INTERPOLATION SERIES IN LOCAL FIELDS OF
PRIME CHARACTERISTIC

CARL G. WAGNER

1. Introduction. In 1944 Dieudonné [3] proved a p-adic analogue of the
Weierstrass Approximation Theorem by an inductive argument involving the
polynomial approximation of certain continuous characteristic functions. In
1958 Mabhler [4] proved the sharper result that each continuous p-adic function f
defined on the p-adic integers is the uniform limit of the “interpolation series”

o = 3 av0(f),

where

210 = 3 0 (2o ~ b,

The crucial step in Mahler’s proof involves showing that lim,.. A" f(0) = 0
for the p-adic topology, and he demonstrates this by passing to a certain cyclo-
tomic extension of the rationals. In fact, this follows quickly from Dieudonné’s
theorem for if p(¢) is a polynomial of degree r for which |f(t) — p(t)|, < e for
teZ,,then |A" f(0) — A" p(0)|, < efor all n. Henceif n > r, A" p(0) = 0
and |A" f(0), < e

In the present paper we use the above idea to simplify our earlier proof of a
Mabhler type theorem for continuous functions on the ring V of formal power
series over a finite field GF(q) [5]. Although the proof by Dieudonné admits
a straightforward generalization to any locally compact non-archimedean field,
in this case we accomplish the polynomial approximation of the relevant charac-
teristic functions without recourse to induction by using certain powers of the
Carlitz polynomials G’ _,(t)/ger-1 [1l. We conclude by giving a sufficient
condition for the differentiability of a function f defined on V.

2. Preliminaries. Let GF [g, ] be the ring of polynomials over the finite
field GF(q) of characteristic p and let GF (g, x) be the quotient field of GF[g, z].
Denote by V the ring of formal power series over GF(q) and by F the field of
formal power series over GF(g). Set |0 = 0. If ae F — {0} is given by

(2.1) a= ';w ax’,
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where a; e GF(qg) and all but a finite number of the a,’s vanish for ¢ < 0, then
set v(a) = k and

2.2) laf = 0",

where 0 < b < 1 and k is the smallest subscript 7 in (2.1) for which a; # 0.
Then | | is a discrete, non-archimedean absolute value on F and F is complete
with respect to this absolute value. Obviously GF[g, z] is dense in V as is
GF(g, ) in F. The valuation ring of F is V, and V is compact and open in F
[5; 392]. Also, addition and multiplication are continuous operations in F so
that polynomials over F define continuous functions.

Following Carlitz we define a sequence of polynomials ¥,(f) over GF[q, z] by
(2.3) v, = I @¢—m),

deg m<n

where the above product extends over all m e GF[q, z] of degree less than n
(including 0). Then [2; 140]

(2.4 w0 = £ 0[]

where

B
and

F,=[ln—1]°--- 177, Fo=1
(2.6) L,=@ln—1]--- 1], Ly =1
[r] = 2¥ — z.

Following [1] we define polynomials G,.(f) and G.(t) over GF[g, x] and
g. & GFlq, z] as follows. If

2.7) n=-e+eq+ - +eqg, 0<e <g,

then set

(2.8) G.(t) = ¥o°(t) -~ - WI'(2)

and

(2.9 Git) = T1 Gous(®),
§=0

where

(2.10) GLu(d) = {‘I’*(‘) 0se<g-—1
vi(t) — F; e=q—1
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and
(2.11) gn = F’;l e F:', go = 1.

We mention that G,(t)/g. and G.(t)/g. are integral valued polynomials over
GF(q, 2), i.e., for all m ¢ GFlq, 2], G.(m)/g. , G1(m)/ga & GFlg, z] [1; 503].

If H is any extension field of GF(g, z), since deg G,(f) = n, it follows that
(G.(t)/g.) is an ordered basis of the H-vector space H[t]. Indeed for any
h(t) e H[t] of degree < n we have [1; 491] the unique representation

(2.12) Mm=im%@,

t=0

where

’
@13 A=y ¥ == .6, o
degm<r Jar~1-¢
and 7 < ¢". We emphasize that for ¢ > n Formula (2.13) yields 4; = 0, so we
could have written the sum in (2.12) with upper limit . In the sequel we shall
expand an arbitrary continuous function f:¥V — F in a (genuinely) infinite
series resembling (2.12).

3. Characteristic functions. For all nonnegative integers k define a function
x: on V by x:() = 1if || < b* and x:(f) = 0if b* < |t| < 1. As the charac-
teristic function of an open-closed ball about 0, x; is continuous. The following
theorem shows that it may be uniformly approximated by polynomials over
GF (g, x).

TaeoreM A. Fork > 0let

3.1 Ci(®) = (=1)'Gp_s(t)/ger-1 -
Then for all t e V and for all natural numbers s
3.2 ICE(®) — x()] < b,

where p 18 the characteristic of F.

