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Summary
Understanding spatial variation in climatic conditions is key to many agricultural and natural

resource management activities. However, the most common source of climatic data is

meteorological stations, which provide data only for single locations. This paper examines statistical

approaches for interpolating climatic data over large regions, providing a brief introduction to

interpolation techniques for climate variables of use in agricultural research, as well as general

recommendations for future research to assess interpolation techniques. Three approaches—1)

inverse distance weighted averaging (IDWA), 2) thin plate smoothing splines and 3) co-kriging—

were evaluated for a 20,000 km2 square area covering the state of Jalisco, Mexico. Monthly mean

data were generated for 200 meteorological stations and a digital elevation model (DEM) based on

1 km2 grid cells was used. Due to low correlation coefficients between the prediction variable

(precipitation) and the co-variable (elevation), interpolation using co-kriging was carried out for only

four months. Validation of the surfaces using two independent sets of test data showed no

difference among the three techniques for predicting precipitation. For maximum temperature,

splining performed best. IDWA does not provide an error surface and therefore splining and co-

kriging were preferred. However, the rigid prerequisites of co-kriging regarding the statistical

properties of the data used (e.g., normal distribution, non-stationarity), along with its computational

demands, may put this approach at a disadvantage. Taking into account error prediction, data

assumptions, and computational simplicity, we recommend use of thin-plate smoothing splines for

interpolating climate variables.
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Interpolation Acronyms and Terminology

CIMMYT International Maize and Wheat Improvement Center.

DEM Digital elevation model; a digital description of a terrain in the shape of data and algorithms.

ERIC Extractor Rápido de Información Climatológica.

GCV Generalized cross validation. A measure of the predictive error of the fitted surface which is

calculated by removing each data point, one by one, and calculating the square of the

difference between each removed data point from a surface fitted to all the other points.

IDWA Inverse distance weighted averaging.

IMTA Instituto Mexicano de Tecnología del Agua.

INIFAP Mexican National Institute of Forestry, Agriculture, and Livestock Research (Instituto Nacional

de Investigaciones Forestales y Agropecuarias).

Interpolation The procedure of estimating the value of properties at unsampled sites within an area covered

by sampled points, using the values of properties from those points.
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Interpolation Techniques
for Climate Variables

Introduction
Geographic information systems (GIS) and modeling

are becoming powerful tools in agricultural research

and natural resource management. Spatially distrib-

uted estimates of environmental variables are increas-

ingly required for use in GIS and models (Collins and

Bolstad 1996). This usually implies that the quality of

agricultural research depends more and more on

methods to deal with crop and soil variability, weather

generators (computer applications that produce

simulated weather data using climate profiles), and

spatial interpolation—the estimation of the value of

properties at unsampled sites within an area covered

by sampled points, using the data from those points

(Bouman et al. 1996). Especially in developing

countries, there is a need for accurate and inexpen-

sive quantitative approaches to spatial data acquisition

and interpolation (Mallawaarachchi et al. 1996).

Most data for environmental variables (soil properties,

weather) are collected from point sources. The spatial

array of these data may enable a more precise

estimation of the value of properties at unsampled

sites than simple averaging between sampled points.

The value of a property between data points can be

interpolated by fitting a suitable model to account for

the expected variation.

A key issue is the choice of interpolation approach for

a given set of input data (Burrough and McDonnell

1998). This is especially true for areas such as

mountainous regions, where data collection is sparse

and measurements for given variables may differ

significantly even at relatively reduced spatial scales

(Collins and Bolstad 1996). Burrough and McDonnell

(1998) state that when data are abundant most

interpolation techniques give similar results. When

data are sparse, the underlying assumptions about the

variation among sampled points may differ and the

choice of interpolation method and parameters may

become critical.

With the increasing number of applications for

environmental data, there is also a growing  concern

about accuracy and precision. Results of spatial

interpolation contain a certain degree of error, and this

error is sometimes measurable. Understanding the

accuracy of spatial interpolation techniques is a first

step toward identifying sources of error and qualifying

results based on sound statistical judgments.

Interpolation Techniques
One of the most simple techniques is interpolation by

drawing boundaries—for example Thiessen (or

Dirichlet) polygons, which are drawn according to the

distribution of the sampled data points, with one

polygon per data point and the data point located in

the center of the polygon (Fig. 1). This technique, also

referred to as the “nearest neighbor” method, predicts

the attributes of unsampled points based on those of

the nearest sampled point and is best for qualitative

(nominal) data, where other interpolation methods are

not applicable. Another example is the use of nearest

available weather station data, in absence of other

local data (Burrough and McDonnell 1998). In contrast

to this discrete method, all other methods embody a
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model of continuous spatial change of data, which can

be described by a smooth, mathematically delineated

surface.

Methods that produce smooth surfaces include various

approaches that may combine regression analyses and

distance-based weighted averages. As explained in

more detail below, a key difference among these

approaches is the criteria used to weight values in

relation to distance. Criteria may include simple

distance relations (e.g., inverse distance methods),

minimization of variance (e.g., kriging and co-kriging),

minimization of curvature, and enforcement of

smoothness criteria (splining). On the basis of how

weights are chosen, methods are “deterministic” or

“stochastic.” Stochastic methods use statistical criteria

to determine weight factors. Examples of each include:

• Deterministic techniques: Thiessen polygons, inverse

distance weighted averaging.

• Stochastic techniques: polynomial regression, trend

surface analysis, and (co)kriging.

Interpolation techniques can be “exact” or “inexact.” The

former term is used in the case of an interpolation

method that, for an attribute at a given, unsampled

point, assigns a value identical to a measured value

from a sampled point. All other interpolation methods

are described as “inexact.” Statistics for the differences

between measured and predicted values at data points

are often used to assess the performance of inexact

interpolators.

Interpolation methods can also be described as “global”

or “local.” Global techniques (e.g. inverse distance

weighted averaging, IDWA) fit a model through the

prediction variable over all points in the study area.

Typically, global techniques do not accommodate local

features well and are most often used for modeling

long-range variations. Local techniques, such as

splining, estimate values for an unsampled point from a

specific number of neighboring points. Consequently,

local anomalies can be accommodated without affecting

the value of interpolation at other points on the surface

(Burrough 1986). Splining, for example, can be

described as deterministic with a local stochastic

component (Burrough and McDonnell 1998; Fig. 1).

For soil data, popular methods include kriging, co-

kriging, and trend surface analysis (McBratney and

Webster 1983; Yates and Warrick 1987; Stein et al.

