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INTERPOLATION  SETS  FOR  CONVOLUTION

MEASURE ALGEBRAS

COLIN  C.  GRAHAM1

Abstract. These are proved : (l)The union of two interpolation

sets for a regular commutative convolution measure algebra is not

necessarily an interpolation set. (2) There exists a regular com-

mutative convolution measure algebra for which interpolation sets

are not necessarily of spectral synthesis, while every singleton is a

Ditkin set. (3) For every nondiscrete LCA group G, there exist

compact interpolation sets for M(G) whose union is not an inter-

polation set. A tensor algebra method is used.

0. Introduction. An interpolation set (Helson set) for a commutative

Banach algebra sé is a closed subset E of the maximal ideal space Xoîsé

such that every continuous function on E, vanishing at infinity, is the

restriction to F of a Gelfand transform/of some/e sé. Körner [7] has

given examples of commutative Banach algebras sé for which (i) the union

of two interpolation sets is not an interpolation set, and (ii) interpolation

sets F do not obey spectral synthesis, that is, for some/e sé with/zero on

E, there do not exist/,, ese such that lim||/„—/||c/ = 0 and/„=0 in a

neighborhood of E. After a preliminary version of this was prepared, we

learned that Körner [18] has also constructed a Helson set for L1(Z) which

is not a set of spectral synthesis.

This note may be regarded as an extension of Körner's results (in [7],

[8]) to convolution measure algebras. In view of the diversity of convolu-

tion measure algebras, the first two results are not surprising, since they

hold for general Banach algebras. The third result is perhaps more inter-

esting, in view of the Varopoulos-Drury Theorem which says the union of

two interpolation sets for L1(G) is an interpolation set ([2], [4], [14]).

This note is organized as follows: notation is in the remainder of this

section; the general method is outlined in §1. Results (l)-(3) are proved in

§§2—4 respectively.

We use the notation of Rudin [10]. The Gelfand and Fourier (-Stieltjes)

transform off will be denoted (ambiguously) by/; which is meant will be

clear from context.
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1. The general method. We suppose that we have two commutative

Banach algebras £L and £2 with maximal ideal spaces Xx and X2. The

algebra sé will be the closure BX®B2, of Bx®B2 in the greatest cross

(projective) norm.

It is clear (cf. [15, p. 58]) that X=XxXX2 is the maximal ideal space of

sé and that sé*~ is regular on X if £, and £2 are both regular. If Kx,

K2^Xx are compact interpolation sets for £, and q>j:Kj^-X2 is a homeo-

morphism such that there exist/,/ e £2 for which/ = l on cpj(Kj),j=l,

2, then E¡ = {(k, <p¡(k):k e K¡}, y'= 1, 2, • • • , will be interpolation sets for

sé because of the behavior in the first coordinate. The second coordinate

will provide the necessary "bad" behavior.

Before proceeding, we need some facts about £^0, 1), which is given

the convolution multiplication induced by x ■ y = max(x,y). (L:(0, 1) is

also known as the absolutely continuous functions of bounded variation.)

The first is well known [5].

Proposition 1.1. I'(0, 1) ii a commutative Banach algebra with maxi-

mal ideal space (0, 1], J (x)=J„/(0 dt gives the G elf and transform, and

df(x)\dx exists for almost all x.

Proposition 1.2. £/"££ (0, 1] is closed, andfe £x(0, 1) has f(e)=0 for

all e e E, then there exist fn e £x(0, 1) such that \\f * /„—/||i-»-0 and fn is

zero in a neighborhood of E.

Comment. This proposition asserts that every closed set is a set of

spectral synthesis for £x(0, 1), in spite of the fact that £^0, 1) consists of

almost everywhere differentiable functions; many examples of failure of

spectral synthesis use differentiation (e.g. {^} is not a set of synthesis for

C^O, 1)); thus, Proposition 1.2 is slightly surprising.

The proof of Proposition 1.2 requires the following lemma.

