 2, • • -, « + r + 1;
k = 1, 2, • • •, «) with the property that all determinants of the form

(3.1)

Ai,i

l2,l

ll,2>

l2,2>

Al,n VX(VX), ■ ■ -,VX(VS)

l2,n V2(V0> " " "» u20?s)

*n+s, 1 ln+s,2> ln+s,n "n+s 0?i), • • "h+s' Oí,)
are of one strict sign for arbitrary choices 0 < t?x < rj2 < • • • < r¡s < 1 and
0 < s <r + 1. (s = 0 means that no tj,. are involved.) These requirements are
henceforth in force unless stated otherwise.

That these sorts of conditions on A and   {v¡(x)} are fulfilled in many nat-
ural cases will be adequately demonstrated later.

Consider now a mapping <i> of An+r+1 C£"l+r+1   into E"+r+l  whose do-
main An+r+1   consists of the points of the form   {a, c, £} = {ax,a2,- ■ ; an, c,
|j, |2, • • •, £r} where all the coordinates are real and £,- satisfy 0 < %x < \2 <
• • • < \r < 1. The simplex of £'s alone is denoted by 2r. The explicit prescrip-
tion of * = *(a, c, |) = ($i, $2, • • -, *„+r+1) is

(3.2) [",(
*i - E v,+ ckw+ H)m2 E (-i)'",«,) + (-iy/=i ;'=i

hl",(0)|,

/= 1,2, • • •,« + r + 1.
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(When some £(-'s are coalesced or some £('s coincide with 0 or 1, then the sec-
ond sum actually involves less than r summands.)

Theorem 3.1. The mapping <l>(a, c, |) defined on An+r+1  is 1:1 to the
extent that the vector identity

<ï>(a, c, £) = $(a, c> % ) subject to c2 + c2 > 0 and
where % involves s (s < r) distinct components and %
at most s distinct components entails a = a, c = c,

When c = c" = 0 and 4>(a, 0, £) = i^, 0, £) holds then a = ¡T a«*f
<i>(a, 0, |) is manifestly independent of f.

Proof. Suppose (3.3) holds and for simplicity assume that {■ and {■
both involve r distinct components, (for the case where £ and/or £  have co-
incident components, the analysis is easily adapted, mutatis mutandis.)

Case 1 : cc > 0.  In this situation without restricting generality we may di-
vide (3.2) by c* and assume c > 1 = c*. Then (3.3) reduces to

$,.(3, c, |) - $,.(a, 1,|) - ¿ ¿ffc(ak - afc)
fc=i

(3 4) + cL(i)+eir^E <-iy«,($)+(-ir'".(o)]

-La) + (-i/+i 21 c-iyu^)+e-ir1«^)] •

Identifying the points  {£,-} and  {£,-} properly with  {a,} and   {ß,} in
Lemmas 2.1 or 2.3, we may write (3.4) in the form

(3-5) E Aik(flk ~ «*) + y r' Ui(x)[d(F(x) - G(x))] = 0
fc=i ■'"•

where y is an appropriate nonzero constant.  Integration by parts in (3.5), i =
1, 2, • • -, « + r + 1, produces

(3-6) £¿i*(«* -«k) + 7/Jotfflltt*) - G(x)]dx = 0,
i = 1,2, • • -, « +r+ 1.

On the basis of Lemmas 2.1 or 2.3 we know that either H(x) = F(x) - G(x)
changes sign p times with p<r or H(x) = 0. Consider the first possibility.
Let sx < s2 < ■ ■ ■ < sp be places where H(x) changes sign.  Now, determine
{Xf} not all zero, to satisfy
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n+p+l
(3.7) £   M(* = 0, *= 1,2, •••,«,

i=l

(3.8) "+£ X/ü/(sM) = 0, v = 1, 2, • • -, p (p < r).
j—i

Explicitly X,- (apart from a constant multiplier) are the minors with alternating
signs obtained by eliminating successive columns from the matrix

A* 11 '••     Al,n' ül(sl)> "••     «l(Sp)N

V^n+p + 1,1     '*'    An+p+l,n'    vn+p + l(sl)>'    ' vn+p + l(sp"

Obviously, by condition (3.1), X„+p+1 =£ 0. We claim that v(x) = 2£"f+,X/.u1(;c)
necessarily changes sign at sx, s2, • • -, sp and keeps a constant sign for sß <
x < sf¡+x. The latter conclusion is immediate since v(x) vanishing at such an x
is incompatible with the requirement of (3.1).  With the stipulations of (3.7) and
(3.8), it can be established (paralleling the analysis in Karlin and Studden [1966,
Chapter 1] that if nodal zeros of 2"J1P + 1 \v¡(x) are counted once and nonnodal
zeros twice then the maximum number of zeros in this count for v(x) =
2X/ul(x) is at most p. With this property we see that v(x) actually changes
sign at each sß.

A more direct proof that v(x) changes sign runs as follows.  Suppose to
the contrary that v(s¡ ) = 0 but v(x) has one sign (say > 0) in a neighborhood
of s¡ . Then determine p¡ satisfying

n+p n+p
e E p-tAik = ° and e E pMs^) = °>     p- * ¡o

1=1 1=1

(notice we have involved n+p variables p¡ rather than n+p+l   occurring in
(3.7) and (3.8)) and determine the sign of e such that e 2?=f p^.fc   ) < 0.
Obviously (setting p„+p+1 = 0), we have

"£    (\ + eßi)Aik = 0,        k=l,--;n,
í=i

and 2"-íf+1(X/ + ep¡)v¡(x) vanishes at p + l  distinct points for e small enough.
This is impossible because of condition (3.1).

The obvious combination of (3.7) and (3.8) leads to
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(3.9)   0 = " ¿    X,- ¿ Aik(ak -ak) + yf v(x)H(x)dx = y f ' v(x)H(x)dx.
i= i        fc= i u * "

However, v(x)H(x) is not identically zero and keeps a constant sign throughout
[0, 1] and accordingly (3.9) is manifestly absurd. We may therefore conclude
that  H(x) = 0, i.e., £,- = %i  and  c — c"— I.   The remaining equations
2k-xAik(ak -a;k) = 0, i = 1, 2, • • -, «, admit only the trivial solution in view
of assumption (3.1).

Case 2: cc < 0. The analysis paraphrases the preceding invoking Lemmas 2.2
and Lemma 2.4 in place of Lemmas 2.1 and 2.3.

Case 3: cc =0, c2 + c2 > 0. Remark 2.1 of §2 is relevant here.
Case 4: c = "c = 0. The proof of Theorem 3.1 is complete except for the

last statement.  But that fact is immediate since A certainly has rank n and
therefore A(a-a) = 0 entails a = â".   D

Consider now the restriction F of the mapping <j> by holding c fixed at
c = 1.  More specifically, we define 4>+ = (<j>\, • • -, 0*+r+1) on A C En+r where

A= {a, %} = {ax,a2,- • -,an,%x,%2,- • -, £r}

and  {£,-} are constrained according to 0 < %x < %2 < • • • < %r < 1, while at
are free real variables, and

n

L(D + 2(-i)'+i t H)'«,«/)+nr1«,«»!0,+ (a, I) = ZAnPk + KO) + 2(-l)r+1 E (-DX«/) + (-1/
(3.10) fc=1

/= 1, 2, • • -, n + r + I.
Next, transfer the mapping so that the image is on the surface S"+r+l  of the
unit ball in £*I+r+1.  Specifically, define

#(a, Ö
(3.11) ft+(z, %)=    . , =, i= 1,2, •••, «+r+1,

and set F+= (fx+,f2\-■ ;f¿+r+x).
Theorem 3.1 tells us that F+ is well defined continuous and a globally

"1:1" mapping of A  into Sn+r+l   under the conditions described there. The
1 :1 assertion in a stronger form is checked as follows.  Suppose % E 2 in-
volves s (s <r) distinct components and |   carries at most s distinct compo-
nents. The identity F+(a, £) = ir+(a, {•) is the same as

0(a, 1, Ç) = y<p(ß, 1, T) = 0(7a, 7, ?),
where y = the appropriate ratio of normalizing constants. Theorem 3.1 now ap-
plies to affirm 7=1, a = a', £ = %.