1988a, 1989a,1989b). In climatology, IDWA, splining,

polynomial regression, trend surface analysis, kriging,

and co-kriging are common approaches (Collins and

Bolstad 1996; Hutchinson and Corbett 1995; Phillips et

al. 1992; Hutchinson 1991; Tabios and Salas 1985). For

temperature interpolations, methods often allow for an

effect of the adiabatic lapse rate (decrease in tempera-

ture with elevation) (e.g. Jones 1996). An overview and

comparison of interpolation techniques, their assump-

tions, and their limitations is presented in Table 1.

In the following section, three interpolation techniques

commonly used in interpolating climate data—IDWA,

splining and (co)kriging—are described in more detail.Figure 1. An example of interpolation using Thiessen
polygons and inverse distance weighted averaging to
predict precipitation.

Thiessen polygons : ?? is closest to 141 , therefore ??=141 mm.
Inverse distance weighted averaging: The value for ?? is

calculated by weighting the values of all 5 points by the
inverse of their distance squared to point ??. After
interpolation, ?? = 126 mm. The number of neighbors taken
into account is a choice in this interpolation procedure.
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Inverse distance weighted averaging—IDWA is a

deterministic estimation method whereby values at

unsampled points are determined by a linear

combination of values at known sampled points.

Weighting of nearby points is strictly a function of

distance—no other criteria are considered. This

approach combines ideas of proximity, such as

Thiessen polygons, with a gradual change of the trend

surface. The assumption is that values closer to the

unsampled location are more representative of the

value to be estimated than values from samples

further away. Weights change according to the linear

distance of the samples from the unsampled point; in

other words, nearby observations have a heavier

weight. The spatial arrangement of the samples does

not affect the weights. This approach has been applied

extensively in the mining industry, because of its ease

of use (Collins and Bolstad 1996). Distance-based

weighting methods have been used to interpolate

climatic data (Legates and Willmont 1990; Stallings et

Table 1. A comparison of interpolation techniques.
Assumptions

Deterministic/ Transitions Exact Computing Output data of interpolation
Method stochastic Local/global (abrupt/gradual) interpolator Limitations of the procedure Best for load structure model

Classification Deterministic Global Abrupt if No Delineation of areas and classes Quick assessments when data are Small Classified Homogeneity
‘soft’ information used alone may be subjective. Error assesment sparse. polygons within boundaries

limited to within-class standard Removing systematic differences before
derivations. continuous interpolation from data points.

Trend surfaces Essentially Global Gradual No Physical meaning of trend may be Quick assessment and removal of Small Continuous, Phenomeno-
deterministic unclear. Outliers and edge effects spatial trends gridded surface logical
(empirical) may distort surface. Error explanation of

assessment limited to goodness of fit trend, normally
distributed data

Regression Essentially Global with Gradual if No Results depend on the fit of the Simple numerical modeling of expensive Small Polygons or Phenomenological
models deterministic local inputs have regression model and the quality and data when better methods are not continous, gridded explanation of

(empirical- refinements gradual detail of the input data surfaces. available or budgets are limited surface regression model
statistical) variation Error assessment possible if input

errors are known.

Thiessen Deterministic Local Abrupt Yes No errors assessment, only one Nominal data from point observations Small Polygons or Best local
polygons data point per polygon. Tessellation gridded surface predictor is
(proximal pattern depends on distribution nearest data point
mapping) of data.

Pycnophylatic Deterministic Local Gradual No, but Data inputs are counts or densities Transforming step-wise patterns of Small- Gridded surface Continous,
interpolation conserves population counts to continous surfaces moderate or contours smooth variation is

volumes better than ad hoc
areas

Linear Deterministic Local Gradual Yes No error assessments Interpolating from point data when data Small Gridded surface Data densities are
interpolation densities are high, as in converting so large that linear

gridded data from one project to another approximation is
no problem

Moving Deterministic Local Gradual Not with No error assessments. Results Quick interpolation from sparse data on Small Gridded surface Underlying surface
averages regular depend on size of search window regular grid or irregularly spaced samples is smooth
and inverse smoothing and choice of  weighting parameter.
distance window, Poor choice of window can give
weighting but can be artifacts when used with high data

forced densities such as digitized contours

Thin plate Deterministic Local Gradual Yes, within Goodness of fit possible, but  within Quick interpolation (univariate or Small Gridded surface, Underlying surface
splines with local smoothing the assumption that the fitted multivariate) of digital elevation data and contour lines is smooth

stochasatic limits surface is perfectly smooth. related attributes to create DEMs from everywhere
component moderately detailed data.

Kriging Stochastic Local with Gradual Yes Error assessment depends on When data are sufficient to compute Moderate Gridded surface Interpolated
global variogram and distribution of data variograms, kriging provides a good surface is smooth.
variograms. points and size of interpolated blocks. interpolator for sparse data. Binary and Statistical
Local with local Requires care when modeling nominal data can be interpolated with stationarity and
variograms spatial correlation structures. indicator kriging. Soft information can also the intrinsic
when stratified. be incorporated as trends or stratification. hyphotesis.
Local with Multivariate data can be interpolated
global trends with co-kriging.

Conditional Stochastic Local with Irregular No Understanding of underlying Provides an excellent estimate of the Moderate- Gridded surfaces Statistical
simulation global stochastic process and models is range of possible values of an attribute at heavy stationarity and

variograms. necessary. unsampled locations that are necessary the intrinsic
Local with local for Monte Carlo analysis of numerical hypothesis
variograms when models, also for error assessments that do
stratified. not depend on distribution of the data  but
Local with global on local values.
trends.

Source: Based on Burrough and McDonnell 1998.
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al. 1992). The choice of power parameter (exponential

degree) in IDWA can significantly affect the

interpolation results. At higher powers, IDWA

approaches the nearest neighbor interpolation

method, in which the interpolated value simply takes

on the value of the closest sample point. IDWA

interpolators are of the form:

 ŷ(x)=Σλ
i
 y(x

i
)

where:

λ
i
 = the weights for the individual locations.

y(x
i
) = the variables evaluated in the observation

locations.

The sum of the weights is equal to 1. Weights are

assigned proportional to the inverse of the distance

between the sampled and prediction point. So the

larger the distance between sampled point and

prediction point, the smaller the weight given to the

value at the sampled point.