Lemma 1.3.    Iff(x)=0 for x e E, then $E\f(t)\dt = 0.

Proof.    If x0 e £, and xn e E, we have lim x„ = x0, then

0 = lim(/(x„) -f(x0))l(xn - x0)

so df/dt = 0 almost everywhere on £, since {f'-fe ^(0, 1)} is the set of

functions g on (0, 1] such that (a) dg\dt exists almost everywhere, (b)

j'J \dg]dt\ < co, and (c)*(x)-JS (dgldt)dt. Thus0=)e \df\dt\ dt=jE \f(t)\dt.
Q.E.D.

Proof of Proposition 1.2. By using the lemma, we may conclude

that E—Ç\n=iEn where each En is a finite union of mutually disjoint

intervals which are closed in (0, 1], that each £„ contains a neighborhood

ofO,

lim
n-* oo

f    \f\dt = 0,
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514 C.   C.   GRAHAM [May

and that all the endpoints of all the intervals which make up each En

belong to E.

Let £>0 be fixed, and choose n so large that

(1) f   l/l < e/4.

Now F„=(0, bx]\J[a2, ¿>2]U- • -KJ[ak, bk] where 0<bx<a2<b2<- • •<

ak<bk^l.

Choose numbers b'¡, b"¡ and a], a'¡ such that a'j<,d'j<^ai, bj<.b'¡<.b'¡,

$ |/|<£/8zc, )t{ \f\<eßk,j=l,2, ■ ■ ■ , k.
Let %(a, b) denote the characteristic function of [a, b], and set

J'=2 3 = 1

(the second sum runs only to k—l if bk=l). It is easy to see that g=0 on

(0, b'x]U[a2, ¿>2]U- • -yj[a'k, b'k] (last term is [ak, 1] if bk=l) and g=l on

[b'[, a'2]^J • ■ -u[bl_x, ak]\J[b'k, I] (the last term does not appear if bk=\).

Thus g is zero on a neighborhood of En.

Furthermore, a straightforward calculation shows \\g * /—/||<e. [In-

deed,

If */-/! = P If */-/l + f' |g*/-/l + • • ■ •

We compute a sample term: between a2 and ¿»a',

r¡>2" fa»"        i

|g*/-/l =
Ja2' * a%'

4
a2 — a2

1

;zK,«D*/-/

ti. tí; %04 4') * / +
Çb2

J ai'
l/l

Çb2 ¡"b2 [ai fbü fb2

\\    1/1+       1/1^2     1/1 + 2     1/1 + 2      l/l
> ln

SO

Hf*/-/1Si2¿(¿ + ̂ :) +2Í   |/|<^+2-f = e.
& \8/c      8/c7 J/í„ 4        4

Q.E.D.

2. Proof of result (1). Here the algebra sé is the tensor product

se=Ll(0,1)®L1(Z) ; that is, séis the set of integrable functions on (0,1) X Z.

The product on sé is the tensor product, so the maximal ideal space of

sé is (0, l]x T, where T is the circle group. It is obvious that sé is a

commutative convolution measure algebra and that sé*, the set of Gel-

fand transforms of sé, is a regular algebra on (0, 1] x T.
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1973] CONVOLUTION  MEASURE  ALGEBRAS 515

Choice of Ex and £2. Let Xj=|, and let {x;:/=2, 3, • • •} be an increasing

sequence in (0, 1) with lim x¡=\. Let {y¡ e T}f=2 be an infinite set of dis-

tinct elements with one accumulation point y1 and such that {y¡}x is an

interpolation set for Ll(Z). Define

Ex = {(Xj, yj):j= 1, 2, • ■ •},   and

E2 = {(xx,yx)} u {(xj+x,y,):j = 2, 3, • • •}.

That Ex and £2 are interpolation sets follows from §1.