The closure of the simplex 2 = {0 < %x < %2 <•••<£,.< 1} and the
continuous extension of F+ to 2  done in the obvious manner causes no diffi-
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culty.  It is essential also to close the domain A with reference to the   {a¡} com-
ponents. We do this as follows.  Consider the homeomorphism T defined on
A; viz.,

(ax,a2,- ■ ;an,£x,- ■ -, £r)

(3.12)      -*      / , • • -,     ;        ===-> ?i. * * ■» MW1 + 2"=i*2 vi + 2^lfl?      vi + sti«?        y

for any £ G 2.

(Since r only affects the a components we write, for brevity, Ta = b rather
than T{a, £}.) The first n components in the closure of the image of T covers
the corresponding unit ball, and through T we will close the domain A in the
natural way to A. We have mapped the space E": {a = (ax, • • ; an)} to the
open sphere Ta and then close the image domain in the natural way by adding
ideal points at infinity to A of dimension homeomorphic to the boundary of
the unit ball in E"  space.

The mapping F+ extends to the closure A as follows.  Suppose   {a*y\
£} E A is such that Ta.^ tends to a boundary point say b    (meaning that
2^1 la¿">| -* °° as m -* °° and «f"Vl + 2¿, (a\v))2 -> b*, i = 1, 2, • • -,
«).  It follows immediately from (3.12) and the special form of (3.11), that

(3,3) ,,.(.«, e.       ̂ Wt*,(fT
Vz,['*?(a<">,{yv/n^»,,(aW)2]2

converges to

0+(b*, 0, £)/V2f=+[+1[0i(b*,O,£)]2 = Definition of F+(b*, £).

The limit evaluation of /+  for b   = lim,,^^ 7a^ is manifestly independent of
the approximating sequence. Note that the components in (3.13) do not depend
on £. The image of this part of the boundary of A  is clearly homeomorphic to
a simplex. Observe that A  now consists of the direct product of a closed unit
ball of E" and a closed bounded simplex 2 in £r.

It is elementary to check that the mapping F+ as extended in (3.13) per-
sists as a continuous mapping defined on A  into 5n+r+1.

Analogous to the determination of F+, we construct F~ corresponding to
the mapping $ with c fixed at -1. We record the preceding discussion formal-
ly as a lemma.
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Lemma 3.1. The mapping F+ (and also F~) is defined explicitly in (3.11)
where if {a*, £} is such that Ta* = b* (T defined in (3.12)) lies on the sur-
face of the unit sphere of E" then the determination is given by

\n+r+l
(fc.fh*. 0. «

(3.14) p-+({a*,£})
Vs^r^rV.o,»]2 i=i

and this image is independent of £. The mapping F+ sends A continuously
into Sn+r+1 (the surface of the unit ball lying in En+r+1). Moreover, F+ is
1:1 except for the images of {a, £} where £ lies in 92r (the boundary of
2,.) and for the points (3.14) which can only come from boundary points in
A of the form   {b*, £} provided b* is a boundary point of Ta.

The next lemma is crucial to our deliberations.
Let  P" = F+(Ä) (the image of Ä under F+ in S"+r+l).  Regard  V as a

topological subspace of S"+r+1.  Also let  «7= P~(A).

Lemma 3.2. Vo = F+(A°) and dV = F+(dÄ) (Vo denotes the interior of
V and dV the boundary of V). U° = F~(Ä°) and dU° = F~(d£) and Vo n
if = void.

Proof. The assertion follows from the invariance of domain principle (open
mapping theorem) based on the fact that F+  is globally 1:1 on A° as affirmed
in Theorem 3.1.  Note also that the boundary maps exclusively into the boundary
of the image set.  It is then evident that this principle identifies  Va = F*(/£)
and dV = F+(8A). The fact that  Vo n if is void is also a direct consequence
of the global 1:1 conclusion of Theorem 3.1.

The next lemma provides an important identification of 9V and dU.

Lemma 3.3. dV = dU.

Proof. Note that the boundary of A consists of points {a, £} where ei-
ther 7a = b lies on the boundary of B" (the unit ball in E") and/or where at
least £f = £I+ x  for some i, or £;- = 0 or £;- = 1  for some /.

We consider all these possibilities in order.
Case 1. If Ta = b E d(B"), then consulting (3.14) reveals that F+({a, £}) =

F-({a,£}).
Case 2. {a, £} has ak all finite but %x = 0 such that 0 = %x < £2 <

£3 <•••<£.< 1.  Now specify tj, = 1, r\r_x =£,.,•• -, Vi = £2-
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Direct verification yields

(3.15) F+({a,£}) = P-({a,7î}).

Case 3. {a, £} has all ak finite but 0 < %x < £2 < • • • < £r = 1.  Now
specify 0 = r¡x, t?/+1 = £,., /' = 1, 2, • • -, r - 1, and again (3.15) ensues.

Case 4. Suppose   {a, £} is such that all ak are finite but for some I, £f =
£J+1. Now choose r? to have 7jr = 1, r\r_x =£,,-• -, i?/+, = £i+2,77,. = £,_,,
' ' "> i?2 = Si, ïïi = 0.  Direct evaluation yields

(3.16) F+({a,£}) = F-({a,T7}).

Cases 2—4 cover all the r - 1   dimensional faces of the boundary for the simplex
0 < £j < £2 ** ' * ' ** Sr < 1  which establishes the validity of dV = dU in these
cases. The property extends to all of V by continuity. Thus dV C dU and
from symmetry considerations we deduce dV = dU. The lemma is proved.

Corollary 3.1. V = F+(A) and U = F~(A) have the same boundary and
their interiors are disjoint.

Our next objective is the proof of

Theorem  3.2. 77ze mapping F = F+ U F~ is onto all of S"+r+l.

In order to validate this theorem we make the important induction assump-
tion that the corresponding result holds in the presence of at most r - 1  knots.
Thus, we impose

Induction Assumption. The image set T on sn+r+1 for mapping of F:
F+ U F~ of all points   {a, £} E A involving at most r - 1  knots (i.e., at most
r - 1  distinct £,- are allowed) is homeomorphic to the surface of a sphere of di-
mension n + r.

A little reflection reveals (because of Lemma 3.3) that

(3.17) r=dV = F+(dA)

so that the induction assumption asserts that F+(9A) is homeomorphic to a
sphere of dimension « + r.

The induction assumption is patently valid with no knots, as the image
F+(7a) is obviously homeomorphic to a solid sphere of dimension n.

The next lemma is vital for the proof of Theorem 3.2.

Lemma 3.4. The image of F+(A) is homeomorphic on S"**"1"1  to a sim-
plex of dimension n + r + 1.  The same is true for F~(A).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERALIZED PERFECT SPLINES. I 43

Proof. Take a point interior to F+(A) = V and map by a stereographic
projection the set   V onto K C En+r+1.  Consider the complement of K in
F"+r+1.   It cannot have two components because then dK is not homeomorphic
to a sphere of dimension n + r contradicting the induction assumption (3.17).
We also claim that K is simply connected (i.e. any closed surface in Kc can be
contracted continuously to a point persisting inside   Kc).    If not, we
would again contradict the induction assumption stipulating that dK is homeo-
morphic to a sphere of dimension n + r.  Thus Lemma 3.4 is established.

Proof of Theorem 3.2. Let Z be the complement of V= F+(Ä) in
Sn+r*1.  By virtue of Lemma 3.5 we know that Z is open and simply connected.
Of course F^A0) = U° C Z as attested to in Corollary 3.1.  Suppose  if is
properly contained in Z. Take p EZ but not in if. Since Z is connected
we can obviously join p to a point of if by a curve contained «strictly inside
Z and therefore not touching V. But, the curve crosses dU and since dl/ =
dV (Lemma 3.3) an absurdity results.  Thus we have established  if = Z and
the proof of the theorem is complete.

