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Interpolation with Splines in Tension: A Green’s
Function Approach’

Paul Wessel” and David Bercovici?

Interpolation and gridding of data are procedures in the physical sciences and are accomplished
typically using an averaging or finite difference scheme on an equidistant grid. Cubic splines are
popular because of their smooth appearances; however, these functions can have undesirable os-
cillations between data points. Adding tension to the spline overcomes this deficiency. Here, we
derive a technique for interpolation and gridding in one, two, and three dimensions using Green’s
Sunctions for splines in tension and examine some of the properties of these functions. For moderate
amounts of data, the Green’s function technique is superior to conventional finite-difference methods
because (1) both data values and directional gradients can be used to constrain the model surface,
(2) noise can be suppressed easily by seeking a least-squares fit rather than exact interpolation,
and (3) the model can be evaluated at arbitrary locations rather than only on a rectangular grid.
We also show that the inclusion of tension greatly improves the stability of the method relative to
gridding without tension. Moreover, the one-dimensional situation can be extended easily to handle
parametric curve fitting in the plane and in space. Finally, we demonstrate the new method on both
synthetic and real data and discuss the merits and drawbacks of the Green's function technique.
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INTRODUCTION

In the physical sciences, and in the earth sciences in particular, data may be
resampled onto an equidistant grid or to arbitrary locations or times. Numerous
methods have been proposed to facilitate this task, including simple weighted-
average operators (e.g., Wegman and Wright, 1983), statistical approaches such
as kriging (Clark, 1979; Olea, 1974), two-dimensional splines (Briggs, 1974;
Inocue, 1986; Sandwell, 1987; Smith and Wessel, 1990; Swain, 1976), and
projections onto convex sets (POCS) (Menke, 1991). Because of their smooth-
ness, splines have become one of the most popular methods used for gridding.
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Swain (1976), implementing the approach suggested by Briggs (1974), designed
a FORTRAN program for minimum curvature spline interpolation that has been
used widely in the earth-science community. This method produces a gridded
surface that minimizes the squared curvature integrated over the entire surface;
it yields the smoothest possible surface which can match the given data con-
straints. One criticism of the minimum curvature method is its tendency to
introduce extraneous inflection points (Schweikert, 1966); to minimize curva-
ture, the curve (or surface) actually may contain large oscillations between data
constraints, This undesired behavior can be suppressed by imposing tension on
the curve (or surface). Smith and Wessel (1990) presented a gridding algorithm
which used continuous curvature splines in tension. A computer program using
their algorithm is distributed with the Generic Mapping Tools (GMT) software
package (Wessel and Smith, 1991; Wessel and Smith, 1995) and now is widely
used.

Most of the gridding methods discussed here require a numerical solution
on a uniform grid. In particular, both the methods of Swain (1976) and Smith
and Wessel (1990) involve the solution to partial differential equations using
finite-differences techniques. Sandwell (1987) presented a new method for min-
imum curvature gridding based on the Green’s function of the biharmonic op-
erator. In his method, the interpolating surface is a linear combination of Green’s
functions centered at each data constraint; the relative strengths of these com-
ponents are determined by solving a square linear system of equations. Using
Green’s functions has both advantages and disadvantages. As Sandwell (1987)
reports, the improvements over the conventional methods include (1) enhanced
flexibility because both data values and gradients can be used to constrain the
surface, (2) by setting the smallest eigenvalues of the linear system to zero a
least-squares fit to noisy data can be obtained, and (3) no uniform grid is re-
quired, hence the surface can be constructed at arbitrarily spaced locations.
However, numerical instabilities can occur when the ratio of the maximum point
separation to the minimum point separation is large. Furthermore, computer
time is proportional approximately to the cube of the number of data constraints,
making the method slow for situations with dense data coverage. In addition,
being a minimum curvature technique it suffers from the same tendency to
develop extraneous inflection points mentioned earlier.