Splining—This is a deterministic, locally stochastic

interpolation technique that represents two

dimensional curves on three dimensional surfaces

(Eckstein 1989; Hutchinson and Gessler 1994).

Splining may be thought of as the mathematical

equivalent of fitting a long flexible ruler to a series of

data points. Like its physical counterpart, the

mathematical spline function is constrained at defined

points.

The polynomial functions fitted through the sampled

points are of degree m or less. A term r denotes the

constraints on the spline. Therefore:

• When r = 0, there are no constraints on the function.

• When r = 1, the only constraint is that the function is

continuous.

• When r = m+1, constraints depend on the degree m.

For example, if m = 1 there are two constraints

(r =2):

• The function has to be continuous.

• The first derivative of the function has to be

continuous at each point.

For m = 2, the second derivative must also be

continuous at each point. And so on for m = 3 and more.

Normally a spline with m =1 is called a “linear spline”, a

spline with m = 2 is called a “quadratic spline,” and a

spline with m = 3 is called a “cubic spline”. Rarely, the

term “bicubic” is used for the three-dimensional situation

where surfaces instead of lines need to be interpolated

(Burrough and McDonnell 1998).

Thin plate smoothing splines—Splining can be used for

exact interpolation or for “smoothing.” Smoothing splines

attempt to recover a spatially coherent—i.e.,

consistent—signal and remove the noise (Hutchinson

and Gessler 1994). Thin plate smoothing splines,

formerly known as “laplacian smoothing splines,” were

developed principally by Wahba and Wendelberger

(1980) and Wahba (1990). Applications in climatology

have been implemented by Hutchinson (1991),

Hutchinson (1995), and Hutchinson and Corbett (1995).

Hutchinson (1991) presents a model for partial thin plate

smoothing splines with two independent spline variables:

p

q
i
 = f(x

i
, y

i
)+∑ β

i
ψ

ij 
+ ε

i 
(i = 1,......,n)

j=1

where:

f (x
i
,y

i
) = unknown smooth function

β
j 
= set of unknown parameters

x
i
,y

i
,ψ

ij 
= independent variables

ε
i 
= independent random errors with

zero mean and variance d
i
σ2

d
i 
= known weights

The smoothing function f  and the parameters β
j
 are

estimated by minimizing:

n p

∑ [(q
i
- f (x

i
,y

i
-∑

 
β

j 
ψ

ij)/d
i]2+λ J

m
(f)

i=1 j=1
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where:

J
m
 (f) = a measure of the smoothness of f defined

in terms of mth order derivates of f

λ = a positive number called the smoothing

parameter

The solution to this partial thin plate spline becomes

an ordinary thin plate spline, when there is no

parametric sub-model (i.e.; when p=0).

The smoothing parameter λ is calculated by

minimizing the generalized cross validation function

(GCV). This technique is considered relatively robust,

since the method of minimizing of the GCV directly

addresses the predictive accuracy and is less

dependent on the veracity of the underlying statistical

model (Hutchinson 1995).

Co-kriging and fitting variogram models—Named

after its first practitioner, the south-African mining

engineer Krige (1951), kriging is a stochastic

technique similar to IDWA, in that it uses a linear

combination of weights at known points to estimate

the value at an unknown point. The general formula

for kriging was developed by Matheron (1970). The

most commonly applied form of kriging uses a “semi-

variogram”—a measure of spatial correlation between

pairs of points describing the variance over a distance

or lag h. Weights change according to the spatial

arrangement of the samples. The linear combination

of weights are of the form:

∑λ
i
 y

i

where:

y
i 
= the variables evaluated in the observation

locations

λ
i = the kriging weights

Kriging also provides a measure of the error or

uncertainty of the estimated surface.

The semi-variogram and model fitting—The semi-

variogram is an essential step for determining the

spatial variation in the sampled variable. It provides

useful information for interpolation, sampling density,

determining spatial patterns, and spatial simulation.

The semi-variogram is of the form:

γ (h)= 1_
2 E(y(x)- y(x+h))2

where:

γ (h) = semi-variogram, dependent on

lag or distance h

(x,x+h) = pair of points with distance

vector h

y(x) = regionalized variable y at point x

y(x)-y(x+h) = difference of the variable at two

points separated by h

E = mathematical expectation

Two assumptions need to be met to apply kriging:

stationarity and isotropy. Stationarity for spatial

correlation (necessary for kriging and co-kriging) is

based on the assumption that the variables are

stationary. When there is stationarity, γ (h) does not

depend on x, where x is the point location and h is the

distance between the points. So the semi-variogram

depends only on the distance between the

measurements and not on the location of the

measurements. Unfortunately, there are often

problems of non-stationarity in real-world datasets

(Collins and Bollstad 1996; Burrough 1986). Stein et

al. (1991a) propose several equations to deal with this

issue. In other cases the study area may be stratified

into more homogeneous units before co-kriging

(Goovaerts 1997); e.g., using soil maps (Stein et al.

1988b).

When there is isotropy for spatial correlation, then γ
(h) depends only on h. So the semi-variogram

depends only on the magnitude of h and not on its

direction. For example, it is highly likely that the

amount of groundwater increases when approaching a
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river. In this case there is anisotropy, because the

semi-variogram will depend on the direction of h.

Usually, stationarity is also necessary for the

expectation Ey(x), to ensure that the expectation

doesn’t depend on x and is constant.

From the semi-variogram (Fig 2.), various properties

of the data are determined: the sill (A), the range (r),

the nugget (C0), the sill/nugget ratio, and the ratio of

the square sum of deviance to the total sum of

squares (SSD/SST). The nugget is the intercept of the

semi-variogram with the vertical axis. It is the non-

spatial variability of the variable and is determined

when h approaches 0. The nugget effect can be

caused by variability at very short distances for which

no pairs of observations are available, sampling

inaccuracy, or inaccuracy in the instruments used for

measurement. In an ideal case (e.g., where there is no

measurement error), the nugget value is zero. The

range of the semi-variogram is the distance h beyond

which the variance no longer shows spatial

dependence. At h, the sill value is reached.

Observations separated by a distance larger than the

range are spatially independent observations. To

obtain an indication of the part of the semi-variogram

that shows spatial dependence, the sill:nugget ratio

can be determined. If this ratio is close to 1, then most

of the variability is non-spatial.

