INTERPOLATION SERIES IN LOCAL FIELDS OF PRIME CHARACTERISTIC

CARL G. WAGNER

1. Introduction. In 1944 Dieudonné [3] proved a p-adic analogue of the Weierstrass Approximation Theorem by an inductive argument involving the polynomial approximation of certain continuous characteristic functions. In 1958 Mahler [4] proved the sharper result that each continuous p-adic function f defined on the p-adic integers is the uniform limit of the "interpolation series"

$$f(t) = \sum_{n=0}^{\infty} \Delta^n f(0) \binom{t}{n} ,$$

where

$$\Delta^{n} f(0) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} f(n-k).$$

The crucial step in Mahler's proof involves showing that $\lim_{n\to\infty} \Delta^n f(0) = 0$ for the p-adic topology, and he demonstrates this by passing to a certain cyclotomic extension of the rationals. In fact, this follows quickly from Dieudonné's theorem for if p(t) is a polynomial of degree r for which $|f(t) - p(t)|_p < \epsilon$ for $t \in \mathbb{Z}_p$, then $|\Delta^n f(0) - \Delta^n p(0)|_p < \epsilon$ for all n. Hence if n > r, $\Delta^n p(0) = 0$ and $|\Delta^n f(0)|_p < \epsilon$.

In the present paper we use the above idea to simplify our earlier proof of a Mahler type theorem for continuous functions on the ring V of formal power series over a finite field GF(q) [5]. Although the proof by Dieudonné admits a straightforward generalization to any locally compact non-archimedean field, in this case we accomplish the polynomial approximation of the relevant characteristic functions without recourse to induction by using certain powers of the Carlitz polynomials $G'_{qr-1}(t)/g_{qr-1}$ [1]. We conclude by giving a sufficient condition for the differentiability of a function f defined on V.

2. Preliminaries. Let GF[q, x] be the ring of polynomials over the finite field GF(q) of characteristic p and let GF(q, x) be the quotient field of GF[q, x]. Denote by V the ring of formal power series over GF(q) and by F the field of formal power series over GF(q). Set |0| = 0. If $\alpha \in F - \{0\}$ is given by

(2.1)
$$\alpha = \sum_{i=-\infty}^{\infty} a_i x^i,$$

Received December 13, 1971. This research was supported in part by the University of Tennessee Faculty Research Fund.

where $a_i \in GF(q)$ and all but a finite number of the a_i 's vanish for i < 0, then set $v(\alpha) = k$ and

$$|\alpha| = b^{v(\alpha)},$$

where 0 < b < 1 and k is the smallest subscript i in (2.1) for which $a_i \neq 0$. Then $| \ |$ is a discrete, non-archimedean absolute value on F and F is complete with respect to this absolute value. Obviously GF[q, x] is dense in V as is GF(q, x) in F. The valuation ring of F is V, and V is compact and open in F [5; 392]. Also, addition and multiplication are continuous operations in F so that polynomials over F define continuous functions.

Following Carlitz we define a sequence of polynomials $\Psi_n(t)$ over GF[q, x] by

$$\Psi_n(t) = \prod_{\deg m < n} (t - m),$$

where the above product extends over all $m \in GF[q, x]$ of degree less than n (including 0). Then [2; 140]

(2.4)
$$\Psi_n(t) = \sum_{i=0}^{n} (-1)^{n-i} {n \brack i} t^{q^i},$$

where

and

(2.6)
$$F_{n} = [n][n-1]^{a} \cdots [1]^{a^{n-1}}, \quad F_{0} = 1$$

$$L_{n} = [n][n-1] \cdots [1], \quad L_{0} = 1$$

$$[r] = x^{a^{r}} - x.$$

Following [1] we define polynomials $G_n(t)$ and $G'_n(t)$ over GF[q, x] and $g_n \in GF[q, x]$ as follows. If

$$(2.7) n = e_0 + e_1 q + \cdots + e_s q^s, 0 \le e_i < q,$$

then set

$$(2.8) G_n(t) = \Psi_0^{\epsilon_0}(t) \cdots \Psi_s^{\epsilon_s}(t)$$

and

$$(2.9) G'_n(t) = \prod_{i=0}^s G'_{\sigma_i q^i}(t),$$

where

(2.10)
$$G'_{eq}(t) = \begin{cases} \Psi'_{i}(t) & 0 \le e < q - 1 \\ \Psi'_{i}(t) - F'_{i} & e = q - 1 \end{cases}$$

and

$$(2.11) g_n = F_1^{e_1} \cdots F_s^{e_s}, g_0 = 1.$$

We mention that $G_n(t)/g_n$ and $G'_n(t)/g_n$ are integral valued polynomials over GF(q, x), i.e., for all $m \in GF[q, x]$, $G_n(m)/g_n \in GF[q, x]$ [1; 503].