In this paper, we will generalize the technique of Sandwell (1987) to include
tension. First, we will derive the Green’s functions and their gradients for the
one-, two-, and three-dimensional spline in tension and discuss their properties.
We then will test the new method on both data values and gradients, and discuss
to what extent the inclusion of tension may remedy some of the shortcomings
of Sandwell’s (1987) minimum curvature method. Our techniques have been
implemented in the Matlab language; source code and example data are available
through the World Wide Web at URL http://www.soest.hawaii.edu/wessel/wes-
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sel.html. Mitdsovd and Mitds (1993) also have discussed recently interpolation
using a regularized spline with tension. Our presentation differs from theirs in
that we formulate the interpolation problem for data in 1, 2, and 3 dimensions,
including spatial curve fitting, and we discuss the stability of the solutions and
the effect of tension in terms of the eigenvalue spectrum. We also allow for an
approximate fit rather than exact interpolation which may be inappropriate for
noisy datasets.

METHOD

Spline interpolation, whether in one or two dimensions, physically corre-
sponds to forcing a thin elastic beam or plate to pass through the data constraints.
Away from the data points the curve (or surface) will take on the shape that
minimizes the strain energy (Timoshenko and Woinowsky-Krieger, 1959). This
shape will depend on the amount of tension being exerted as well as the stiffness
of the material. Although perhaps less physically intuitive, the same interpola-
tion principle can be applied in three dimensions.

The point-force Green function ¢(x) for a spline in tension must satisfy

DV*p(x) — TV’p(x) = 6(x) (1)

Here, V* and V? are the biharmonic and Laplace operators, respectively, D is
the flexural rigidity of the plate, T the tension applied at the boundaries, and x
the position vector. Following Sandwell (1987), the general situation of N data
constraints w; at locations x; results in the equation

N
DV*w(x) — TV?w(x) = ‘Z‘ ¢b(x — X)) @)
j=

with solution
N
w(x) = j§1 X — x) (3)

The coefficients ¢; are determined by evaluating (3) at each data constraint and
solving the square linear system that results:

N
w,= 2 ¢, —x) i=1N CY)
j=1
or in matrix form
G- c=w &)

where G is the Green’s matrix or data kernel. If the data constraints in fact are
gradient values, the slopes s; in the directions n; are used in solving the linear
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system
N
5; = (Yw - n); = .Zl Vo, —x)'m, i=1,N (6)
=

In mixed situations where N data points and N, slopes constrain the interpolation
(4) is used to evaluate the first N, equations and (6) to evaluate the last N,
equations in the total (Ny + N;) by (Ny + N,) square linear system. Once ¢ has
been determined, the complete solution w(x) is evaluated using (3).

We solve (1) by first introducing the new variable

Y = V(x) (7
¥(x) is the curvature of the Green’s function. Substituting (7) into (1) gives
DV — TY(x) = 5(x) ®)
We take the Fourier transform to obtain
~KD¥(k) - T¥(k) = 1 )

where Kk is the wavenumber vector, k* = k - k, and ¥(K) is the Fourier transform
of Y(x). In the wavenumber domain the solution becomes

1 1
Yk = -5 <k2 " p2> (10)

Here we have introduced
p* =TD (1

So far, equation (10) applies for spaces of any dimension. However, the solu-
tions for Y(x) and ultimately ¢(x) are specific to each dimension; we will proceed
to solve them separately for 1-D, 2-D, and 3-D. For higher dimensions, the
Green’s functions are singular at the origin and cannot be used for spline inter-
polation. The delta-function in (1) implies that the Green’s function must be
symmetric about the origin of the delta function; in addition we require that
o(x) and its first derivative be zero for x = 0. Apart from the differences in the
resulting Green'’s functions and their gradients, the solutions to the interpolation
problems in all dimensions are obtained in exactly the same manner via (3)-

CF

1-D Interpolation with Splines in Tension

Interpolation in one dimension using splines in tension has been proposed
by Schweikert (1966) and implemented by Cline (1974). However, the imple-
mentations of such algorithms are tedious and error-prone. The Green’s function
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approach suggested by Sandwell (1987) for the 1-D cubic spine applies also to
splines in tension. Starting from (10), where k = |k| now is the linear wave-
number, we take the inverse 1-D Fourier transform and obtain

1 (% e*dk 1 V72 A
Vo) = —— S S = Tk 2 2 ol (12)
DJ-oi+p D p
Integrating twice and imposing symmetry gives
A
o0 = 5 e + Blx| + C (13)

The gradient of the Green’s function must be continuous at the origin. Imposing
continuity of ¢'(x) gives B = A/p?; requiring $(0) = 0 gives C = —A/p’. After
ignoring the overall scale factor A/p> (which becomes incorporated into ¢) we
obtain the Green’s function for a 1-D spline in tension:

o(x) = e P + plx| — 1 (14)
with its gradient
do(x) _ X
= - pixly 15
! DS e )|x| (15)

As p — 0 the solutions (14)-(15) behave similar to the functions |x|*> and |x|
as determined by Sandwell (1987) for the special situation T = 0, but they are
not valid for p = 0.