£xu£2 is not an interpolation set: Functional analysis arguments show

that it will be enough to prove that for each integer 7Y=1, 2, • • • there

exists fe C(£iU£2) such that if g e sé and g=f on £xu£2 then ||f || _

(A7WÍL [10], where ||/|L=supJ/(x)|.
Fix 7V_1, and let/be a continuous function on Ex^JE2 of supremum

norm one, and such that

(2) /(*„yt) = 0;   f(xj+x,ys) =1        for; = 2, 4, 6, ■ • • , 2N.

Suppose g e sé interpolates/

Choose points x><x,<xi+1 (for j—2, 3, • • • , 2N+2) and let Xj = 0,

x2N+3=l. Then there exist &,*••, #2,v+2 e ¿é with

2AM-2

(3) g = 2gi   and    llgll^^llgj,,
i

and

(4) support gj ç [je,, xi+1] X Z,       j = 1, • ■ • , 2N+2.

From (2) and (4) we conclude

... * = Xi+l => &(*, j) = ¿(¿Mi 7)'

* = ** => &(*> y) = °-

Therefore if y is even and less than 2N, we have

0 = g(xj,y,) = gx(x1,y1) + ■■• + g^x(xuy,) + eAx¡,y¡),

1 = ê(Xj+i,y1) = gx(xx, y}) + ■ ■ ■ + gAxi,y¡) + g¡+i(xj+x,y,),
so

i = eAxt,y¡) + êj+i(xj+x,y}) - 6t(x„y,).

The last formula implies

i = 2 ¡ftIL + kmlU
or

(6) I = U,lt + \gn*\*   for./ = 2, 4, 6, • • • , 2N.

From (6) and (3) we conclude that \\g\\rJ^N¡2.
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516 C.   C.   GRAHAM [May

Remark. For CHfO, l])xC([0, l])=sé, it is easy to see that

{(1/zz, l/zz):zz=l, 2, • • -}U{(0, 0)} and {(0, l/zz):zz=l, 2, • ■ -}u{(0, 0)} are

interpolation sets whose union is not an interpolation set.

3. Proof of result (2).    The result follows at once from:

Theorem 3.1. Let se = L1(R2)®L1(0, 1). Then (i) sé is a regular Banach

algebra with maximal ideal space X=R2X (0, 1].

(ii) if x e X, fe sé, and f(x)=0, then there exist fne sé such that

lim||/„/—/IO/=0 andfn = 0 in a neighborhood of x.
(iii) There exists a compact arc E^X such that E is an interpolation set

for sé and such that spectral synthesis fails for E.

Proof, (i) This follows at once from general considerations (see §1

and [14, p. 58]) and Proposition 1.1.

(ii) Letf=irg^h.eséandx=(xx,x2)have0=f(x) = Z?>gj(xx)hj(x2),

and 211/11^^2 ||gj ||AJ. Fix e>0, and let N be so large that

2."*' <e

From 1.2 and the corresponding fact for L1(R2) [10, 2.6], we know that

there exists for each ó>0, g~x, ■ ■ • , gÁ\ e L1(R2) and hx, ■ ■ ■ , hA e F^O, 1)

such that for;'= 1, • • • , N,J|g3—|,-||<i5, y*,—AJ<à, g, =g¡(xx) ina neigh-
borhood of x,, and h* =fij(x2) in a neighborhood of x2. Then for <3>0

sufficiently small,

II N N II

« i i       ii

Now choose g e L1(R2) and h e L1(R2) such that £=1 in a neighborhood

of x,, h=l in a neighborhood of x2, and ||g||^2, ||/z||^2. Then

k = 2 g i ® î'i - ( 2 SiixxÏÏlxM g® h

is zero in a neighborhood of (x,, x2) and

I/-/ill Ú ¿g* h, - k ^ e/8 + e/8 + 4(e/8) = 6e/8 < e.

Before proving (iii) we prove

Lemma 3.2. Let fe sé. Then there exists a measurable set Zç: (0, 1] of

zero measure such that df(x, y, z)jdz exists for all (x, y, z) e R2X ((0, 1 ]\Z),

and

df
sup,— (x,y,z) dz ^ 11/11 .