With Theorem 3.2 established, the induction step is advanced to the case of
r knots.

We essentially have now the main theorem.

Theorem 3.3. The mapping 4> defined on A = An+r+x  covers F"+''+1.

Proof. Any point x^O of £n+r+i  ¡s manifestiy a constant multiple of
a point p of sn+r+1.  In the case where p belongs to F+(A°) or F~(Ä°) we
then obtain that $({a, c, £}) = x for some unique c ¥= 0 and £ possesses r
distinct components.

According to the characterization of the boundary F+(9A) depicted in the
proof of Lemma 3.3, when p G F + (9A) we can achieve its image by either the
choice of c = 0 and appropriate determination of {a(} or where £ involves
fewer than r knots and c # 0.

Examination of the proof also reveals the uniqueness assertion as stated in
the Theorem. It remains only to prove the last statement of Theorem 4. Sup-
pose the data {a,} consists of « + r zeros and c =/= 0 and assume to the con-
trary that a solution exists with <r — 1 knots. The argument (a much simpler
variant) of Theorem 3.1 of (3.5) produces a contradiction so any solution has
r distinct knots and Theorem 3.1 applies to guarantee uniqueness.   D

4. Interpolation by perfect splines. Let 0 <x1 < x2 < • ■ • < xn+r+x < 1
be prescribed with corresponding real data   {a¡}x+r+1, not all zero. This section
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is devoted to the proof of Theorem 1 stated in §1. The objective is to establish
the existence of a perfect spline of the form

(4.1) P(x) = E «#*/ + c\x" + 2 t (-l)'(x - %¡R1

with s < r satisfying

(4.2) P(xk) = otk>        k= 1,2,- ■ ;n + r+ I.

More specifically, we seek to determine real constants {tf,}^-1, c and 0 < £j <
£2 < • • • < £s < 1 (s<r) such that (4.2) holds. Reference to Theorem 4 sug-
gests identifying Akj+l = x'k and uk(ri) = (17 - 1 + xk)" such that the condi-
tions (4.2) become (with tj„ *» 1 - £M)

¿iV, + c «*(1) + 2 ¿ (-iy«fc(iîM)   - er», A = 1, 2, • • -, «
/=! L "=1 J

+ r+ 1.

(Note that tTfc(0) = 0 so this term has been omitted without repercussions.)
Direct appeal to Theorem 3.3 (cf. Theorem 4 of §1) is not permissible

since the requirements of (3.1) are not fulfilled.  Actually the determinant (3.1)
in the case at hand keeps one sign, but not necessarily strictly.  To overcome this
difficulty we invoke a standard smoothening procedure. The function uk(Ç) may
be replaced by

(4-3) Mft(£; e) = j=-f~„ «p \^^\ (T - 1 + **)? #

defined on -°° < £ < °°.
From integration by parts note that

(4.4)   „fc(£; e) = ^ (£; f) = j=£ exp [-^^j ff - l + »Ipr1 *

The kernel <i>„_1(x, tj) = (x - ri)"~l  is totally positive while the Gaussian
kernel G(£, f) = exp[-(£ - !¡)2/2e] is extended totally positive on - °° < £,
? < °°, (consult [3, e.g. p. 512], on these matters).

We check the requirements of (3.1).

Lemma 4.1. Let s<r+l and let  {7,}f=1   be s ordered points in (0,1),
0 < yx < y2 < ■ • ■ < ys < 1.  77ie« the (n + s) x (« + s) determinant
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(4.5)

x°     x°■*l»     ■*2'

X1       X11 '        2»

*2     *2■*l»     *2>

...        v.«
>     An+s

...        v1

... y
n+s

„n—1       ~n—1,    X2
Yn-1

"i (7i ; e),   u2(7i ; e),   • • -,   u„+í(7i Í <0

| "i(7s; e),   u2(7s; e),   • • -,   vn+s(ys; e)

is nonvanishing for each e>0.

Proof. The preceding determinant equals

(4.6)

"<fl<f2<- • <?,<-

«t
... yU

<T'.
fr,-i + r,)r', •••, (*„♦,-1 +f.r

(x.-i + yr1. •••. (*»♦.-! ♦wr'

where
/7i,-',7A

Vi. ■■-.?./det[G(7/,f/)]
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for
G(y, f) = («/V27re)exp(-(7 " D2/2e).

The formula can be derived via the Laplace determinant expansion with further
reliance on the Cauchy-Binet identity. Or it is a special circumstance of the com-
position formula [3, p. 17].

Owing to the specifications 0 <xx <x2 <■ • ■ <xn+r+x < 1, the integra-
tion domain can be reduced to 0 < f x < • • • < f4 < 1  since in all other circum-
stances the final determinant appearing in the integrand (4.6) is zero.  Indeed,
where f x < 0, the (n + l)th row displays all zero entries and where fs > 1   the
bottom row can be expressed as a linear combination of the first « rows and
again the determinant vanishes. Thus (4.6) becomes

/■■■/    cf"""1
0«=?,<f,<•     <f,<i      Vi>" ' '• W (*i -i+r,xr

Yn—l

(*„+,-) +f,K_l

(*i-i.+ fX (x„+s -1 + ur

àti---dtM.

The second determinant in the integral is of the form of those discussed in
§2 of Chapter 10 in [3]. Theorems 2.1 and 2.2 therein show that over the re-
gion of integration, this determinant is always of one sign and strictly nonvanish-
ing on sets of positive measure. The kernel G is extended totally positive, which
means that

v.. •••.&/
is always positive.  No cancellation is therefore possible in (4.6) and we conclude
that this integral is nonzero of a predictable sign. The lemma is proved.

The content of Lemma 4.1 permits implementation of Theorem 3.3 which
produces the result.

Lemma 4.2. There exists a set of real constants  {a¿(e)}, c(e) and  {fy(e)},
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0 < f i (e) < f 2(e) < ' " • < f4(e) < 1 (s < r), depending on e > 0, satisfying

E ^K + c(e) k(l ; e) + 2 £ (-l)î+/+1Wfc(f,(e); e)
1=0 |_ /=i '

(4-7) +(-ir1UA(0;e)l=afc,

k= 1, 2, • • -, « + r+ 1.

It remains to send e -1 0 and achieve (4.2). The next two lemmas justify
this process.  For this purpose note first the following facts.

(i) It is a familiar smoothing property of the Gaussian kernel that ut(£, e) —►
(£ - 1 + xk)1, « > 1, uniformly for 0 < £ < 1  as e I 0.

(ii) By passing to a subsequence if need be, we may assume that f-(e) (oc-
curring in (4.7)) converge to £;- and 0 < %x < £2 < • • • < £s < 1.  Correspond-
ing blocks of coincident groups of £ values and equalities to 0 or  1  causes the
sum x% + (-l),+ 12 2?=I(-iy'(£/ - 1 + xk)1  to reduce and of course uk(0,e)—>
0 as e I 0.

Lemma 4.3. The constants   (a¡(e)} and c(e) can be chosen to converge to
finite limits as e -1 0.

Proof. Several cases are considered.
Case 1. If all   {a¡(e)}"~1, c(e) are bounded as e I 0 we may suppose that

they (or their subsequences) converge to limits   {a¡}, c as e -1 0 and (4.2) is
established.

Case 2. Suppose c(e) is unbounded and max0<¡<n_1\ai(e)\/c(e)—► 0 for
some subsequence of e I 0. Then dividing (4.7) by c(e) and letting e i 0
gives (with the notation rj¡ = 1 - £,-),

(4.8)      x» - 2(xk -nx)n + 2(xk - r,2)1 -■■■ + 2(-lf(xk - %)1 = 0

where p < r, k = 1, 2, • • -, « + r + 1  and  1 > r}ß > • • ■ > r¡2 > r¡x > 0.
The equations assert that x" + 2 2?= ,(-l)'(x - r¡¡)" vanishes at x = xx,

x2> ' ' "' *n+r+i •  n ~ 1  differentiations and Rolle's theorem implies that x +
2 2£=1(-iy(x - rtj)\ vanishes at least r + 2 >p + 2 times in (0, 1) which is
impossible.