The functions (14-15) also can be used for parametric curve fitting in the
plane or in space. Following Cline (1974) we introduce simply a distance vari-
able

]

0’ l 1
d; = (16)
di_y + |x; — X4}, i=2,N

and determine the two (or three) interpolations x(d) for each separate coordinate
in x (e.g., for a spatial parametric curve x(d) = [x(d), y(d), z(d)]) with d the
independent variable, that is, the Green’s matrix G is calculated once using the
d; and we determine two (or three) sets of amplitudes by solving the augmented
matrix equation

e, ¢, ¢l =G7'[x y 1z an

Here, X, ¥, and z are the observed coordinates (i.e., data constraints) for the
desired spatial curve (¢, and z are neglected for curves in the plane). The
interpolated values x(d) thus are determined via (3) for each component, pre-
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sumably for a monotonically increasing (or decreasing) range of d values that
include the values calculated in (16).

2-D Interpolation with Splines in Tension

Before we attempt to solve (1) let us consider first the two end-member
situations 7 = 0 and D = 0. T = 0 is the situation studied by Sandwell (1987).
It is well known that the Green’s function in this example becomes (Greenberg,
1971; Sandwell, 1987)

o(x) = |x|* log(|x|) (18)

On the other hand, letting D — 0 indicates we are interpolating using an elastic
membrane with no internal rigidity; the corresponding Green function is

o(x) = log(|x]) (19)

which is singular at the origin and not suitable for gridding. However, we
anticipate that the general solution to (1) in 2-D will retain the characteristics
of (18) and (19) as D and T approach their extreme values. Because of axisym-
metry we transform (10) back to the space domain using the inverse Hankel
transform:

1 (% Jokr)kdk 1
v = - SO -,fz(—f? = — 5 Koplx)) = 4Ky(plx)  (20)

D
where & = |k| becomes the radial wavenumber and Kj is the modified Bessel
function of the second kind and order zero. Substituting (20) into (7) gives (with
r=[x[)

1d /[ dp\ _
rdr <r dr) B AKO(p|x|) 20
Integrating twice results in
A
o(x) = 7 Ko(plx|) + Blog|x| + C 22)

Realizing that Ky(x) ~ —log(x) for small x we must select B = A/p* such that
no singularity occurs at the origin. C is determined from the condition ¢(0) =
0; we determine C = A log(p)/p* and discard the common factor 4/p” to give
the final Green’s function as

é(x) = Ko(plx|) + log(p|x|) (23)

where the gradient of the Green’s function is
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X

24

1
Vo(x) = [— — Ki( X)]
p P|x| \p | I
Let us examine the characteristics of the Green’s function for 2-D splines
in tension more closely. When T — 0 the parameter p — O as well, hence the
arguments to ¢ will be small. For small arguments the leading terms in K is
(Abramowitz and Stegun, 1970)

Kox) ~ —log x(1 + ax® + .. ) (25)
which implies that
é(x) ~ x? log x (26)

Therefore, for low tension our solution is expected to approach the minimum
curvature solution (18) of Sandwell (1987). Note, however that our expression
is only valid for p > 0 because of the p~ 2 factor in (22); for p = 0 we must
use (18) instead.

As T increases so does p, and the arguments to ¢ will be large. Because
Ko(x) ~ e™* for large x it is clear that ¢(x) ~ log x. Thus, we anticipate a
surface dominated by tension. Note, however, that ¢(x) does not develop a
singularity as is the limiting situation of D = 0 [i.e., Eq. (19)]. Figure 1 displays
normalized examples of ¢ and V¢ (in the radial direction) for various values of
tension. The trade-off between log(p|x|) and Ky(p|x|) produces a continuous
spectrum of Green’s functions; as p = 0 we approach the biharmonic Green’s
function, x? log x.