(x.y)eR' OZJo
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1973] CONVOLUTION   MEASURE  ALGEBRAS 517

Proof.    To avoid confusion, denote dfjdz by £/, and let £>0. Then

write/=2r gj®hi where J, \\gj\\ HAJ^H/H + e. Of course

oo

f(x,y, z) =^g¡(x,y)ft¡(z)
i

so

00 dît
Df = Z¿Ax,y)—l(z)

x dz

whenever this last expression makes sense. Now for eachy'= 1, 2, • • ■ there

exists a measurable set Z;<= (0, 1] of measure zero such that dhjdz exists

for all z <j£ Z¡. Set Z0= (Jf=i Z¡. For z <£ Z0,

(3.1) 2 sup £/*> j') V(z) =2 ii ?*
(*.!/> az dz

Note that J'J V ||gj |rfA;/í/z| «fe=J lift II IIA; Il ̂ Il/il +s, so that except for a
measurable set Zg (0, 1] of measure zero, the sum (3.1) converges for all

(x, y) e R2 and z e (0, 1], z ^Z. This completes the proof of 3.2.

Proof of (hi). Let <p:fy,l]—*-R* be a continuous function whose

image is a Helson (interpolation) set for A(R2) = L1(R'zy. That such

functions exist has been proved by Kahane [6] (see also McGehee [9]).

Let £={(x,j,z)e£2x(0, 1]:(x, v) = <t>(z),-?r^z=l}. Then £ is an

interpolation set for sé.

To show that £ is not a set of spectral synthesis, we show that E supports

an element p of sé* which is not a "measure", that is, the map/->//(/)

is not bounded in the spectral radius norm sup|/| = ||/||œ. We then show

(Lemma 3.4) that if a subset £ of the maximal ideal space of a (regular

commutative) Banach algebra H6 is both an interpolation set and a set of

spectral synthesis, then every element, v e 86* which is supported on £ is a

measure.

Lemma 3.3. £ supports p e sé* such that f-+p(f) is not bounded in the

norm ||/||„.

Proof. For fes/", let Df(x,y,z) denote the partial derivative off

with respect to the third variable. iff='Zgj&hj, then

£/(x, y, z) = 2 g¡(x, y)h,(z).

By 3.2, Df(x,y, z) exists whenever z ^Z, a fixed (depending on/) set

of measure zero. For k e £"(0, 1), andfe sé, define Sk(f) by

(3.2) Sk(f)=      Df(,P(z),z)k(z)dz.= P 0/(j
Jl/2
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For/=2gi®*i. and 1/|+«2Z kj |A,|, we see

\sk(f)\ < 2 UgjJWl rf2 = l*I«(ll/l + •)■

Thus SfcEj/* and ||SJáll*IL- If/=0 in a neighborhood of E, then
Df=0 in a neighborhood of E, so Sfc is concentrated on E.

Note that (3.2) implies that

(3.3) Sk(l ®h) = \   h(z)k(z) dz       ih e L\0, 1)).
Jl/2

It is easy to see that there exist k e L°°(0, 1) such that f*->Sk(f) is not

||/Unbounded. [Indeed, let k0(z) = cos(l¡(I—z)), and

hniz) = (1 - z)-2cos(l/(l - z)),    if nil - z) = (2« + l)"1,

= 0, otherwise.

A straightforward integration shows sup{\hn(z)\:n^.l, z e (0, 1)} is

bounded, and a second integration shows |J" hnk0dz\ is not bounded. Now

let/„=l®Afl and apply (3.3).]    Q.E.D.
The next lemma seems to be known, though we are unable to give a

reference.

Lemma 3.4. Let 2ti be a regular commutative Banach algebra with

identity and maximal ideal space X. Suppose F^X is both an interpolation

set and a set of spectral synthesis, and that v e ¡él* is supported by F. Then

for some constant C< oo,

|H/)I^Csup{|/(x)|:x6F}
forallfeäS.