Normally a “variogram” model is fitted through the

empirical semi-variogram values for the distance

classes or lag classes. The variogram properties—the

sill, range and nugget—can provide insights on which

model will fit best (Cressie 1993; Burrough and

McDonnell 1998). The most common models are the

linear model, the spherical model, the exponential

model, and the Gaussian model (Fig. 3). When the

nugget variance is important but not large and there is

a clear range and sill, a curve known as the spherical

model often fits the variogram well.

Spherical model:

γ(h)=C0+A*( 3_
2 ( h_

r )– 1_
2 ( 1_

2 )3) for h ∈  0,r]

= C0+A for h > r

(where = r is the range, h is lag or distance, and C0+A

is the sill )

If there is a clear nugget and sill but only a gradual

approach to the range, the exponential model is often

preferred.

Exponential model:

γ(h)=C0+A*(1-e
h—r ) for h>0

If the variation is very smooth and the nugget variance

is very small compared to the spatially random

variation, then the variogram can often best be fitted

by a curve having an inflection such as the Gaussian

model:

γ(h)=C0+A*(1-e-(h—r )
2

 ) for h>0

All these models are known as “transitive” variograms,

because the spatial correlation structure varies with

the distance h. Non-transitive variograms have no sill

range

C1

sill

nuggetCo

distance (h)

se
m

i-
va

ri
an

ce
 y

(h
)

Figure 2. An example of a semi-variogram with range,
nugget, and sill.
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within the sampled area and may be represented by

the linear model:

γ(h)=Co+bh

However, linear models with sill also exist and are in

the form of:

γ(h) = A* h_
r for h ∈ (o,r]

The ratio of the square sum of deviance (SSD) to the

total sum of squares (SST) indicates which model best

fits the semi-variogram. If the model fits the semi-

variogram well, the SSD/SST ratio is low; otherwise,

SSD/SST will approach 1. To test for anisotropy, the

semi-variogram needs to be determined in a different

direction than h. To ensure isotropy, the semi-

variogram model should be unaffected by the direction

in which h is taken.

Co-kriging—Co-kriging is a form of kriging that uses

additional covariates, usually more intensely sampled

than the prediction variable, to assist in prediction. Co-

kriging is most effective when the covariate is highly

correlated with the prediction variable. To apply co-

kriging one needs to model the relationship between

the prediction variable and a co-variable. This is done

by fitting a model through the cross-variogram.

Estimation of the cross-variogram is carried out

similarly to estimation of the semi-variogram:

y
1,2

(h)= 1_
2  E ( (y

1
(x)-y

1
(x+h))(y

2
(x)-y

2
(x+h)) )

High cross-variogram values correspond to a low

covariance between pairs of observations as a

function of the distance h. When interpolating with co-

kriging, the variogram models have to fit the “linear
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model of co-regionalization” as described by Journel

and Huijbregts (1978) and Goulard and Voltz (1992).

(See Annex 1 for a description of the model.) To have

positive definiteness, the semi-variograms and the

cross-variogram have to obey the following

relationship:

y1,2(h)≤√y1(h)y2(h)

This relationship should hold for all h.

The actual fitting of a variogram model is an

interactive process that requires considerable

judgment and skill (Burrough and McDonnell 1998).

Reviewing Interpolation Techniques
Early reviews of interpolation techniques (Lam 1983;

Ripley 1981) often provided little information on their

efficacy and did not evaluate them quantitatively.

Recent studies, however, have focused on efficacy

and quantitative criteria, through comparisons using

datasets (Stein et al. 1989a; Stein et al. 1989b;

Hutchinson and Gessler 1994; Laslett 1994; Collins

and Bolstad 1996). Collins and Bolstad (1996)

compared eight spatial interpolators across two

regions for two temperature variables (maximum and

minimum) at three temporal scales. They found that

several variable characteristics (range, variance,

correlation with other variables) can influence the

choice of a spatial interpolation technique. Spatial

scale and relative spatial density and distribution of

sampling stations can also be determinant factors.

MacEachren and Davidson (1987) concluded that data

measurement accuracy, data density, data distribution

and spatial variability have the greatest influence on

the accuracy of interpolation. Burrough and McDonnell

(1998) concluded that most interpolation techniques

give similar results when data are abundant. For

sparse data the underlying assumptions about the

variation among sampled points differ and, therefore,

the choice of interpolation method and parameters

becomes critical.

The most common debate regards the choice of

kriging or co-kriging as opposed to splining (Dubrule

1983; Hutchinson 1989; Hutchinson 1991; Stein and

Corsten 1991; Hutchinson and Gessler 1994; Laslett

1994). Kriging has the disadvantage of high

computational requirements (Burrough and McDonnell

1998). Modeling tools to overcome some of the

problems include those developed by Pannatier

(1996). However, the success of kriging depends upon

the validity of assumptions about the statistical nature

of variation. Several studies conclude that the best

quantitative and accurate results are obtained by

kriging (Dubrule 1983; Burrough and McDonnell 1998;

Stein and Corsten 1991; Laslett 1994). Cristobal-

Acevedo (1993) evaluated thin splines, inverse

distance weighting, and kriging for soil parameters.

His conclusion was that thin splines were the less

exact of the three. Collins and Bolstad (1996) confirm

what has been said before: splining has the

disadvantage of providing no error estimates and of

masking uncertainty. Also, it performs much better

when dense, regularly-spaced data are available; it is

not recommended for irregular spaced data. Martinez

Cob and Faci Gonzalez (1994) compared co-kriging to

kriging for evapotranspiration and rainfall. Predictions

with co-kriging were not as good for evaporation but

better for precipitation. However, prediction error was

less with co-kriging in both cases.

The debate does not end there. For example,

Hutchinson and Gessler (1994) pointed out that most

of the aforementioned comparisons of interpolation

methods did not examine high-order splines and that

data smoothing in splining is achieved in a statistically

rigorous fashion by minimizing the generalized cross

validation (GCV). Thus, thin plate smooth splining

does provide a measure of spatial accuracy (Wahba

and Wendelberger 1980; Hutchinson 1995).

There appears to be no simple answer regarding

choice of an appropriate spatial interpolator. Method

performance depends on the variable under study, the

spatial configuration of the data, and the underlying
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assumptions of the methods. Therefore a method is “best”

only for specific situations (Isaaks and Srivastava 1989).

A Case Study for Jalisco, Mexico
The GIS/Modeling Lab of the CIMMYT Natural Resources

Group (NRG) is interfacing GIS and crop simulation

models to address temporal and spatial issues

simultaneously. A GIS is used to store the large volumes

of spatial data that serve as inputs to the crop models.