Case 3. For at least one integer d, ad(e) is unbounded along a subsequence
of e tending to zero and c(e)/ad(e) —* 0 as e 4- 0 along a subsequence.

In this case dividing through by niax1</<n_1 h¡(e)\   in (4.7) and letting
e I 0 appropriately, we get
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n-1

(4.9) £ btxk = 0,        k = 1, 2, •••,« + /•+ 1.
1=0

We produced in (4.9) a nontrivial polynomial of degree <« - 1 vanishing
for at least « + 1 points, an obvious absurdity.

Case 4. For some index i, a¡(e) is unbounded but c(e)/max0<|.<„_1 la,(e)l
is bounded away from zero and infinity.

By passing to a subsequence we extract a spline

(4.1C "¿ biX' + x" + 2 E (-iy'(x - Vj)1
i=0 y=l

(with b( real) vanishing for x = xx,x2,- • -, xn+r+x  and where r>p.
Differentiating (4.10) successively and invoking repeatedly Rolle's theorem

we deduce that
u

(4.11) x + e+X 2(-iy'(x - T?,)i       (e is real)
7=1

vanishes at least r + 2 times in [0, 1 ].  But r + 2 > p + 2 and this is manifestly
impossible.

The proof of Lemma 4.3 is complete.   □
Summarizing the discussion of Lemma 4.3 we have demonstrated the exis-

tence fact of Theorem 1 for the case of distinct interpolating points. The exten-
sion of the existence for coincident blocks of x's obeying the stipulations set
forth in Theorem 1 is carried out by a routine approximation argument repeating
suitably the analysis of the cases in Lemma 4.3. The proof of Theorem 1 is com-
plete.

The perturbations can also be done in the following manner which is more
convenient for other purposes. Define

Akj+100 = ~7= fZ exp [-f 2/2e] (xk - $")'#,       / = 0, 1 ,•••,«- 1,
v2îre

(4.12)
= ~/T=rf_O0exPl-(xk-rl)2/2e]vidri\l2tie

and as in (4.3) we write

(4.13)        uk(%, e) = -=L- /_" exp [-(xk - n)2/2e](£ - 1 + r,)1drj.

Applying the composition formula [3, p. 76], we obtain the identity
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An*s.l

(4.14)

¿t.n-        u,(a,),   ■■.u,(aJ)

A2.n- u2(0|). ■■<v2(as)

An*s.n<       'Wa|). ■ ■■■»n+s(.as)\

w

-/■;•/

(01,-1   +7?,)"

•      •«♦,

7'n+l

(a, -1+7J,);-'    •••    (a, - 1 + v„.,r.-\

K -1+ wr

*V*1„

for any

(4.15) 0 <ai <a2 <• • • <as < 1,

where the integral in (4.14) extends over the region T: r¡x < t?2 < • • • < r¡„+s-
The total positivity property of the kernel (£ - t?)"-1  implies since 1 -

ax > 1 - a2 > • • • > 1 - as > 0 that the second determinant in the integrand
never changes sign for any choices of a¡ satisfying (4.15) and this determinant is
certainly nonzero for a set (r)x, • • •, r¡n+s) of positive Lebesgue measure of the
integration domain for the specifications of {a¡}. The Ge determinants are al-
ways strictly positive. Therefore the nondegeneracy assumption of Theorem 4
(relation (3.1)) applies to the prescriptions (4.12) and (4.13).

5. Relations of the interpolation points and knots. Let P(x) be a perfect
spline of degree « with at most r knots, constructed to interpolate the data
{<*/}?= ï+1  at the points  {x,-}fJ"i+1 (see Theorem 1).

The answer to the following questions of independent interest will play an
important role in discerning the uniqueness criteria for the interpolating perfect
spline:

Determine usable sufficient conditions on  {a,.} and  {x(} that assure that
P(x) involves precisely r knots   {£f}J  and where the knots are located relative
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to x¡ such that the following holds:
(5 n xi < S/ < ^i+n+i '   i = 1, 2, • ■ -, r.

The following terminology is also beneficial.  A perfect spline P(x) of degree
« with r knots is said to oscillate maximally (abbreviated 0. M.) if P(x) van-
ishes simply n + r times in (0, 1).  It follows easily that if P(x) oscillates maxi-
mally, then P'(x), P"(x), • • • do likewise O. M.

We will find that if the data   {aI}j+r+1   compels an interpolating perfect
spline to be O. M. then necessarily (5.1) prevails. We now proceed to elaborate
pertinent facts.

Denote the knots of P(x) by   {£,-}/= x  arranged in increasing order and as-
sume s<r.  Assume   {jcJ}"+r+1   consist of distinct points.  Denote by

ep>=P(x,., *,+!,•• ',*/+*).
(5.2)

j = 1,2, • • -, « + r-k+ l,k = 0, 1, 2, • • -, « - 1,

the kth divided difference of P with respect to the points x¡, x¡+x, • • -,xi+k.
Manifestly, e\k~* involve expressions only of the a¡ and x¡ values.  More specifi-
cally,

e(0)=P(xi) = af,        V-**-"*^     *'*»

(5.3)       e

xi     xi+\ xi     xi+

. [P(xi)-P(xi+X)]     [P(xi+x)-P(xi+2)] )_i_
(        xi     xi+l xi+l      xi+2       \ (xi     xi+2>

l/a<~a»+i _ Q.>i ~a'+2\l_L
|yc(. ~xi+x     xi+x ~xi+2J^ x¡-x li+2

etc. • • \
The next theorem locates the knots relative to the interpolating points pro-

vided the given interpolating data fulfills suitable oscillation characteristics.

Theorem 5.1. Let X= {JCi}"+r+1  be prescribed distinct interpolating
points and T= {aj}"+r+1  the corresponding given data.  Let P be a perfect
spline (recall that P is not necessarily uniquely determined; §6 will discuss this
matter) interpolating the data T at X with corresponding knots 0 < £j < £2 <
• • • < £, < 1  (s<r).  If for some k>0

(5.4) eW e\*\ < 0, / = 1, 2, • • -, « - r - k,

then necessarily s = r and
(5.5) x¡ < %i < xi+n+i'       í = 1, 2, • • -, r.

(Remark. In (5.4), <0 suffices.)
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERALIZED PERFECT SPLINES. I 51

Corollary. 5.1. Under the conditions of the theorem, the determinant

(*i i x2, • • % xll + 2, ■ • -, jr,1+r+1\

0,-\0, £,,-•,£,      /

!,*„ •;   x"x, (.v. -£,);, •••,   (x, -£r)»

I,*a, •■•.   *?. (^a-SiKi, •••,   (Jc2-£r)3

<I>

(5.6)

1    X Si + r+1 v^n + r+1       ?l)+> °>     v-^n+r+l       ?r'+

is positive.
Proof. The corollary follows from the known criteria when (5.6) is posi-

tive (see [3, p. 503]). For the case at hand the assertion (5.6) is equivalent to
the requirements of (5.5).    D

We now turn to the proof of Theorem 5.1.  It is instructive to treat first the
case k = 0.  Assume therefore

(5.7) P(Xi)P(xi+l) = e<¡»e$\ < 0, i = 1, 2, • • -, « + r.