Proof. By [2; 141] GL_,(t) = ¥, (t)/t. If |t] < b, thent = a*yu, where ue V.
It follows from (2.4), (2.5), (2.6) and (2.11) that C,(0) = 1, and so we may
assume that u ¢ 0. Then by these same four formulae

IR ACH) S oy (@)L
3.3 Ci(ztu) = (—1)F =2 E = 1 =)= T
(3 Gl = (-1 FEEE = 14 X ()

But each of the terms other than 1 in (3.3) is congruent to zero (mod z) for if
1 <j <k, then

o(@ )" LRI > (@ —DE+Ek— A+ g+ -+ ¢ — ¢ -9
=i —U+qg+ - +gH>0.
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Hence there exists a 8 ¢ V such that
Cu(@*n) =1+ Bz
and so foralls > 1
Ci'('w) = 1+ (B2)”

from which (3.2) follows for |f| < b*.
If b* < [t| < 1 and since |¥,(t)/F,| < 1 for all £ V [6; §3], then

p* p* L V. (1 »* pe
@ - %0l = P = 20 < b,
k
Remark. 1t follows from (3.2) by translation that for all e V
(34 [CE'(t — @) — xu(t — @)] < V.

Hence the characteristic function of any open-closed ball in V may be uniformly
approximated by polynomials.

4. TaeorEM B. Let f:V — F be continuous and for all © > 0 set

r G;'— -1
@) 4=y ¥ Gre=dmye,
deg m<r gq'-l—i
where 1 < q" (any such r yields the same value for A, [1; 492]) and the sum in (4.1)
extends over all m € GF[q, x] of degree < r. Then

«.2) > 4,20

converges untformly to f(t) for allte V.

Proof. Since |G,(t)/g:| < 1for all t eV [6; §3] and | | is non-archimedean,
the uniform convergence of (4.2) would follow from a proof that lim;., A, = 0.
Hence, given s > 0, we seek N = N(s) such that 7 > N implies that |4,| < b°.
Since V is compact, f is bounded, and we may assume with no loss of generality
that f:V — V. Also f is uniformly continuous, and so there exists a k = k(s)
such that |t;, — &,| < b* implies |f(£,) — f(t.)| < b° fort, , e V.

For m & GF|q, ] suppose that f(m) = > 7, ax’. Set f,(m) = ao + a;z +
-+ 4+ a,_,2*"". This defines a function f,:GF[q, 2] — GF[q, ] for which
4.3) [fo(m) — f(m)] < b°

for all m e GF[q, x]. Furthermore, f is periodic (mod z*) for if m, = m, (mod z*),
i.e., if |m; — m,| < b*, then by (4.3) and the uniform continuity of f it follows
that |f,(m,) — f.(ms)| < b’. Hence f,(m,) = f,(m,) since distinct values of f,
are incongruent (mod z°).

Corresponding to (4.1) we define a sequence (B;) in GF[q, z] by

4.9) B, = (-1y Y YGe==my

deg m<r Jar—1-i
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where 7 < ¢". Since G%_,_;(m)/gy-1-: £ GF|g, x], it follows from (4.3) that
forall7 > 0

(4.5) |4; — B,| < b".
By (4.4) and the periodicity (mod z*) of f, it follows that
’ G;r... -
“9) Bo= (- ¥ f(m) ¥ Srm=m(m,
deg my <k deg m<k gq'—l—s‘

m=m; (mod z¥)

Now for each m, e GF[q, ] with deg m;, < k

r G:r_ - r Gér_ -
a9 (- x Gty 5 Geanlm), o, g
m-?:f(:oﬁ;z”) ga'—l—‘ dosmer gd""l‘l'

where x; is as in §3. For each such m, and for all ¢ > 0 set

4.9) Dim) = (=1y 3 Gem=™ gmy

deg m<r gq'-l-i

where C.(t) is defined by (3.1) and 7 < ¢". Then by (3.4), (4.6), (4.8) and (4.9)
(4.10) B; — > ) fo(m) Dy(my)| < ¥ < b'.
<

deg my
But for each m, , deg C2'(t — m,) = p°(¢" — 1) and so by (4.9) and the remarks
following (2.13), D;(m,) = 0 if ¢ > p*(¢® — 1). It follows that for such
1, |Bi| < b° which, along with (4.5), implies that |4,| < b°.
It remains to be shown that (4.2) actually converges to the function f. As
the uniform limit of (continuous) polynomial functions (4.2) represents a
continuous function on V. Since GF[q, x] is dense in V, it suffices to show that

@.11) %) = 3 4, L)
i=0 i

for all m* e GF[g, x]. Suppose that deg m* < d. Then by (2.3) and (2.8)
Gi(m*) = 0 for i > ¢°, and so the series in (4.11) is actually finite. Let f,(¢)
be the unique polynomial over V of degree <g¢* such that f,(m) = f(m) for all
m e GF[q, z] of degree <d. Then application of (2.12) and (2.13) to f,(f) yields
(4.11). The polynomials f,(f) also yield a simple proof of the uniqueness of
the coefficients 4, in (4.2) [5; 404].