If H is any extension field of GF(q, x), since deg $G_n(t) = n$, it follows that $(G_n(t)/g_n)$ is an ordered basis of the H-vector space H[t]. Indeed for any $h(t) \in H[t]$ of degree $\leq n$ we have [1; 491] the unique representation

(2.12)
$$h(t) = \sum_{i=0}^{n} A_{i} \frac{G_{i}(t)}{g_{i}},$$

where

(2.13)
$$A_{i} = (-1)^{r} \sum_{\deg m < r} \frac{G'_{q^{r}-1-i}(m)}{g_{q^{r}-1-i}} h(m), \qquad m \in GF[q, x]$$

and $i < q^r$. We emphasize that for i > n Formula (2.13) yields $A_i = 0$, so we could have written the sum in (2.12) with upper limit ∞ . In the sequel we shall expand an arbitrary continuous function $f:V \to F$ in a (genuinely) infinite series resembling (2.12).

3. Characteristic functions. For all nonnegative integers k define a function χ_k on V by $\chi_k(t) = 1$ if $|t| \leq b^k$ and $\chi_k(t) = 0$ if $b^k < |t| \leq 1$. As the characteristic function of an open-closed ball about 0, χ_k is continuous. The following theorem shows that it may be uniformly approximated by polynomials over GF(q, x).

Theorem A. For $k \geq 0$ let

(3.1)
$$C_k(t) = (-1)^k G'_{q^{k-1}}(t)/g_{q^{k-1}}.$$

Then for all t & V and for all natural numbers s

$$|C_k^{p^*}(t) - \chi_k(t)| \leq b^{p^*},$$

where p is the characteristic of F.

Proof. By [2; 141] $G'_{q^{k-1}}(t) = \Psi_k(t)/t$. If $|t| \leq b^k$, then $t = x^k \mu$, where $\mu \in V$. It follows from (2.4), (2.5), (2.6) and (2.11) that $C_k(0) = 1$, and so we may assume that $\mu \neq 0$. Then by these same four formulae

(3.3)
$$C_k(x^k\mu) = (-1)^k \frac{L_k\Psi_k(x^k\mu)}{F_kx^k\mu} = 1 + \sum_{j=1}^k (-1)^{2k-j} \frac{(x^k\mu)^{q^{j-1}}L_k}{F_iL_{k-j}^{q^j}}.$$

But each of the terms other than 1 in (3.3) is congruent to zero (mod x) for if $1 \le j \le k$, then

$$v((x^{k}\mu)^{q^{i-1}}L_{k}/F_{i}L_{k-i}^{q^{i}}) \geq (q^{i}-1)k + k - (1+q+\cdots+q^{i-1}) - q^{i}(k-j)$$

= $jq^{i} - (1+q+\cdots+q^{i-1}) > 0$.

Hence there exists a $\beta \in V$ such that

$$C_k(x^k\mu) = 1 + \beta x$$

and so for all $s \geq 1$

$$C_k^{p^*}(x^k\mu) = 1 + (\beta x)^{p^*}$$

from which (3.2) follows for $|t| \leq b^k$.

If $b^k < |t| < 1$ and since $|\Psi_k(t)/F_k| \le 1$ for all $t \in V$ [6; §3], then

$$|C_k^{p^*}(t) - \chi_k(t)| = |C_k(t)|^{p^*} = \left|\frac{L_k \Psi_k(t)}{t F_k}\right|^{p^*} \le b^{p^*}.$$

Remark. It follows from (3.2) by translation that for all $\alpha \in V$

$$|C_k^{p^*}(t-\alpha)-\chi_k(t-\alpha)|\leq b^{p^*}.$$

Hence the characteristic function of any open-closed ball in V may be uniformly approximated by polynomials.

4. Theorem B. Let $f: V \to F$ be continuous and for all $i \geq 0$ set

(4.1)
$$A_{i} = (-1)^{r} \sum_{\deg m < r} \frac{G'_{q^{r}-1-i}(m)}{g_{q^{r}-1-i}} f(m),$$

where $i < q^r$ (any such r yields the same value for A, [1; 492]) and the sum in (4.1) extends over all $m \in GF[q, x]$ of degree < r. Then

$$(4.2) \sum_{i=0}^{\infty} A_i \frac{G_i(t)}{g_i}$$

converges uniformly to f(t) for all $t \in V$.