The hypothesis (5.4) when k = 0 implies that P(y) changes sign at least once
in each interval (x¡,x¡+1). Therefore, certainly P(y¿) = 0, x¡ < y¡ < x¡+ x, and
P changes sign at each y¡, i = 1, 2, • • •, n + r.  Now suppose to the contrary of
(5.5) that for some /„, £f   > xn + i +1.  Consider P(x) restricted to (0, £,- ).
Clearly yn+¡0 <*„+/0+i < S,0, so that P vanishes at least « + i0 times in (0,
£,. ).  Successive differentiations and appeal to Rolle's theorem implies that
P("-1)(x) changes sign at least i0 + 1  times on (0, £,- ).  But I*n~l)(x) has
the form

/.(»-i)(x) = a + c[x- 2(x - %x\ + 2(x - £2)+ + ■ • • + 2(-l)'0_1(x - %iQ_x\]

on (0, £,- ) from which it is readily discerned that in this interval F^1-1* can
change signs at most i0 times. This contradiction can be averted only if £,-   <
*«+,0+i  holds-

In'a symmetrical manner we infer that if £;-   ^*/0, then P(x) on (£;- , °°)
exhibits at least n + r + I - j0 changes of sign but involves only r -j0 knots.
We deduce a contradiction as previously so we must have jc;- < £;-, / = 1, 2, • • -,
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r. Theorem 5.1 is established under the hypothesis of (5.4) with k = 0.
We turn now to the general case of (5.4) where k > 0. The representa-

tion formula for the divided difference

e}*> = P(X¡, ■ ■ -, */+jt) = ¿-/^i+\.(£)p(k)(£)J£

will be invoked (see [3, Chapter 10, (4.8)]). Here M¡(£) constitutes a totally
positive kernel with respect to the variables 0 < £ < °° and i = 1, 2, 3, • • •
(see [3, p. 527]).

We can write

Ak) - TT f^^MtQOP^KtW,       i=v,v+l,--;n+r-k,
' K\   Jxv

since M,-(£) vanishes outside (xt, xi+k). The hypothesis tells us that the sequence
eík^> eí+\, ' ' '. e„k+r-k+i, v, n> 0, displays n + r-k-v + I  changes of sign.

Appeal to the variation diminishing character of the kernel Af,-(£) implies
that
(    . P^(£) changes sign at least n + r-k-v + l times
(5.8)

on the interval (xv,xn+r+l).

Now suppose contrary to (5.5) that for some v, £v < xv holds. Then
(5.8) prevails.  Successive application of Rolle's theorem yields that

/»(«-i)(Q = 7+cL + 2 E c-iyc« - sM)iL M=»+l J

changes sign at least r - v + 2 on Qv, °°). But this conclusion is absurd and
therefore x¡ < £f, / = 1, 2, • • -, r, must hold.

By analogous arguments exploiting the expression

(5.9) e(*) = ^/o*M+"+1M,.(£)p(*>(£)d£,        i = 1, 2, • • -, p + n + 1 - *,
we establish £M <^M+„+1, p= 1,2,- ■ ; r.

The proof of Theorem 5.1 is complete.
A sharper result than (5.5) can be achieved when the given data  {a¡} is

further specialized.

Theorem 5.2. Let {x¡}"+r+l be given with corresponding data {ai}1+''+1
where all a¡ = 0 (i=£i0) except a¡ = 1. Let P be a perfect spline interpolat-
ing  {a,-} at   {x¡} with knots   {£,}f (s < r).  Then s = r and we have

(5-10) xv+l<Hv'foralli0<¡>
and
(5.11) SM < xß+n   for all p + n < /„.

Proof. Since P vanishes at « + r points we must have s = r (see Lemma
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5.1 below).   Suppose to the contrary of (5.10) that £„ <xy+1   for some v >
i0. Then on the interval (£„, °°), P(x) vanishes n+r-v+l times and involves
precisely r - v knots.  It follows that P^"~l\x) changes sign at least r-v + 2
times on (£„, °°) a result clearly incompatible with the existence of only r-v
knots.

The relation (5.11) is proved in a parallel manner to (5.10) concentrating
attention on an interval of the type (0, £M).

Lemma 5.1. Any nontrivial perfect spline with r knots can only vanish at
at most n +r isolated points.

Proof. Since the derivative of a perfect spline remains a perfect spline of
reduced degree a simple induction establishes the assertion of the lemma.

6. Criteria for uniqueness of interpolating perfect splines. For any real piece-
wise continuous function / defined on [a, b] let S~ {f(x); [a, b]} denote the
number of sign changes of / as x traverses the interval a to b.

It is convenient to display the following elementary facts stated as the con-
tent of the next lemma.

Lemma 6.1. Let P(x) and Q(x) be two perfect splines of degree zero with
p and q knots respectively, all located in (0,1). Suppose \P(x)\ = \Q(x)\ = c =
constant.

(i) 77ie«
(6.1) S~{P-Q;[0, l]}<min(p, q).

(i')If \P(x)\> \Q(x)\ then the bound in (6.1) is p.
(ii) Suppose that p = q, signP(0) = sign 0(0).  We then have

(6.2) S-{P-Q;[0,l]}<p-l,

while if signP(0) = -signß(O), then

(6.3) 5-{P-ß;[0, l]} = p

occurs if the knots of P and Q strictly interlace.   (See also Remark (6.1) be-
low)

Proof, (i) Let £x < £2 < • • • < £p and t?, < r?2 < • • • < t]q denote the
knots of P and Q respectively. The function P of constant absolute value al-
ternates between its maximum c and its minimum -c exclusively at the points
{£,-}?. It follows as long as  \Q(x)\<c for all x that S~{P- Q; [0, 1]} <p.
Since   Q   is also a perfect spline by a symmetrical argument we infer
S~{P- Q; [0, 1]} <<7 and these inequalities in conjunction yield (6.1).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



54 SAMUEL KARLIN

(i')The proof goes analogously to (i).
(ii) Consider P(0) = 0(0) = c and suppose at first the circumstance r]x >

£„.  A little reflection convinces one that P(x) - Q(x) keeps one sign certainly
over the stretch 0 <x < £2.  Subsequent sign changes of P- Q can arise only
at the knot points £2, £3, • • -, £p  for the same reason as in case (i).  Therefore,
(6.2) obtains.  Where rjx < £j  takes place we argue in a parallel fashion with
reference to the knots  {t?2, • • -, T?p}. Thus in all events (6.2) is established.

If the knots   {£,}p  and   {ny}Ç  strictly interlace and ß(0) = -P(0) then it
is easy to check the equality of (6.3).

The proof of Lemma 6.1 is complete.
Remark 6.1. The equation (6.3) can hold even where the knots of P and

ß do not necessarily interlace.   For example, if P(0) = _ß(0) and t¡x < £j <
£2 < tj2 < t?3 < £3 < • ■ • < £p < np  (p odd) then (6.3) is maintained.

We are now prepared to present some conditions guaranteeing uniqueness of
the interpolating spline whose existence was affirmed in Theorem 1. It is instruc-
tive and useful to first display two simple cases of nonuniqueness.

Example 1. n = 0, r = 3.

Clearly, P(x) and P(x) are both solutions for the data at   {x,}4.
Example 2. « = 1, r = 3.

,f(x)

/
/1\

/

P(x)/

/
/

/
\

*i   h
\ /

\ V

12 E3 *3 *4 *5
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Again, P(x) and P(x) are both solutions for the data at   {x^.
Theorems 6.1 and 6.2 below offer sufficient conditions for uniqueness of

the interpolating perfect spline.

Theorem 6.1. Let the interpolating points   {xi}"+r+1  be given containing
no block of coincident x's exceeding n and corresponding prescribed real data
{aI}j+r+1   with 2 a? > 0.  Suppose the data implies for any interpolating spline
P(x) of degree n with knots   {%v}\, s < r, the relations

(6.4) *„<£„< **+„+!,        v=l,2,--;s,

(see Theorem S.1 for conditions ensuring that (6.4) holds). Provided r<«,
the interpolating spline is unique.

Proof. Let P(x) and Q(x) be interpolating perfect splines of degree «
each involving at most r knots.

,, ,, Suppose P(x) has knots 0 < £t <•••<£< 1, sx < r,
and ß(x) has knots 0 < r}x < • • • < r¡    < 1, s2 <r.