From this discussion it is clear that ¢(x) is sensitive to the selection of
units. In fact, p has units such that the product p|x| becomes nondimensional.
Scaling all distances by a constant factor is equivalent to multiplying the param-
eter p by the same amount. Thus, unlike (18), (23) is scale-sensitive and we
must normalize our horizontal dimensions in order for p to have the same mean-
ing for different datasets. In practice we know that by multiplying distances by
o = 50/r,,, where r.,, is the greatest point separation, and introducing the
nondimensional parameter 7 to represent the portion of the strain energy resulting
from tension relative to the total strain energy (i.e., normalized p* = 7/(1 —
7)), the Green’s function exhibits its full range of behavior on the interval 0 <
7 < 1because p — o as 7 = 1. Note that in the finite difference implementation
of Smith and Wessel (1990) the distances are normalized implicitly by the
prescribed grid spacing; hence selecting 7 = 0.3 will give different results
depending in the selected grid spacing.

3-D Interpolation with Splines in Tension

For T = 0, the spline interpolation in three dimensions corresponds to
multiquadric interpolation (Hardy, 1971; Hardy and Nelson, 1986; Sandwell,
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Figure 1. (Top panel) Radial cross section of Green’s
function ¢(r) for two-dimensional spline in tension. For
no tension solution approaches —r? log(r), whereas for
high tension ¢(r) takes on a log(r) shape without singu-
larity origin. (Bottom panel) Radial cross section of gra-
dient Vo (r) in radial direction for various values of ten-
sion. Note that as 7 — 1 (with r defined as p? = 7/(1 —
7)) solution remains finite at origin. All values have been
normalized to fit on same diagram.

1987). We pursue the solution for the general situation by taking the 3-D inverse
Fourier transform of (10) for spherical symmetry (Bracewell, 1978):

_ 1 (Tsinck|xpPdk 0w 1
y(x) = D So &@+p)  2x°¢ ! @n

In this example, ¥ = |k| is the spherical wavenumber. Substituting (27) into
(7) yields

1d [ ,de L IV T
— = B T X = g4 = gl
7 ar <r dr> 2D ¢ X € 28)
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where r = |x|. Again, integrating twice gives

d(x) = 5— "M 4 2 ic 29)
plx| ||
As before, the conditions on ¢ and d/dr at the origin require B = —A/p? and

C = A/p. Ignoring the common factor A/p we obtain the final Green’s function
for 3-D spline in tension interpolation as

1

o e -1 +1 (30)

é(x) =

with its gradient being
X

(31
x|

1
— — ppix
Vo(x) PIxP (1 = e™™(plx| + D]

As p — 0 (except p = 0) we see that ¢(x) — |x} which is the solution obtained
by Sandwell (1987). We now will explore the use of the Green’s functions for
both synthetic and real data in following section.

EXAMPLES

Our first example demonstrates splines in tension for both 1-D data, planar
curves, and spatial curves and illustrates the effect of tension on the unwanted
oscillations associated with the standard cubic spline solution. Figure 2A repro-
duces the 1-D spline example used by Sandwell (1987). The heavy solid line is
the standard cubic spline (r = 0) with unconstrained end conditions. Adding
tension (7 = 0.8; thin solid line) reduces the ringing, whereas ignoring the
smallest eigenvalues produces a least-squares fit (dotted line). By letting 7 — 1
we can eliminate completely the wild oscillations about x = 5. The limiting
situation 7 = 1 corresponds to linear interpolation. In Figure 2B we demonstrate
curve fitting in the plane on a small subset of points making up the coastline of
Long Island, NY in the GSHHS database (Wessel and Smith, 1996). A linear
interpolation between these points would produce an unrealistic coastline. Using
a spline can improve the appearance of the coastline, but the oscillatory nature
of the cubic spline can create intermediate points leading to crossovers between
coast line segments (dotted line). A spline in tension (r = 0.95; solid line)
produces a relatively smooth curve without crossovers. Relaxing the requirement
of exact interpolation (dashed curve) can remove some of the short-wavelength
noise introduced by the digitizing process but is not guaranteed to yield an
interpolation free of crossovers. Finally, in Figure 2C we have made a synthetic
3-D dataset from the parametric curve x(s) = (s*? + x) - cos(s), y(s) = (s>
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Figure 2. A, 1-D interpolation with splines in tension using
synthetic data of Sandwell (1987). Heavy solid line is spline
with no tension and unconstrained endpoints. Thin solid line
has 7 = 0.8 and moderately reduces ringing. Finally, dotted
line represents least-squares fit in which some small eigen-
values have been zeroed out. B, Coastline data for northern
Long Island, NY. Interpolation with planar-valued cubic
spline yields crossovers (dotted curve). Heavy tension (7 =
0.95; solid curve) remedies problem. Least-squares fit (dashed
curve) reduces short-wavelength digitizing noise in original
data. C, Vector-valued parametric curve interpolated from
synthetic data points approximating expanding helix. Cubic
spline curve (solid curve) is in this example better able to
reproduce smoothness of original data; tension introduces no-
ticeable kinks at data constraints.
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+ m) - sin(s), z(s) = s on the interval s = [0, 107] sampled every #/3. We
then interpolated these (x;, y;, z;) points using no tension (solid curve) and with
tension (7 = 0.75; dotted curve). In this particular example where the data
constraints were sampled from a smooth curve, the 7 = 0 solution gives a more
pleasing result than the solution with tension. Although only used for the 1-D
situation (Fig. 2A), slope constraints can be implemented for parametric curve
fitting as well.