Proof. Since $|G_{\cdot}(t)/g_{i}| \leq 1$ for all $t \in V$ [6; §3] and $| \cdot |$ is non-archimedean, the uniform convergence of (4.2) would follow from a proof that $\lim_{i\to\infty} A_{i} = 0$. Hence, given $s \geq 0$, we seek N = N(s) such that i > N implies that $|A_{\cdot}| \leq b^{s}$. Since V is compact, f is bounded, and we may assume with no loss of generality that $f: V \to V$. Also f is uniformly continuous, and so there exists a k = k(s) such that $|t_{1} - t_{2}| \leq b^{s}$ implies $|f(t_{1}) - f(t_{2})| \leq b^{s}$ for t_{1} , $t_{2} \in V$.

such that $|t_1 - t_2| \le b^k$ implies $|f(t_1) - f(t_2)| \le b^s$ for t_1 , $t_2 \in V$. For $m \in GF[q, x]$ suppose that $f(m) = \sum_{i=0}^{\infty} a_i x^i$. Set $f_*(m) = a_0 + a_1 x + \cdots + a_{*-1} x^{*-1}$. This defines a function $f_*: GF[q, x] \to GF[q, x]$ for which

$$(4.3) |f_{\bullet}(m) - f(m)| \le b^{\bullet}$$

for all $m \in GF[q, x]$. Furthermore, f is periodic (mod x^k) for if $m_1 \equiv m_2 \pmod{x^k}$, i.e., if $|m_1 - m_2| \leq b^k$, then by (4.3) and the uniform continuity of f it follows that $|f_s(m_1) - f_s(m_2)| \leq b^s$. Hence $f_s(m_1) = f_s(m_2)$ since distinct values of f_s are incongruent (mod x^s).

Corresponding to (4.1) we define a sequence (B_i) in GF[q, x] by

(4.4)
$$B_{i} = (-1)^{r} \sum_{\deg m < r} \frac{G'_{q^{r-1}-i}(m)}{g_{q^{r-1}-i}} f_{s}(m),$$

where $i < q^r$. Since $G'_{q^{r-1}-i}(m)/g_{q^{r-1}-i}$ ε GF[q, x], it follows from (4.3) that for all $i \geq 0$

$$(4.5) |A_i - B_i| \le b^s.$$

By (4.4) and the periodicity (mod x^k) of f_s it follows that

$$(4.6) B_{i} = (-1)^{r} \sum_{\substack{\deg m_{1} < k \\ m = m_{1} \pmod{x^{k}}}} f_{s}(m_{1}) \sum_{\substack{\deg m < k \\ m = m_{1} \pmod{x^{k}}}} \frac{G'_{q^{r-1-i}}(m)}{g_{q^{r-1-i}}}.$$

Now for each $m_1 \in GF[q, x]$ with deg $m_1 < k$

$$(4.8) \qquad (-1)^r \sum_{\substack{\deg m < r \\ m \equiv m, (mod \, x^k)}} \frac{G'_{q^r-1-i}(m)}{g_{q^r-1-i}} = (-1)^r \sum_{\deg m < r} \frac{G'_{q^r-1-i}(m)}{g_{q^r-1-i}} \chi_k(m-m_1),$$

where χ_k is as in §3. For each such m_1 and for all $i \geq 0$ set

$$(4.9) D_{i}(m_{1}) = (-1)^{r} \sum_{\deg m < r} \frac{G'_{q^{r}-1-i}(m)}{g_{q^{r}-1-i}} C_{k}^{p^{s}}(m-m_{1}),$$

where $C_k(t)$ is defined by (3.1) and $i < q^r$. Then by (3.4), (4.6), (4.8) and (4.9)

$$(4.10) |B_i - \sum_{dec \, m_i < b} f_e(m_1) \, D_i(m_1)| \le b^{p^*} \le b^*.$$

But for each m_1 , deg $C_k^{p^*}(t-m_1)=p^*(q^k-1)$ and so by (4.9) and the remarks following (2.13), $D_i(m_1)=0$ if $i>p^*(q^k-1)$. It follows that for such $i, |B_i| \leq b^*$ which, along with (4.5), implies that $|A_i| \leq b^*$.