Interfacing crop models with a GIS requires detailed

spatial climate information. Interpolated climate surfaces

are used to create grid-cell-size climate files for use in

crop modeling. Prior to the creation of climate surfaces,

we evaluated different interpolation techniques—including

inverse distance weighting averaging (IDWA), thin plate

smoothing splines, and co-kriging—for climate variables

for 20,000 km2 roughly covering the state of Jalisco in

northwest Mexico. While splining and co-kriging have

been described as formally similar (Dubrule 1983; Watson

1984), this study aimed to evaluate practical use of

related techniques and software.

Material and methods—Regarding software, the

ArcView spatial analyst (ESRI 1998) was used for inverse

distance weighting interpolation. For thin plate smoothing

splines, the ANUSPLIN 3.2 multi-module package

(Hutchinson 1997) was used. The first module or program

(either SPLINAA or SPLINA1) is used to fit different partial

thin plate smoothing spline functions for more

independent variables. Inputs to the module are a point

data file and a covariate grid. The program yields several

output files:

• A large residual file which is used to check for data

errors.

• An optimization parameter file containing parameters

used to calculate the optimum smoothing parameter(s).

• A file containing the coefficients defining the fitted

surfaces that are used to calculate values of the

surfaces by LAPPNT and LAPGRD.

• A file that contains a list of data and fitted values

with Bayesian standard error estimates (useful for

detecting data errors).

• A file that contains an error covariance matrix of

fitted surface coefficients. This is used by ERRPNT

and ERRGRD to calculate standard error estimates

for the fitted surfaces.

The program LAPGRD produces the prediction

variable surface grid. It uses the surface coefficients

file from the SPLINAA program and the co-variable

grid, in this case the DEM. The program ERRGRD

calculates the error grid, which depicts the standard

predictive error.

For co-kriging, the packages SPATANAL and CROSS

(Staritsky and Stein 1993), WLSFIT (Heuvelink 1992),

and GSTAT (Pebesma 1997) were used. The

SPATANAL and CROSS programs were used to

create semi-variograms and cross-variograms

respectively from ASCII input data files. The WLSFIT

program was used to get an initial model fit to the

semi-variogram and cross-variogram. GSTAT was

used to improve the model. GSTAT produces a

prediction surface grid and a prediction variance grid.

A grid of the prediction error can be produced from the

prediction variance grid using the map calculation

procedure in the ArcView Spatial analyst.

Data—The following sources were consulted:

• Digital elevation model (DEM): 1 km2 (USGS 1997).

• Daily precipitation and temperature data from 1940

to 1990, Instituto Mexicano de Tecnología del Agua

(IMTA; 868 stations/20,000 km2).

1 This depends on the type of variable to be predicted. The SPLINAA program uses year to year monthly variances to weigh sampled
points and is more suitable for precipitation, the SPLINA program uses month to month variance to weigh sampling points and is more
suitable for temperature.
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• Monthly precipitation data from 1940 to 1996,

Instituto Nacional de Investigaciones Forestales y

Agropecuarias (INIFAP; 100 stations/20,000 km2).

In this study, daily precipitation and temperature

(maximum and minimum) data were extracted from

the Extractor Rápido de Información Climatológica

(ERIC, IMTA 1996). We selected a square (106o W; -

101o W; 18o N; 23o N) that covered the state of Jalisco,

northwest Mexico, encompassing approximately

20,000 km2 (Fig. 4). A subset of station data from

1965-1990 was “cleaned up” using the Pascal

program and the following criteria:

• If more then 10 days were missing from a month,

the month was discarded.

• If more then 2 months were missing from a year, the

year was discarded.

• If fewer than 19 or 16 years were available for a

station, the station was discarded.

Data for monthly precipitation from 180 stations were

provided by INIFAP. There were 70 data points with

station numbers identical to some in ERIC (IMTA

1996). The coordinates from these station numbers

were compared and, in a few cases, were different.

INIFAP had verified the locations for Jalisco stations

using a geographic positioning system, so the INIFAP

coordinates were used instead of those from ERIC,

wherever there were differences of more than 10 km

(Table 2). For the other states in the selected area, we

used ERIC data. In four cases stations had identical

coordinates (Table 3), and the second station was

removed from the dataset that was to be used for

interpolation.

Table 2. Stations for which geographic coordinates
were changed to INIFAP values.

Station ERIC ERIC INIFAP INIFAP
NR. Name latitude longitude latitude longitude

14089 La Vega,
Teuchitlan 20.58 -103.75 20.595 - 103.844

14073 Ixtlahuacan
del Rio 20.87 -103.33 20.863 -103.241

14043 Ejutla,
Ejutla 19.97 -104.03 19.90 -104.167

14006 Ajojucar,
Teocaltiche 21.42 -102.40 21.568 -102.435

Table 3. Station numbers with identical geographic
coordinates (stations in bold were kept for
interpolation).

Station NR. Latitude Longitude

16164 19.42 102.07
16165 19.42 102.07
16072 19.57 102.58
16073 19.57 102.58
18002 21.05 104.48
18040 21.05 104.48

Daily data were used to calculate the monthly means

per year and consequently the station means using

SAS 6.12 (SAS Institute 1997). The monthly means by

station yielded the following files:

• Monthly precipitation based on 19 years or more for

194 stations.

• Monthly precipitation based on 16 years or more for

316 stations.

• Monthly mean maximum temperature based on 19

years for 140 stations.

• Monthly mean minimum temperature based on 19

years for 175 stations.

Validation sets—To evaluate whether splining or co-

kriging was best for interpolating climate variables for

the selected area, we determined the precision of

prediction of each using test sets. These sets contain

randomly selected data points from the available

observations. They are not used for prediction nor

variogram estimation, so it is possible to compare

predicted points with independent observations. In this

study two test sets were used.

First five smaller, almost equal sub-areas were defined

(Fig. 4). For precipitation, 10 stations were randomly

selected from each. These 50 points were divided into

two sets. Each dataset had 25 validation points and

169 interpolation points. The benefit of working with
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two datasets of 169 points each is that all 194 points

are used for analysis and interpolation, but the

validation stations are still independent of the dataset.

The interpolation techniques were tested as well for

maximum temperature. Because only 140 stations

were available, only 6 validation points were randomly

selected from each square. Therefore, interpolation for

maximum temperature was executed using 125 points

and 15 points were kept independent as a validation

set.