Define h(x) = P(x) - Q(x). We must prove h(x) = 0  for x E [0, 1].
Case 1. Suppose h(x) is not identically zero on any interval (of positive

measure) C [0, 1 ]. Then h(x¡) = P(x¿) - Q(x¡) = 0,i = I, • ■ -,n + r + I.  Invok-
ing repeatedly Rolle's theorem, it follows that h^"\x) admits at least r + 1  sign
changes in (0,1).  Note that  lP^"^(x)l and  \Q^"\x)\ are constant functions.
Suppose  \P^"\x)\> \Q(n)(x)\.  But P(")(x) has sx <r knots and hence h(n)(x)
= p("^(x) - Q("\x) exhibits at most sx < r sign changes (cf. the proof of Lern
ma 6.1), a contradiction.  Therefore Case 1 cannot happen.

Case 2. Consider the possibility that h(x) vanishes identically on some in-
terval C[0, 1]. Then on that interval I*n)(x) = ß(n)(x).  But   lP<n)(jc)l and
lß<">(x)l being constant throughout [0, 1], it follows that  lP*">(x)l=- \çfn)(x)\
= c   for all   x E [0, 1].   It is clear that h^n\x) is a step function whose only
possible values are -2c, 0, +2c. It has jumps possible only at the knots £,- of
P(x) and Tjf of Q(x).  We shall distinguish three contingencies:

Case 2.1. h(x) é 0 in a neighborhood of the endpoint 0 but h(x) vanishes
in some interval.

Case 2.2. h(x) ^ 0 in a neighborhood of 1  but vanishes in some interval.
Case 2.3. h(x) = 0 in a neighborhood of 0 and  1  but h(x) is not identi-

cally zero throughout [0, 1].
Case 2.1. The initial interval on which h = 0 commences at some £„ or

i?M.  Suppose h(x) = P(x) - Q(x) = 0  for x E [£„, £„ + e), e > 0, where £„ + e
is either £v+1   or minM {r?M \riß > £„}, or 1.   Because P(x), Q(x) G W^ and
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POO - Ô00 on [£„, £„ + e), we have A(í)(£„) = 0, i = 0, •••,«- 1.  Concen-
trate now on [0, £„].  Because of the relations x;- < £;- < xj+n+x, / = 1, • • •,
Sj < r, we have that xx,- • ; xvE [0, £„) and h(xj) — 0, / = 1, • • •,v.  (The
coincidence of two x's is interpreted as h(xj) = h'(x¡) = 0 and similarly for
higher order coincidences.)  In [0, £„] we will invoke repeatedly Rolle's theorem
and also use the fact that h(x) does not vanish identically on any subinterval of
[0, £„].  Certainly h(x) vanishes at xx, • • ; xv and at %v. By virtue of Rolle's
theorem we infer that h'(x) displays at least v zeros in (0, £„) and also we
have «'(Sy) = 0.

Repeating the same argument several times we deduce the fact that «^"_1\x)
admits at least   v   isolated zeros in   (0, £„), and also «("_1)(£„) = 0 prevails.
Another application of Rolle's theorem implies that h^n\x) exhibits at least v
sign changes in [0, £„).

On the other hand, «(n)(x) = P^n)(x) - Qw(x) is a difference of two
zeroth degree perfect splines where P^"^ involves precisely v - I knots situated in
[0, £„) and  \P^"\x)\= \QSn)(x)\ holds. On account of (6.1) it follows that
S~{h("\x); [0, £„]} < v - 1, which is incompatible with the last comment of the
preceding paragraph. The only tenable conclusion is that Case 2.1 is not possible.

Case 2.2. The analysis paraphrases that of Case 2.1 where the role of the in-
terval [0, £„) is replaced by a suitable subinterval extending to the endpoint  1.

Case 2.3. We suppose that h(x) = 0 in a neighborhood of zero and one.
We will arrive at a contradiction unless P(x) = ß(x) holds throughout [0, 1].
There are essentially three subcases indicating the contrary possibilities.

Subcase 2.3.1. There exists an internal interval (£„, £ ), v < p where
h(x) ^ 0 in any subinterval of positive length but h(x) = 0 on (£„ - e, £„] and
on [SM, Sju + e) for some e > 0.

Subcase 2.3.2. The conditions analogous to Subcase 2.3.1 are present where
£„ and £M are replaced by r\v and t?m respectively.

Subcase 2.3.3. h(x) = 0 on (£„ - e, £„] and on [t7m, tjm + e), £„ < i?M (or
the symmetric case with r¡v and £M). Moreover, h(x) ^ 0 in any subinterval of
positive length of (£y, tjm).

Subcase 2.3.1. Concentrate on the interval [£„, £M] and note the following
facts:

(i) P involves at most p-v-l knots.
(ii) «<''>(£„) = «<'•>(£„) = 0, / = 0, 1 ,••%«- 1.
Suppose at first that

(6.6) p-v<n.

Repeated application of Rolle's theorem in view of (ii) implies that h^"\x) ex-
hibits at least « sign changes in (£„, £ ) and this fact violates property (i) (in
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Suppose next that
(6.7) p-v>n,   say p-v = n + k, k> I.
In the presence of (6.7) we claim that at least k of the xCT's are contained in
(£„, £M).  Because of the relations (6.4), we have

Sy <~xn+v+1 ^xn+v+k< £„+„+£ = £M,
and the claim is substantiated.

Thus in addition to the multiple vanishing at £„ and £M as indicated in
(ii) above, h(x) also vanishes at at least k internal points of (£„, £M). Invoking
Rolle's theorem repeatedly leads to the inference that h^"\x) exhibits at least
k + n sign changes in (£„, £M). But P(x) in (£„, £ ) includes exactly p-v-
1 = n + k - I knots and a contradication ensues as in the previous cases. The
fact that the Subcase 2.3.1 cannot occur is thus established independent of the
value of r.

Subcase 2.3.2. This situation is precluded by entirely analogous deliberations
as in the preceding case.

Subcase 2.3.3. Recall that here h(x) = 0 on (£„ - e, £„] and on [tjm, t?m +
e) but h(x) ^ 0 on any subinterval of (£y, rjß).

We examine three possibilities:
(i) 77M < £M; here we paraphrase the analysis of Subcase 2.3.1. and a contra-

diction ensues.
(ii) rjv < %v\ a contradiction results as in Subcase 2.3.2.
(iii) It remains to consider the circumstance of £„ < r\v; £M < r\ß.
We now make the following assertion.(2) P and ß include an equal num-

ber of knots inside (£y, t?m). To validate this statement, let r\k be the smallest
knot of ß exceeding £„ and denote by %x the largest knot of P less than r\ß.
Thus, the knots of P in (£„, t?m) are £„+1, • • -, £;, their number I - v. The
77f knots in (£„, t?m) are r)k, • - -, tjm_j , and then number p - k. Suppose / -
v¥= p- k and without loss of generality take p- k> I -v. Suppose first that
/-i><«-1. Consider h(x) in (èv,Vu)- By Lemma 6.1, we have

S' {*<">(*); %, vß)} < min(/ -v,p-k) = l-v<n-l.

On the other hand in the usual way (since A^(£„) = «^'^(r?M) = 0, i = 0, 1, • • -,
« - 1), we deduce that hln\x) displays at least « sign changes in (£„, ■qß) and
an absurdity results.. Suppose next that I -v> n. We have p- k> I - v =
« + 7, y ~> 0 a nonnegative integer.  Hence p> k + n + y. Referring to (6.4)
we find the following inequalities hold

S„ <Vk <xn+l+k <xn+2+k <• • • <x„+7+fc <xm<tjm.

(2)The following argument is not needed to finish the proof but is helpful in the next
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Hence h(x) possesses at least p - n - k zeros in (£„, tjm) and of course, /z^(£„)
= «(/)0?M) = 0, / = 0, 1, ■ •  -, « - 1.  It follows that «(^(x) exhibits in
(£„, tim) at least p-k>l-u + l  sign changes. But 5_1 [h{n\x); (£„, i?M)} <
/ - i>, and a contradiction is apparent. Therefore, we have necessarily p-k =
I- v. The assertion is proved.