5. Differentiability. The following propositions will be used to discuss
differentiability criteria for continuous functions on V.

ProrosiTioN 1. For all nonnegative integers j and k

(5.1) (j ';_ k)gi+k = (’ _;' k)gfgk ,

where g, 18 defined by (2.11).
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Proof. Letj=jo+jg+ -+ +34.9¢ andletk =k, + kg + -+ + k.¢,
where 0 < j; , k: < q Ifj. 4+ k: < gforeach, 1 < i < s, then g4 = g,0x
by (2.11). Ifj; + k; > qfor some 7, let n be the smallest such 2. Thenj, + k, =
g+ r,where0 < r < gandr < j,. Then by a familiar congruence for binomial

coeflicients (‘7 _;- k) is congruent (mod p) to a product of binomial coefficients,

one of which is <r ) = 0. Hence in this case (5.1) reduces to the identity 0 = 0.

ProrositioN 2. Foralln > 1

Gq.(1) _ Gleemr () Gz gonr(t)

tgn...1 Gqe(m)—1 Gn—-gqe (m

(5.2)

where ¢’ | n and "™} n.
Proof. Letn = n, + n,qg + -+ + n,9°, where 0 < n; < q. If no > 0, then
e(n) = 0, and so by (2.8), (2.11) and the fact that ¥,() = ¢

no—1 ny e ng
53 G) _ QWD) - W) _ Ge(®),
tgn-l Jn—1 Gn—-1

If ny = 0, let j = e(n) be the first nonzero coefficient in the g-adic expansion
ofn. Thenn —1= (g~ 1)+ (@—1g+ -+ @@=+ (n; — )¢ +
i+ - F g andn — ¢ = (n; — 1)¢ + 140" + -+ + n.q° so that

G.(8) _ ¥;(2) L7 0) #AN O A O)
- a a1 Nj—1JIRi+2 .
(5.4) or W BN PPORY
_ Glii(t) G gi(t)
GJaoi-1 Jn—qi

since W;(¢)/t = G4_,(t) [2; 141]. It follows from (5.2) that G,()/tg.-, is an
integral valued polynomial over GF(q, ) and, since GF[q, z] is dense in V, that

G.(?)
' T <
(5 5) tgn—l t=q - 1
if lof < 1.
ProrosiTiON 3. Foralln > 1
k . ok
(5.6) (EG"(Q) _ {(—1) if n=g
A () otherwise.

Proof. This follows from (5.2), the fact that G;(0) = 0 for z > 0 and the
fact that G/, (0)/gs-1 = (—1)* [6; §5].

ProrosrTioN 4. Foralln > 1
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o _ 1
gu Lc(n) ’

where L, s defined by (2.6) and e(n) is as in (5.2).

Proof. 'This follows immediately from (2.6) and (2.11).
We may now give a sufficient condition for the differentiability of a continuous
function f:V > VatueV.

(6.7

TueoreM C. Let f:V — V continuously and suppose that
Gt
(5.8) (t) = 20 A, ( )

18 the interpolation series for f constructed from the Carlitz polynomials. For all
ueV set

i+ k Gk(u)
5.9 A0 = 3 (1 F)a,., G
If lim;.o A;(w)/L,;y = 0, then f vs differentiable at w and
(5.10) ra = 3 (- Aeld.

Proof. By (5.8), [1; 488, (2.3)] and Proposition 1

©

04w = 34, RN L 5 A 5= (06,

(5'11) =0 g« =0 9'. i=0
L G0 Gy )
; 1z=:0 < > gi Gi-j

for allt, we V. Since (4,) is a null sequence, we may reverse the order of sum-
mation in the last series in (5.11). This yields

(5.12) e+ = 3 A0 40,
where

_ s (itk G
(5.13) a6 = 5 j )4, !

Note that (4;(w)) is a null sequence and that A,(u) = f(u); so for all nonzero
teV

by Proposition 3.
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Now if (4;(u)/L,;,) is a null sequence, then by (5.5) the rightmost series
in (5.14) converges for all ¢t ¢ V (including zero) to a continuous function on V.
Hence f'(u) exists and by Proposition 3

(5.15) po = 3 (AW EO) 5 gy A,

=1 \L.iy tgi1 70

We remark that the function f of (5.8) is a linear operator on the GF (q)-vector
space V precisely when 4, = 0 for ¢ not a power of ¢ [5; 406]. Hence if f is linear,
then

(5.16 4, = 3 (1 F)a,., B0 _ g,

k=0 J Gr
so that the condition lim;.. 4;(u)/L.;, = 0 is equivalent to lim,.. A»/L, = 0.
This latter condition is, in the linear case, both necessary and sufficient for f to
be everywhere differentiable on V [6; §5].
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