It remains to be shown that (4.2) actually converges to the function f. As the uniform limit of (continuous) polynomial functions (4.2) represents a continuous function on V. Since GF[q, x] is dense in V, it suffices to show that

(4.11)
$$f(m^*) = \sum_{i=0}^{\infty} A_i \frac{G_i(m^*)}{q_i}$$

for all $m^* \in GF[q, x]$. Suppose that deg $m^* < d$. Then by (2.3) and (2.8) $G_i(m^*) = 0$ for $i \ge q^d$, and so the series in (4.11) is actually finite. Let $f_d(t)$ be the unique polynomial over V of degree $< q^d$ such that $f_d(m) = f(m)$ for all $m \in GF[q, x]$ of degree < d. Then application of (2.12) and (2.13) to $f_d(t)$ yields (4.11). The polynomials $f_d(t)$ also yield a simple proof of the uniqueness of the coefficients A_i in (4.2) [5; 404].

5. Differentiability. The following propositions will be used to discuss differentiability criteria for continuous functions on V.

Proposition 1. For all nonnegative integers i and k

(5.1)
$${\binom{j+k}{j}} g_{i+k} = {\binom{j+k}{j}} g_i g_k ,$$

where g_i is defined by (2.11).

Proof. Let $j = j_0 + j_1 q + \cdots + j_s q^s$ and let $k = k_0 + k_1 q + \cdots + k_s q^s$, where $0 \le j_i$, $k_i < q$. If $j_i + k_i < q$ for each $i, 1 \le i \le s$, then $g_{i+k} = g_i g_k$ by (2.11). If $j_i + k_i \ge q$ for some i, let n be the smallest such i. Then $j_n + k_n = q + r$, where $0 \le r < q$ and $r < j_n$. Then by a familiar congruence for binomial coefficients $\binom{j+k}{j}$ is congruent (mod p) to a product of binomial coefficients, one of which is $\binom{r}{j_n} = 0$. Hence in this case (5.1) reduces to the identity 0 = 0.

Proposition 2. For all $n \geq 1$

(5.2)
$$\frac{G_n(t)}{tg_{n-1}} = \frac{G'_{q^{\sigma(n)}-1}(t)}{g_{q^{\sigma(n)}-1}} \frac{G_{n-q^{\sigma(n)}}(t)}{g_{n-q^{\sigma(n)}}},$$

where $q^{e(n)} \mid n$ and $q^{e(n)+1} \not\mid n$.

Proof. Let $n = n_0 + n_1 q + \cdots + n_s q^s$, where $0 \le n_i < q$. If $n_0 > 0$, then e(n) = 0, and so by (2.8), (2.11) and the fact that $\Psi_0(t) = t$

(5.3)
$$\frac{G_n(t)}{tg_{n-1}} = \frac{\Psi_n^{n_0-1}(t)\Psi_1^{n_1}(t)\cdots\Psi_s^{n_s}(t)}{g_{n-1}} = \frac{G_{n-1}(t)}{g_{n-1}}$$

If $n_0 = 0$, let j = e(n) be the first nonzero coefficient in the q-adic expansion of n. Then $n - 1 = (q - 1) + (q - 1)q + \cdots + (q - 1)q^{i-1} + (n_i - 1)q^i + n_{i+1}q^{i+1} + \cdots + n_*q^*$ and $n - q^i = (n_i - 1)q^i + n_{i+1}q^{i+1} + \cdots + n_*q^*$ so that

(5.4)
$$\frac{G_{n}(t)}{tg_{n-1}} = \frac{\Psi_{j}(t)}{tF_{1}^{q-1} \cdots F_{j-1}^{q-1}} \frac{\Psi_{j}^{n_{j-1}}(t)\Psi_{j+1}^{n_{j+1}}(t) \cdots \Psi_{s}^{n_{s}}(t)}{F_{j}^{n_{j-1}}F_{j+1}^{n_{j+1}} \cdots F_{s}^{n_{s}}}$$
$$= \frac{G'_{q^{j}-1}(t)}{g_{q^{j}-1}} \frac{G_{n-q^{j}}(t)}{g_{n-q^{j}}}$$

since $\Psi_i(t)/t = G'_{q^{i-1}}(t)$ [2; 141]. It follows from (5.2) that $G_n(t)/tg_{n-1}$ is an integral valued polynomial over GF(q, x) and, since GF(q, x) is dense in V, that

$$\left| \frac{G_n(t)}{t q_{n-1}} \right|_{t=q} \le 1$$

if $|\alpha| \leq 1$.

Proposition 3. For all $n \geq 1$

(5.6)
$$\left(\frac{G_n(t)}{tg_{n-1}}\right)_{t=0} = \begin{cases} (-1)^k & \text{if } n = q^k \\ 0 & \text{otherwise.} \end{cases}$$

Proof. This follows from (5.2), the fact that $G_i(0) = 0$ for i > 0 and the fact that $G'_{a^{k-1}}(0)/g_{a^{k-1}} = (-1)^k$ [6; §5].