Proof. For /ef, and geâS, with g zero everywhere on F, there

exist gn e 3S, gn = 0 in a neighborhood of F, and \\g—g„\\-*0. Then

vif + g) = lim vif + gn) = limO(/) + Kg J) = v(f) + lim 0
n

since v is supported by F. Thus

(3.4) \v(f)\ ̂  IMI inf {||/ + g\\ :g(F) = {0}}.

Since Fis an interpolation set and SS is regular, there is a constant C

such that, for all/e 3S,

(3.5) inf{||/+ ill ■Ê(F) = {0}} ̂  C sup{|/(x)| :x e F}.

Putting (3.5) and (3.4) together, and setting C=||i>||C, we obtain the

desired inequality.    Q.E.D.

This completes the proof of Theorem 3.1(h).
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Remarks, (a) By using LX(Z") instead of LX(R2), we can construct

a "Kronecker" set for sé' = L1(Z':c)®L1(0, 1) which is not a set of spectral

synthesis. The algebra sé' will also be regular and symmetric on its

maximal ideal space £x x [0, 1]. The set to be constructed will be

E={((é',e"-,---),x):\ <*<§}.

(b) It is easy to see that if sé' = L1(R2)® L1(R) (where the second factor

is given the multiplication x ■ y=max(x,y), then the conclusion of

Theorem 1 holds for sé', and that sé' is strongly homogeneous (in the

terminology of [9]) with respect to the group O of homeomorphisms of R3

which are of the form cp(x,y, z) = (f(x,y), g(z)) where f:R2~^R, and

g:R-+R are affine.

(c) The method of the proof of Theorem 3.1 shows that

£={(x,x):-2- = .v = i}

is not a set of spectral synthesis for B=L1(0, 1)®L1(0, 1). Thus, very simple

sets fail, in general, to be sets of synthesis for the tensor product B. Com-

pare [15].

4. Proof of result (3). We will (eventually) use the same computation

used to establish result (1). The tensor method is somewhat obscured by

the technical details. We first set forth the method, and then establish the

necessary properties.

Suppose we have distinct characters yx, y2, ■ ■ ■ e G such that every

bounded function on {y¡}T may be obtained as the restriction of the

Fourier (-Stieltjes) transform of a discrete measure on G to {y¡\x ■ Suppose

also that px, p2, • • ■ are distinct projections of M(G) onto L-subalgebras

of M(G) such that if v is a discrete measure, then p¡v = v for ally, and such

that if pe M(G), then

/»=/*- Pi/* + 2 (p¡ - /W/«;
(4.1)

!l/«ll = Hi" - Piy-W + 2 H0>; — Pi+iWI '
;=i

p^O implies/?;(/h)_0; and such that each p¡ is multiplicative. (We shall

construct the p¡ by using Raikov systems [3].)

Let Z;(i")=J 7; d(p¡p) and p}(p)-$ y¡ d(pj+1fi). Then x, and p¡ are con-

tinuous multiplicative linear functionals on M(G), and they are pairwise

distinct. It is now easy to show that if Ex is the closure of {p¡\ and £2 the

closure of {y^} in the maximal ideal space of M(G), then £, and £2 are

interpolation sets for M(G), and their union is not, since any p e M(G)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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with

(4.2) p(x2j) = 1,   ß(p2l) = 0       for/ = 1, • • •, N

must have norm N. Just apply (4.2) and the definition of %t an-d p¡ to

obtain

1 = \7¡ d(Pa - Pai+i)i" = ÜPa ~ Pti+ùf*T(yi)

so Wipsj-pv+dfiW^l. Now (4.1) implies \\p\\^N.
We now show how to obtain y¡ and p¡.

For the y/s this has been done by Varopoulos [17]. We indicate his

method. It will be enough to choose the y/s such that every function on

{y¡}\ which takes only the values ± 1 may be approximated to within one-

third by a character in G. When G contains an element of infinite order y

which generates a discrete subgroup, then an easy computation shows

0'!)y = y; will do. If G contains an independent set {y;} which generates a

discrete subgroup of G, then {y¡}i will do. If G contains a perfect Kron-

ecker set, K, then the y¡ may be constructed inductively: divide K into six

perfect nonempty subsets and choose yx such that yx is approximately

constant on each subset and yx(K) (nearly) contains all sixth roots of unity.