Our next examples explore the use of (23) and (24) for gridding of 2-D
data. We will first examine the effect of tension on 2-D surfaces. The circles in
Figure 3 represent the locations of our data constraints; they all have z; = 0
except the point at the origin which has z; = 1. The heavy solid line is the
minimum curvature solution (7 = 0) along a radial section, exhibiting the typical
fluctuations between data constraints. Moderate tension (7 = 0.4; dotted line)
significantly reduces the ringing, whereas strong tension (r = 0.9; dashed line)
completely eliminates it. In all situations the solution exactly interpolates the
data.
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Figure 3. Radial cross section of 2-D interpolation with axisym-
metrical data constraints (shown in inset) where all data values equal
zero except point at origin which is unity. Heavy solid line represents
minimum curvature solution (7 = 0) exhibiting ubiquitous ringing.
Intermediate dotted line shows reduced ringing for 7 = 0.4, whereas
heavy tension (dashed line; 7 = 0.9) completely suppress extraneous
inflection points.
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Figure 4. Damped cosine surface reconstructed from samples of directional gradients
taken along two sets of crossing tracks (indicated below). Single data constraint was
added to slope constraints in order to fix absolute level of surface.

One advantage of the Green function method is the ease with which slope
constraints can be incorporated into the solution. Figure 4 (bottom section)
shows a contour map of the surface z = 10 exp(—r2/2) cos(zr) + 2. We
sampled the slopes of this dataset along a set of crossing tracks (small solid
circles) and solved for the relative amplitudes using (17). When only slope data
are used the mean value of the resulting surface is not recovered. Therefore,
we added one additional data constraint (z; = 12 at the origin); using 7 = 0.25
we recovered the surface displayed in Figure 4 (top section).

Our final 2-D example shows the result of gridding multibeam bathymetry
off the island of Hawaii. Figure 5 displays the 25-meter contours within the
areas of the map that have data constraints. We used a tension factor of 0.5.
The bathymetry data were preprocessed by determining the average bathymetry
within each 1 X 1 arc second grid box; this reduced the number of data points
to N = 1755. The resulting N by N matrix equation then was solved for the
amplitudes ¢. Because no grid is necessary when evaluating the surface we only
used (3) within the areas constrained by data. This is in contrast to finite-
difference techniques which require us to propagate the solution across all the
unconstrained nodes.

Our last example demonstrates the use of (30) for interpolating points in
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Figure 5. Spline-in-tension gridding of multibeam ba-
thymetry off island of Hawaii. Gray areas have no data;
remaining areas have dense, uniform data coverage. Be-
cause Green’s function method does not require grid, we
only evaluated solution at output points where data ex-
isted. Contour interval is 25 m.

3-D. We used this Green’s function to grid the uranium oxide content (in %)
of a carnonite body in Jurassic sediments in the Colorado Plateau (table 5.23 in
Davis, 1986). This dataset was interpolated with 7 = 0.1 onto an equidistant
(x, ¥, 2) grid and the 10% contour for each horizontal slice was determined
(Fig. 6). The resulting plot shows a surface of constant (10%) value which
outlines the region of high uranium oxide concentration in this rock formation.