Proposition 4. For all $n \ge 1$

$$\frac{g_{n-1}}{g_n} = \frac{1}{L_{\epsilon(n)}},$$

where L_i is defined by (2.6) and e(n) is as in (5.2).

Proof. This follows immediately from (2.6) and (2.11).

We may now give a sufficient condition for the differentiability of a continuous function $f: V \to V$ at $u \in V$.

THEOREM C. Let $f:V \to V$ continuously and suppose that

$$f(t) = \sum_{i=0}^{\infty} A_i \frac{G_i(t)}{g_i}$$

is the interpolation series for f constructed from the Carlitz polynomials. For all $u \in V$ set

(5.9)
$$A_{i}(u) = \sum_{k=0}^{\infty} {j+k \choose j} A_{i+k} \frac{G_{k}(u)}{g_{k}}.$$

If $\lim_{i\to\infty} A_i(u)/L_{\bullet(i)} = 0$, then f is differentiable at u and

(5.10)
$$f'(u) = \sum_{n=0}^{\infty} (-1)^n \frac{A_{q^n}(u)}{L_n}.$$

Proof. By (5.8), [1; 488, (2.3)] and Proposition 1

(5.11)
$$f(t+u) = \sum_{i=0}^{\infty} A_i \frac{G_i(t+u)}{g_i} = \sum_{i=0}^{\infty} \frac{A_i}{g_i} \sum_{j=0}^{i} {i \choose j} G_j(t) G_{i-j}(u)$$
$$= \sum_{i=0}^{\infty} \sum_{j=0}^{i} {i \choose j} A_i \frac{G_j(t)}{g_j} \frac{G_{i-j}(u)}{g_{i-j}}$$

for all t, $u \in V$. Since (A_i) is a null sequence, we may reverse the order of summation in the last series in (5.11). This yields

(5.12)
$$f(t+u) = \sum_{i=0}^{\infty} A_i(u) \frac{G_i(t)}{g_i},$$

where

(5.13)
$$A_{i}(u) = \sum_{k=0}^{\infty} {j+k \choose j} A_{i+k} \frac{G_{k}(u)}{g_{k}}.$$

Note that $(A_i(u))$ is a null sequence and that $A_0(u) = f(u)$; so for all nonzero $t \in V$

(5.14)
$$\frac{f(t+u)-f(u)}{t} = \sum_{j=1}^{\infty} A_j(u) \frac{G_j(t)}{tg_j} = \sum_{j=1}^{\infty} \frac{A_j(u)}{L_{e(j)}} \frac{G_j(t)}{tg_{j-1}}$$

by Proposition 3.

Now if $(A_i(u)/L_{\epsilon(i)})$ is a null sequence, then by (5.5) the rightmost series in (5.14) converges for all $t \in V$ (including zero) to a continuous function on V. Hence f'(u) exists and by Proposition 3

(5.15)
$$f'(u) = \sum_{j=1}^{\infty} \left(\frac{A_j(u)}{L_{e(j)}} \frac{G_j(t)}{tg_{j-1}} \right)_{t=0} = \sum_{n=0}^{\infty} (-1)^n \frac{A_{e^n}(u)}{L_n}.$$

We remark that the function f of (5.8) is a linear operator on the GF(q)-vector space V precisely when $A_i = 0$ for i not a power of q [5; 406]. Hence if f is linear, then

(5.16)
$$A_{i}(u) = \sum_{k=0}^{\infty} {j+k \choose j} A_{i+k} \frac{G_{k}(u)}{g_{k}} = A_{i}$$

so that the condition $\lim_{i\to\infty} A_i(u)/L_{e(i)} = 0$ is equivalent to $\lim_{n\to\infty} A_{q^n}/L_n = 0$. This latter condition is, in the linear case, both necessary and sufficient for f to be everywhere differentiable on V [6; §5].

References

- 1. L. Carlitz, A set of polynomials, Duke Math. J., vol. 6(1940), pp. 486-504.
- L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J., vol. 1(1935), pp. 137-168.
- 3. J. DIEUDONNÉ, Sur les fonctions continues p-adiques, Bull. Sci. Math. (2), vol. 68(1944), pp. 79-95.
- K. Mahler, An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math., vol. 199(1958), pp. 23-34.
- 5. C. Wagner, Interpolation series for continuous functions on π -adic completions of GF(q, x), Acta Arith., vol. 17(1971), pp. 389-406.
- C. Wagner, Linear operators in local fields of prime characteristic, J. Reine Agnew. Math., vol. 251(1971), pp. 153-160.

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916