Divide each of the six sets obtained for yx into six perfect subsets, and

choose y2 such that y2 is (approximately) constant on each of the thirty-

six subsets and such that y2 maps each of the first six sets (approximately)

onto the sixth roots of unity, etc.

We now construct the p/s. We have two cases: (i) G contains a perfect

totally disconnected metrizable compact Kronecker set F; (ii) G contains a

perfect totally disconnected metrizable compact set F of type Kp, p^.2.

For both cases we fix x0 e F, and choose closed-open subsets F, of F

such that fiaF.2- ■ ■ ; Fj\Fi+x is perfect, ft" F}={x0).
Also, for both cases we let R¡, j=l, 2, • • • , be the Raikov (regular)

system [3] generated by F¡, and p¡ be the projection of M(G) onto the L-

subalgebra of measures concentrated on sets in R¡. Then [3] px,p2, • • ■ have

all of the required properties, except that they might not be distinct.

In case (i), the argument is straightforward : if p is a continuous nonzero

measure on F^Fj.^, then p has zero mass on every translate of sums of

Fj+X with itself so pJtlp=0 and pjp^O; see [10], [12] for details.

In case (ii), the situation is more complicated, owing to the fact that the

section arguments used in [10], [12] do not always apply (directly, at any

rate) because of the finite order of the group.

We first prove:

Lemma 4.1. Let AKJB be a compact, totally disconnected metrizable

subset of an LCAG G of type KQ with AC\B=0 , and A, B both closed in G.
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Then the closed subgroups H, K generated by A, B respectively meet only at

the identity.

Proof. We may suppose that G = Dq and that the group generated by

A U.B is dense in G.

Suppose there is a net y* (a e I) such that j* = 2=i n'x" where x" e A,

and y=limyx exists and is in K. We must show y = 0.

Since G=DQ, we may assume l^n*<q for ally, and all a. For m =

1, 2, • • • , q, let Im={a: 2; n"j = m(q)}. If some Im, for 1 ̂ m<q, is cofinal

in /, let y e Dq be equal to exp(2niq~1) on A and 1 on B. Then

limae/ (y, y") = (y, y)=exp(2irimq~"í)7í I so y $ K. Thus, only / is co-

final in /.

Since A\jB is totally disconnected, we can repeat the preceding argu-

ment for any of the many proper closed-open subsets Ä'ÇA: if I'm=

{<*■'■ Œ n'j'.x* e A'} = m(q)}, then only/, is cofinal. Thus, if y is any character

on //, then (ya, y)-y\, so y = 0.    Q.E.D.

Corollary.    If x e G, then HC\(K+x) is one point.

Proof. If u, ve Hn(K+x), then u=h=k+x, so x e H+K=H®K.

Also if v = h'=k' + x e Hn(K+x), then x = h — k=h'—k', so h=h', k =

k' and u=v.    Q.E.D.

We now prove that the projections p¡ are distinct. Let p'¡ 0=1,2, ■ ■ ■)

denote the projection of M(G) onto the algebra supported by the Raikov

system generated by the closure of the group K¡ generated by F,. Then

PiPi—PiPi—Ph s'nce tne Raikov system giving rise top) contains that giving

rise to p¡. Thus, to show pj5¿pj+x, it will be sufficient to find a measure p

with Pjp=p and p'jLlp = 0.

Let p be any continuous measure concentrated on Fj\FJ+x. Then the

preceding corollary (with A = Fj\Fj+x and B=Fj+x) implies that

\p\(KJ+x + x) = 0 fox all x e G and ^+12Fjt1. By the definition of a Raikov

system, we see that p¡p=p and p],rXp=0.    Q.E.D.
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