Suppose r < «.  So P and ß both have at most r - 1  knots in (£„, t? ).
Referring to (6.2) we have

(6.8) S-{h^(x);(^,vß)}<n-l.

But, on the other hand «(/)(£„) = «(/)0?M) = 0, i = 0, •••,«- 1, implies that

(6.9) h("\x) has at least «  sign changes in (£„, t? ),

and (6.8) and (6.9) are incompatible.  We covered all the possibilities always
producing a contradiction.  It follows that h(x) = 0 on [0, 1], and the proof of
Theorem 6.1 is complete.   D

Remark 62. The only way in which nonuniqueness can occur for r > « cor-
responds to Subcase 2.3.3.  The examples of nonuniqueness depicted next main-
tain the relations (6.4) but the requirement r < «, of course, fails.

Example 3. « = 1, r = 4, c = 1.

The conditions for the knots (6.4) are satisfied.
Example 4. « = 1, r = 3, e — 1.

The conditions (6.4) are again met.
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Notice in Example 3 that the knots of the two splines interlace
Si < i?i < S2 < *l2 < S3 < ^3

while in Example 4 they have the order

Vi  <T?2 <Si  <S2 <ïï3 <S3.
Example 5 shows that r = n is sharp.

If the conditions (6.4) are not satisfied then even with r < « nonunique-
ness can hold.  Examples of this kind are easily constructed.  However, where
r < « the perfect interpolating spline with the minimal number of knots is unique
within the class of the competing interpolating splines of the same number of
knots.

The following corollary affirms uniqueness in the special case Glaesser exam-
ined ([2], see also the introduction).

Corollary 6.1. Let r = n-l. Let the interpolation points be {xj}\n
where xx = x2 = • • • = xn = 0, xn+l = • • • = x2n = 1, and with associated
data   {af}2", 2 a? > 0. The interpolating perfect spline is uniquely determined.

Proof. It is only necessary to check that the conditions (6.4) are satisfied.
This is immediate.

The next theorem gives a case of uniqueness valid for all r. This result will
serve fundamentally in our developments pertaining to Theorems 5-7 of the in-
troduction.

Theorem 6.2. Suppose  {xj}n+r+1 are given containing no coincident block
exceeding n points.  Let the associated data  {a(}"+r+1   be such that

a,. = 0 -forall /¥=/„; aiQ ¥= 0.

(All data except one have zero value.) Then the interpolating perfect spline of
degree n with at most r knots is unique.   (Emphasis: Here r is any positive in-
teger.)

Remark 6.3. Recall from Theorem 5.2 that any interpolating spline for the
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data (6.10) necessarily involves r knots and the relations of the knots and inter-
polatory points satisfy

*k+i <S„        for all v>i0,
(6.10)

SM<*M+n    fora11   P + n<i0.

Proof. Scrutiny of the proof of Theorem 6.1 reveals that only Subcase
2.3.3 need be examined (see also Remark 6.2). Thus assume h(x) = P(x) - Q(x)
vanishes on (£„ - e, £„) and on (t?m , j?m + e) for some e > 0 and h(x) van-
ishes on no subinterval of (£„, t?m). We proved during the analysis of Subcase
2.3.3 that P and ß have the same number of knots  {£v+i, • ■ •, £/} and  {nfc,
• •-, î?m_1} located in (£„, r\ß) so that l-v = p-k. Suppose

(6.11) p-k = l-v = n + 7,

with y a nonnegative integer.  Both the £ knots and the r¡ knots satisfy (6.10)
as attested to by Theorem 5.2.  Consider three cases:

Case I. i0 < /.  By virtue of (6.10) we have xi+1 < £z < i?M while %v <
xn+v+l. It is easy to see on the basis of (6.11) that /+1 > n + k + l  and
therefore the number of x's inside (£„, r\ß) is at least l-v-n + I = p-n-
k + 1  one more than occurred previously in the analysis of Theorem 6.1, Case 2.3.3.

Now consider «(x) = P(x) - Q(x). Note that hm(j£ = ft w(i?M) = 0, i ~
0, 1, •••,«- 1, and h(xa) = 0 for all x0 E (%v, nß).  Implementing Rolle's
theorem « times leads to the fact that «(")  displays at least p - k + 1 sign
changes. On the other hand P and ß each involves p-k knots in (£„, rçM)
so that «(") can change sign no more than p-k times. This contradiction is
only averted if h(x) = 0.

Case 2. i0 > k. Now, we have because of (6.10)

vk<xk+n<---<xll<nli

and again we find at least p - k - n + I x's in (£„, tîm).
The argument is finished as in Case 1.
Case 3. Ki0< k.  It follows from (6.10) that xß+l < r\ß and we also

have r¡k < xk+n implying the existence of at least p-k- n + I x's inside
(Su, V,,)-  Hereafter the proof is completed as in Case 1.    □

7. The existence of some special perfect spline polynomials satisfying mo-
ment conditions. The variational problem (1.5b) admits an elegant solution when
cast in terms of functions comprising a complete Tchebycheff system (C.T.S.).

Let wx(x), w2(x), • • -, wt+x(x), t>n, constitute a C.T.S. on the interval
(0, 1). This property requires that the determinants
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(7.1)

WiOîi)    wx(r¡2)   •••    wx(vp)

w207i)   w2(772)    • • •    w2(T?p)

\Wp(Vi)    wp(rj2)    ■■■    wp(î?p)|

for all choices of 0 < r¡x < t¡2 < • • • < r¡p < 1  and 1 < p < t + 1  are strictly
positive where ep is an appropriate sequence of ±1  signs independent of the
{r¡¿} (actually it suffices to require that the determinants are almost everywhere
positive). The principal prototype of a C.T.S. are the monomials wk(x) = xk~l,
fc= 1, 2, ■ • -, f + 1.

Consider the collection of all /G W^(0, 1), the usual Sobolev space stipu-
lating that /("-1) is of Lipschitz class on [0, 1], satisfying the additional mo-
ment conditions

(7.2) fwk(x)f(x)dx = dk,     k=l,2,---,t+l,

where dk are prescribed real constants not all zero.
Call this class Wl(wx, w2, • ■ ; wt+l, d) = W(n)(w, d). The construction

affirmed in Theorem 7.1 below will be basic for the solution of the following problem.
Characterize /  G W^(w, d) which attains

(7.3) min       II/*"*!!«,.
/ew&?)(w,d)

Theorem 7.1. There exists a unique perfect spline polynomial exhibiting at
most t - n knots fulfilling the generalized moment conditions (7.2).

Proof. We will invoke Theorem 4 (see the introduction) with the specifica-
tions

(7.4)     Aki = f\k(x)xi-idx, i= 1,2, ■ ■ ;n,k= 1,2, •• -, r+ 1,

and
"*(S) = f0 wk(x)(x - Q»dx, k = 1, 2, • • -, t + 1, 0 < £ < 1.

Obviously,
¿MS) ri-¿f = y*(S) = -nj0 wk(x)(x - i-r^dx.

The corresponding determinant (1.7) for the case at hand (we use the com-
position formula of [3, p. 17], cf. equation (4.6)) reduces to (for 0 < rjl <
n2 <■ • -<vs< 1, « + s<r + 1)
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¿lt.

A„,

■•;  "1(1,)

'4Bti.n.u» + ,(ll).     ■■•■     Wl,J

■ (-"Y /■■/
0<x,<x,<-      <x„t,<l

(7.5)

W|(*i).

w2(x¡).

w,(x„+I)

wj(*n+,)

w,.*/*|).