Exploratory data analysis and co-kriging

requirements— An exploratory data analysis was

conducted prior to interpolation to consider the need

for transformation of precipitation data, the

characteristics of the dataset to be used, and the

correlation coefficients between the prediction variable

and the co-variable “elevation.” Log transformation is

commonly applied to give precipitation data a more

normal distribution. However, back-transforming the

precipitation values can be problematic because

exponentiation tends to exaggerate any interpolation-

related error (Goovaerts 1997).

The two precipitation datasets were compared to see if

the dataset from 194 stations (19 years or more) had

greater precision than that from 320 stations (16 years

or more). This was done by comparing the nugget

effects of the variograms. As an indication of

measurement accuracy, if the nugget of the large

dataset is larger than the nugget of the small dataset,

then the large dataset is probably less accurate. For

each variogram, the number of lags and the lag

distance were kept at 20 and 0.2 respectively. The

model type fitted through the variogram was also the

same for each dataset. This allowed a relatively

unbiased comparison of the two nugget values,

because the nugget difference is independent of model,

number of lags, and lag distance. Variogram fitting was

done with the WLSFIT program (Heuvelink 1992). The

nugget difference can be calculated as:

(nugget of the 320 station dataset) – (nugget of the 194

station dataset).

Thus, the relative nugget difference can be presented

as:

nugget320–nugget194(__________________ )*100%
nugget320

Results—In the exploratory data analysis, precipitation

data for all months showed an asymmetric distribution.

The difference between the non-transformed surface

and the transformed surface was high only in areas

without stations. In most areas, the difference was

smaller than the prediction error. We therefore decided

not to transform the precipitation data for interpolation.

The temperature data did not show an asymmetric

distribution, so it was not necessary to test

transformation (De Beurs 1998).

The relative nugget difference of the large precipitation

dataset (320 stations, 16 years of data) was compared

to that for the small dataset (194 stations, 19 years of

data). For every month except July and November, the

relative nugget difference was less then 30% (Annex 2)

Figure 4. Validation selection areas and two
validation sets of 25 points each for precipitation.
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and, in two cases, the nugget value was smaller for

the small dataset. Because the difference in accuracy

between the two datasets was not large, the small

dataset of monthly means based on more than 19

years was used.

Co-kriging works best when there is a high absolute

correlation between the co-variable and the prediction

variable. In general, during the dry season

precipitation shows a positive correlation with altitude,

whereas during the wet season there is a negative

correlation. The correlation between each variable to

be interpolated (precipitation and maximum

temperature) and the co-variable (elevation) were

determined. For the selected area, April, May, August

and September had acceptable correlation coefficients

between precipitation and elevation (Table 4). May to

October had the highest precipitation values. The lack

of a correlation between precipitation and elevation for

June may be because it rains everywhere, making co-

kriging difficult for that month. There is little

precipitation in the other months.

Maximum temperature showed a greater absolute

correlation with elevation, so the interpolation methods

were evaluated for the same months (April, May,

August and September). April and May had the lowest

and August and September the highest correlation

coefficients.

Semi-variogram fitting for the co-kriging technique—

Variograms were made and models fitted to them. For

months with a negative correlation, cross-variogram

values were also negative. To fit a rough model with

the WLSFIT program (Heuvelink 1992), it was

necessary to make the correlation values positive,

because WLSFIT does not accept negative

correlations. This first round of model fitting was used

to obtain an initial impression. The final model was

then fitted using GSTAT (Pebesma 1997). Linear

models of co-regionalization were determined only for

the months April, May, August and September (Table 5

and 6). A linear model of co-regionalization occurs

when the variogram and the cross-variogram are

given the same basic structures and the co-

regionalization matrices are positive semi-definite

(Annex 1). For precipitation the other months had

correlation coefficients that were too low for

Table 4. Correlation coefficients between prediction
variables: precipitation (P), maximum temperature
(Tmax), and the co-variable (elevation).

Month Correlation Correlation
P*Elevation Tmax*Elevation

January -0.26 -0.82
February 0.26 -0.80
March 0.20 -0.71
April 0.68 -0.63
May 0.59 -0.63
June -0.02 -0.74
July -0.36 -0.84
August -0.52 -0.84
September -0.59 -0.84
October -0.39 -0.85
November -0.37 -0.85
December -0.39 -0.84

Table 5. Variogram and cross-variogram values for the linear model of co-regionalization for precipitation.

Semi-variogram Cross –variogram

Month Variable Model Nugget Sill Range Model Nugget Sill Range

April Precip. Exponential 3.20 46.3 2.10 Exponential 17.8 3720 2.10
Elevation Exponential 5050 565000 2.10

May Precip. Exponential 38.4 256 2.10 Exponential 0 8680 2.10
Elevation Exponential 5050 565000 2.10

August Precip. Gaussian 1110 43400 5.65 Gaussian 2330 -198000 5.65
Elevation Gaussian 62300 2990000 5.65

September Precip. Gaussian 1260 64300 7.00 Gaussian 1560 -365000 7.00
Elevation Gaussian 63500 4400000 7.00
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satisfactory co-kriging. The final ASCII surfaces

interpolated at 30 arc seconds were created with

GSTAT.

Surface characteristics and surface validation—

Splining and co-kriging technique results were

truncated to zero to avoid unrealistic, negative

precipitation values. Interpolated monthly precipitation

surfaces are displayed for April, May, August, and

September in Annex 3. Surfaces were also created

with IDWA, splining, and co-kriging (not shown). The

IDWA surfaces show clear “bubbles” around the actual

station points. Visually, the co-kriging surfaces follow

the IDWA surfaces very well. The splined surfaces are

similar to the DEM surface but appear more precise.

Basic characteristics of the DEM, monthly

precipitation, and temperature surfaces created

through IDWA, co-kriging, and splining are presented

in Annex 4. Maximum elevation as reported in the

stations is 2,361 m. Maximum elevation from the DEM

was 4,019 m—much higher than the elevation of the

highest station. Therefore precipitation and maximum

temperature were estimated at elevations higher than

elevations of the stations. It is not possible to validate

these values because there are no measured values

for such high elevations. However, the extreme values

of the interpolated surfaces can be evaluated.  For

precipitation, it is difficult to know whether values at

high elevations were reasonable estimates, because

there is no generic association with elevation as

occurs with temperature. The maximum value of the

splined surfaces was smaller than the maximum

measured value from the station.