•x1

k -i,w- (*„♦, - <7i >r

</x,<&2- ■   t/X„ + J.

|(*i -%K_1    ■•■  t».*.-*j5"

The first determinant in the integrand maintains a strict sign in view of the hypoth-
esis (7.1).  The second determinant was encountered in the discussion of §4
where it was pointed out that the kernel (x - r))"~l  is appropriately totally pos-
itive.  It follows that condition (3.1) is met and Theorem 4 is applicable.  Ac-
cordingly, let   {a*, c*, £ }  satisfy

E^f + c*[uk(0) - 2ufe(£*) + 2uk(g) + •■■ + 2(-l)X(Ss*)]
(7.6) ¿=1

(s<t-n)
= dk, k= 1,2, • • -, t+ 1.

Form the perfect spline

P V) - E a*x*-* + c V - 2(x - £*)? + • • • + 2(-iy(x - ¿fc].
I—1

Direct substitution for P    reveals that the equations

/ P (x)wk(x)dx = dk,       k = 1, 2, • • -, t + 1,

reduces to (7.6).
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The existence of a perfect spline P    in w£\w, d) exhibiting at most
t - n knots is assured.   It remains to demonstrate uniqueness.

Let / be any member of W^\w, d) distinct from P . Then

fl wk(x)(f(x) - P*(x))dx = 0,      * = 1, 2, ■ ■ -, f + 1,
prevails.  Since wk constitute a complete Tchebycheff system we infer that /-

■ft
P    changes sign at least t + 1  times (cf. Lemma 2.5).  Repeated appeal to Rolle's
theorem guarantees that ft">-p (") changes sign at least t + I - n times.
Where / = ß is also a perfect spline in W^(y/, d), say involving r knots (r <
t - ri), then reference to Lemma 6.1 reveals that the number of sign changes of
Q(n) _ p(n) cannot exceed min(t - n, r) and this statement is incompatible with
our previous inferences. Therefore, the uniqueness assertion of Theorem 7.1 is
established and the proof is complete.

For the special case where wk(x) = xk, k = 0, 1, • • -, r, the existence and
uniqueness of a perfect spline with at most t - n knots satisfying the moment
conditions (7.2) can be reduced to endpoint interpolation requirements.   For
this purpose, it is more convenient (and no restriction whatsoever) to write the
moment conditions in the form

fl wk(x)f(x)dx - fl (1 - x)kf(x)dx = dk,        k = 0,l,--;t.
Now determine g as a perfect spline of degree n + t + I  satisfying the in-

terpolation condition

(7.7) *W(1) = dM/(t -/)!,       gU)(0) = 0,/ = 0, 1, • • -, t.

The existence and uniqueness of a spline with at most t - n knots is assured by
Theorem 1 and Corollary 6.1.  Define

(7.8) /*(*)= S<m>0O.

Manifestly, f(x) is a perfect spline of degree « exhibiting the same knots as
g(x).  We now verify that / (x) satisfies the requisite moment condition.  To
this end, consider

flf*(x)(l -xydx=flg^l\x)(l -xjdx

and integrate by parts i times with reference to (7.7) yielding

/0V*(x)(l -xydx = i! Sig(t+1~i)(x)dx = i\ g^Kl) = d(,

i=0,l,2, ••-,/.
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8. Solutions of some variational problems by perfect splines. We are now
prepared to present solutions of problems (1.3), (1.5a) and (1.5b) set forth in
the introductory section.

Theorem 8.1. Let  F be the subset of the Sobolev space H^n)[0, 1] de-
fined by

F = W^[0, 1] n f/l/O,.) = «,, / = 1, 2, • • -, « + r + 1},

where  {xj} and  {a¡} are prescribed as in Theorem 1.  77ze« any perfect spline
P in   F involving at most r knots whose existence was confirmed in Theorem 1
satisfies
(8.1) IIP<">II < ll/(")ll   (II • II is the usual L°° norm)
for all f in F.

Remark 8.1. The minimizing element of F is not necessarily unique.
Proof. Let P be a perfect spline in  F. Suppose to the contrary of (8.1)

that / in   F satisfies

(8.2) lt+H< U**>1
Let g = P-f. In view of (8.2) and since l/*"\x)l = c we infer that g

can vanish only at isolated points in [0, 1] which certainly must include the
points {xI}"=i+1. Applying repeatedly Rolle's theorem we deduce that g^
changes sign at least r+l times on [0, 1]. But lf*")(x)l = c and P(-n\x)
changes values from c to -c exclusively at its knots. For the circumstance
||/(")|| < II/*")|| = c, it would follow that g^ changes sign at most r times, an
absurdity. The proof is complete.   D

Some further solutions of variational problems are now developed.  Let d¡,
i = 1, 2, • • ; t + 1, be given real numbers t>n not all zero and let   {w^x)}"'1
be a C.T.S. as described in §7. Define

w£">(w, d) = J/l/G Wl,flf(x)wk(x)dx = dk,k= 1,2,--;t+I

Problem I. Find and characterize / G rV£^(w, d) attaining

(8.3) minll/<">ll.
Theorem 8.2. The unique perfect spline P* involving at most t-n knots

in   W£\w, d) affirmed in Theorem 7.1 provides the unique minimum of (8.3).

Proof. Take /G W^iw, d) distinct from P*. The orthogonality rela-
tions
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/Or-P*K = 0, ft» 1,2,'•% f+l,

imply that f-P    actually changes sign at least t + 1  times.  Invoking Rolle's
theorem repeatedly we deduce that /*"* - P        changes sign at least t + 1 - «
times.  But P* possesses exactly t-n knots so that it follows ll/("*ll> IIP**"*II
for otherwise we have a contradiction.

With the solution of Problem I at hand we can resolve the following prob-
lem.

Problem II. Let   {c¡}ri=0 be given real numbers not all zero.  Let nt+x
designate the class of all real "polynomials" n(x) = 2>¡1.\ a¡w¡(x) (linear combi-
nations of w¡(x)) and assume  {w¡(x)} constitutes a Tchebycheff system on [0,
1]. Determine

(For tt(x) = 0, interpret the ratio as zero.) Equivalently consider the class Q. 0I"
all polynomials 7r(x) = 2'i11aIwl(x) G 7rf+1  satisfying the constraint 'LtiL\aici
= 1  and determine

r\
(8.5) min /   k(x)\dx.

The equivalence of the two versions follows by multiplication of ;r(x) by a con-
stant since (8.4) is invariant under such scalings. The solution of (8.5) (and so
(8.4)) is easily extracted from the resolution of Problem I as will now be demon-
strated.

Solution of Problem II. Form

Ul = j/l/G W£\fl W¡(x)f(x)dx = C¡,i=l,2,--;t + lj

so i/£ consists of all bounded functions obeying the indicated moment condi-
tions. We obtain

f+l f+l ! i
E «i*?/ = E <*i L w¡(x)f(x)dx = f n(x)f(x)dx
r=l i=l    J0 J°

ll/L/J lir(*)ldx,

yielding manifestly the inequality

(8.6) EV,.I i=i
where 7r(x) ̂  0 (i.e.  {aj} are not all zero).  (8.6) implies

(8.7) sup   \\Z a¡C¡ ¡fl k(x)\dx\ <  inf   HA*e*r+iLI''=i       / ° J     feu*.
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But infye[/o Il/Ho» according to Theorem 8.2 is achieved uniquely by a perfect
spline P (x) with certain knots 0 < £t < £2 < • • • < £f < 1, s < t.  Construct
7T*(x) as the" polynomial 2|^11fl*w/(x) (unique apart from a multiplicative con-
stant) vanishing precisely at   {£,-}£= x ■ Thus P    and 77* change signs together as
x traverses [0, 1 ]. With this determination of tt* it follows that equality per-
sists in (8.7).  Further scrutiny reveals that the solution is achieved exclusively
for the polynomials air*(x) where a is an arbitrary real nonzero constant.

A different approach to the solution of (8.5) is due to Krein [8], (see also
Karlin and Studden  [7, Chapter 8, § 11]). The polynomial tt*(x) in the special
case ct+x = 1, c¡ = 0, i = 1, • • -, t, and w¡(x) = x'-1, i = 1, 2, • ■ -, t + 1,
can be identified (modulo suitable affine transformation) as the Tchebycheff poly-
nomial of the second kind.
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