Measured precipitation data have a distribution that is

skewed to the right. A frequency distribution of

precipitation after interpolation (Fig. 5) provides

another means of comparing the effects of

interpolation methods. The interpolated surfaces were

clipped to the area of Jalisco to avoid side effects.

Depending on the month, splining and co-kriging

produced contrasting distributions.  In May, splining

indicated that 77% or more grid cells had less than

30 mm precipitation, whereas co-kriging allocated

70% of cells to this precipitation range.  For

September, co-kriging showed over 28% of the cells

had from 138 to 161 mm precipitation, whereas

splining assigned 24.5% of the cells to this

precipitation class. In both cases co-kriging gave a

wider precipitation range. The frequency of the co-

variable “elevation” within Jalisco is not normally

distributed either (Fig. 6). Considering that there was a

positive correlation between precipitation and altitude

in May and a negative correlation in September,

splining seemed to follow the distribution of elevation

more than co-kriging. However, in the absence of

more extensive validation data, it is not possible to

state that one method was superior to the other based

on resulting frequency distributions.

Usually, temperature decreases 5 to 6°C per 1,000-m

increase in elevation, depending on relative humidity

and starting temperature (Monteith and Unsworth

Table 6. Variograms and cross-variograms for the linear model of co-regionalization for maximum temperature.

Semi-variogram Cross-variogram

Month Variable Model Nugget Sill Range Model Nugget Sill Range

April Tmax Exponential 1.40 9.69 0.60 Exponential 22.4 -1310 0.60
Elevation Exponential 360 303000 0.60

May Tmax Exponential 1.10 9.81 0.60 Exponential 20.3 -1280 0.60
Elevation Exponential 380 303000 0.60

August Tmax Spherical 0.926 10.7 1.50 Spherical -11.2 -1640 1.50
Elevation Spherical 2810 309000 1.50

September Tmax Spherical 1.13 10.1 1.50 Spherical -20.2 -1580 1.50
Elevation Spherical 2810 309000 1.50
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1990; see also Linacre and Hobbs 1977). The

difference between the maximum elevation of the

stations and the maximum elevation in the DEM was

1,658 m. Thus, the estimated maximum temperature

should be approximately 11 degrees below values

measured from the stations. This can be seen for the

minimum value of the spline-interpolated values,

which were about 9-10 degrees below measured

values (Annex 4). The range of the co-krige and IDWA

interpolated values was almost the same as that for

the measured data. Therefore, at higher elevations

splining appeared to predict the maximum

temperature better than co-kriging.

The surfaces were validated using the two

independent test sets. For precipitation, the IDWA

appeared to perform better than the other techniques

(Table 7), but the difference was not significant

(statistical analysis not shown). There was little

difference between splining and co-kriging, but we

could apply the latter only for the four months when
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there was a high correlation with the

co-variable. The predictions for August

and September using the second

interpolation set were less accurate

than those obtained using the first set.

Validation showed that splining

performed better for all months for

maximum temperature (Table 8). There

was no difference between co-kriging

and IDWA predictions (statistical

analysis not shown).

Prediction uncertainty (GCV)—

Prediction uncertainty or ‘error’

surfaces were produced with the

splining and co-kriging techniques.

Annex 5 shows this for precipitation. The prediction

error from splining was more constant across months.

The co-kriging error surfaces showed greater

variability spatially and between months.

Conclusions for the Study Area
IDWA gave the best results for precipitation, though its

superiority was not significant over results obtained

through the other methods. There was no gain from

using elevation as a co-variable to interpolate

precipitation. Distance to sea was another co-variable

checked. However, the correlation was local and not

always present (De Beurs 1998). Other co-variables

were not readily available.

For maximum temperature there was a higher

correlation with elevation and interpolation improved

when this co-variable was used. Interpolation of

maximum temperature was better handled by splining

than by co-kriging or IDWA.

Conclusions and Recommendations
for Further Work
Conclusions of this work apply to this case study only,

but several general recommendations can be made

for future case studies:

• Splining and co-kriging should be preferred over the

IDWA technique, because the former provide

prediction uncertainty or “error” surfaces that

describe the spatial quality of the prediction

surfaces. Co-kriging was possible for only four

months for precipitation in the study area, due to the

data prerequisites for this technique. Spline

interpolation was preferred over co-kriging because

it is faster and easier to use, as also noted in other

studies (e.g., Hutchinson and Gessler 1994).

• For all techniques interpolation can be improved by

using more stations.

• For splining and co-kriging, interpolation can be

improved by using more independent co-variables

that are strongly correlated with the prediction

variable.

Table 7. Validation statistics for four monthly precipitation surfaces.

Precipitation Mean absolute difference (mm) Relative difference (%)

April May August September April May August September

Validation 1
IDWA 2.0 5.4 23.9 25.9 31 23 12 17
Splining 2.5 5.5 35.9 31.3 38 23 18 20
Co-kriging 2.0 5.5 33.6 32.5 31 23 17 21
Validation 2
IDWA 1.9 6.6 41.2 41.7 41 31 20 24
Splining 2.2 6.1 55.1 47.3 46 28 26 27
Co-kriging 1.7 6.4 39.1 40.9 37 30 19 23

Table 8. Validation statistics for four maximum temperature surfaces.

Tmax Mean absolute difference (ºC) Relative difference  (%)

April May August September April May August September

IDWA 2.7 2.5 2.0 1.9 8.6 7.6 7.0 6.7
Splining 1.6 1.4 1.2 1.1 5.0 4.5 4.2 3.9
Co-kriging 2.6 2.3 1.8 1.9 8.4 7.3 6.6 6.5
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• Preferably, all surfaces for one environmental

variable should be produced using only one

technique.

• Interested readers might wish to evaluate kriging

with external drift, where the trend is modeled as a

linear function of smoothly varying secondary

(external) variables, or regression kriging, which

looks very much like co-kriging with more variables.

In regression kriging there is no need to estimate

the cross-variogram of each co-variable

individually—all co-variables are incorporated into

one factor.

Taking into account error prediction, data

assumptions, and computational simplicity, we would

recommend use of thin-plate smoothing splines for

interpolating climate variables.
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2 As described by Goulard and Voltz, 1992.

Thus, when fitting the basic structure g
l
(h) in the linear

model of co-regionalization, these four general rules

should be considered:

bl
ij
 ≠ 0 → bl

ii
 ≠ 0  and  bl

jj
 ≠ 0

bl
ii
 = 0 → bl

ij
 = 0  ∀ j

bl
ij
 may be equal to zero

bl
ii
 ≠ 0  and  bl

jj
 ≠ 0 → bl

ij
 = 0  or  bl

ij
 ≠ 0.

To fit a linear model of co-regionalization:

• Take the smallest set of semi-variogram models

g
l
(h) that captures the major features of all Nv.

• Estimate the sill and the slope of the semi-

variogram models g
l
(h) while taking care that the co-

regionalization matrices are positive definite.

• Evaluate the “goodness” of fit of all models. When a

compromise is necessary, then the priority lies in

fitting a model to the variogram of the variable to be

predicted, as opposed to the variogram of the co-

variable or cross-variogram.

The linear model of co-regionalization is a model that

ensures that estimates derived from co-kriging have

positive or zero variance. For example there is the

following model:

Γ(h)=(γ
11

(h) γ
12

(h))=(b0
11

b0
12)*g

0
(h)+(b0

11
b0

12)*g
1
(h)

γ
21

(h) γ
22

(h) b0
21

b0
22

b0
21

b0
22

where:

Γ(h) = the semi-variogram matrix, and

g
1
(h) = lth basic variogram model in the linear model of

co-regionalization.

So the basic variogram models are the same for every

variogram, or cross-variogram. In this case, g0(h) is

the nugget model  and g1(h) is the sill model.

For a linear model of co-regionalization, all of the co-

regionalization matrices (B1) should be positive

definite. A symmetric matrix is positive semi-definite if

its determinants and all its principal minor

determinants are non-negative. If Nv = 2, as in the

example or with the precipitation data:

b1
11

 ≥ 0 and b1
22

b1
11

b1
22

 – b1
12

b1
12

 ≥ 0 → b1
12

 ≤ √b1
11

b1
22

Annex 1.
Description of Applying the Linear

Model of Co-regionalization2
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Annex 2.
Dataset Comparison

for Precipitation

Comparison between the dataset with 320 points and the dataset with 194 points.

Variable Model Nugget Sill Range ssd/sst nugget diff.1 rel. nugget diff. (%)2

198 January Exponential 0.0254 0.0724 1.36 0.086 0.0071 21.8
320 January Exponential 0.0325 0.0785 4.06 0.025
198 February Spherical 0.0099 0.0269 1.07 0.155 0.00213 17.8
320 February Spherical 0.0120 0.0183 1.10 0.236
198 March Gaussian 0.0226 0.0678 9.47 0.487 -0.0019 -9.2
320 March Gaussian 0.0207 0.0041 2.65 0.631
198 April Gaussian 0.0175 0.192 9.47 0.073 - 0.0014 - 8.7
320 April Gaussian 0.0161 0.243 9.47 0.039
198 May Spherical 0.0786 3.41 9.47 0.055 0.0174 -0.3
320 May Spherical 0.0594 0.322 9.47 0.066
198 June Spherical 0.434 5.40 5.33 0.019 0.121 21.8
320 June Spherical 0.555 5.09 6.09 0.014
198 July Spherical 0.993 8.94 6.00 0.022 0.452 36.7
320 July Spherical 1.23 6.47 6.00 0.034
198 August Spherical 0.778 13.7 7.00 0.063 0.292 27.3
320 August Spherical 1.07 10.3 7.00 0.094
198 September Gaussian 1.85 20.5 3.58 0.061 0.02 1.1
320 September Gaussian 1.87 95.3 9.47 0.050
198 October Gaussian 0.475 4.98 5.98 0.017 -0.052 -12.3
320 October Gaussian 0.423 10.2 8.95 0.025
198 November Exponential 0.0129 0.170 1.38 0.038 0.0162 55.7
320 November Exponential 0.0291 0.428 7.00 0.037
198 December Spherical 0.0058 0.179 9.47 0.019 0.0015 20.5
320 December Spherical 0.0073 0.139 9.47 0.075

1. Nugget difference = nugget of the big dataset - nugget of the small dataset.

2. Relative nugget difference is: ( nugget320-nugget194 ) * 100nugget320
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Annex 3. Interpolated Monthly
Precipitation Surfaces from

IDWA, Splining, and Co-kriging
for April and August
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Annex 4.
Basic Surface

Characteristics

Station values and DEM surface values for elevation

Elevation Measured (m) DEM (m)

Minimum 27 1
Maximum 2361 4019
Mean 1396.56 1455.321

Measured values and interpolated surface values for
precipitation.

Measured IDW Spline Co-krige
April (mm) (mm) (mm) (mm)

Minimum 0 0.0 -1.4 -1.5
Maximum 20.3 24.9 15.6 20.4
Mean 5.9 5.2 284.7 6.2

Measured IDW Spline Co-krige
May (mm) (mm) (mm) (mm)

Minimum 3.8 3.7 -11 1.3
Maximum 60.8 75.1 57.1 57.1
Mean 27.2 22.6 24.0 24.9

Measured IDW Spline Co-krige
August (mm) (mm) (mm) (mm)

Minimum 76.8 47.0 55.7 38.0
Maximum 426.8 495.7 317.3 423.1
Mean 197.6 216.7 175.4 198.3

Measured IDW Spline Co-krige
September (mm) (mm) (mm) (mm)

Minimum 95.8 44.0 28.9 44.5
Maximum 429.6 472.4 280.0 382.8
Mean 166.4 186.7 143.6 164.4

Measured values and interpolated surfaces for
maximum temperature (ºC).

Measured IDWA Spline Co-krige
April ºC ºC ºC ºC

Minimum 25.4 24.7 14.9 27.5
Maximum 40.1 40.9 40.0 38.8
Mean 31.9 32.0 31.0 32.0

Measured IDWA Spline Co-krige
May ºC ºC ºC ºC

Minimum 26.9 25.4 15.7 28.0
Maximum 41.2 41.2 41.2 40.1
Mean 32.9 33.0 31.9 33.2

Measured IDWA Spline Co-krige
August ºC ºC ºC ºC

Minimum 21.3 20.9 12.3 22.6
Maximum 35.2 35.5 36.0 34.7
Mean 28.3 29.4 28.1 28.8

Measured IDWA Spline Co-krige
September ºC ºC ºC ºC

Minimum 21.3 21.3 12.1 22.5
Maximum 35.5 35.1 35.6 35.4
Mean 28.2 29.1 27.8 28.7
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Annex 5. Prediction Error Surfaces
for Precipitation Interpolated by

Splining and Co-kriging
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