DISCUSSION

One disadvantage of the Green’s function technique is the possibility that
the matrix in (§) becomes singular. Sandwell (1987), using single precision
computations, determined that 1-D interpolation became unstable when more
than about 40 irregularly spaced points were used, thus rendering the method
almost useless. For 2-D gridding the situation improved somewhat in that linear
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56 % WVLVANG

Figure 6. Example of interpolation with splines in tension for 3-D dataset.
Sparsely sampled uranium oxide concentrations were interpolated evenly
using (30) and 10% contour determined from contours of data slices. Ten-
sion of 0.1 was used.

systems as large as 400 X 400 could be solved (Sandwell, 1987). We determined
that using double precision calculations dramatically improved the usefulness of
the method. Using implementations of our methods in Matlab, we directly solved
gridding problems involving more than 5000 data constraints, resulting in a
5000 x 5000 linear system without any problems of instability. However, be-
cause the memory requirements go as N” the method generally is not practical
for situations with large amounts of data constraints. In such situations a finite
difference approach will be more economical. Alternatively, one can split the
data region into subset which can be gridded individually and blended together
into a final grid Mitfovd and Mitds, 1993; Sandwell, 1987). On the other hand,
when the number of data constraints are moderate and the grid size is large our
method is fast because evaluating (3) at the grid nodes is less computer-intensive
than solving the finite difference equations by iterations (Smith and Wessel,
1990).

When the data constraints are noisy or too numerous to warrant an exact
interpolation it is advantageous to solve the linear system (5) using the singular
value decomposition method. We decompose G = USV” and find the coeffi-
cients

¢ =G 'w=VS"Uw (32)
where S is a diagonal matrix of eigenvalues. By setting the inverse of the

smallest eigenvalues to zero we improve the stability of the system at the expense
of no longer interpolating the data exactly. The variance of the data explained
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Figure 7. Comparison of decay in eigenvalues between
solution in Figure 5 and complimentary solution without
tension. Including tension gives each data point more in-
fluence away from point, resulting in less rapid decrease in
eigenvalues. This fact makes spline in tension method more
stable than minimum curvature method.

by the model is

LT SRR
=N S L=1 ujiwj] "fﬁjﬂ w; = fag (33)
where n is the number of eigenvalues set to 0. For n = 0 we interpolate exactly,
hence f = 1. If one wanted the surface only to explain 95% of the data variance
(e.g., f = 0.95), then one could numerically solve (33) for n and only use the
largest N — n eigenvalues in (32).

The stability of the linear system is affected by the data distribution. As
Sandwell (1987) reports, the system can become unstable when the ratio of the
greatest point separation to the smallest point separation is large. However, by
adding tension we greatly reduce the possibility of attempting to solve a near-
singular system. This is perhaps best illustrated by inspecting the eigenvalues
of the matrix G for situations with and without tension. Figure 7 shows the
decay in eigenvalues for the minimum curvature case (7 = 0; solid line) and
the 7 = 0.5 case (dashed line) for the gridding of the multibeam bathymetry
discussed previously (Fig. 5). As can be seen, the ratio of the eigenvalues to
the largest eigenvalue A, decays much slower with tension than without. For
the smallest eigenvalues the ratios differ by almost 2 orders of magnitude. Thus,
adding tension to the gridding greatly stabilizes the linear system and allows us
to include more data than would be possible with the minimum curvature method,
regardless of whether single or double precision is used.
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The Projection Onto Convex Sets (POCS) method is versatile when the
interpolating surface is required to satisfy several simultaneous criteria (Menke,
1991). One (of many) requirements may be that the power spectrum of the
surface should follow a specified trend. POCS methods that implement power
spectrum bounds can mimic a spline in tension by taking the Fourier transform
of the surface and modifying the amplitude spectrum so that it does not exceed

s*(k) = A[k|* + p*|k[17? G4

at any wavenumber k. The constant A4 is selected to equal the variance of the
data. For values of k where the amplitude spectrum exceeds s*(k) the amplitude
is reset to s*(k), leaving the phase spectrum unchanged.

Finally, one of the most rewarding aspects of the Green’s function approach
for splines in tension lies in the great simplification of the computer implemen-
tation of the method. For example, the Matlab script that solves the 2-D gridding
using data constraints (and optional slope constraints) has one order of magnitude
fewer source-code lines than the corresponding C program using finite differ-
ences (Smith and Wessel, 1990; Wessel and Smith, 1995); the bulk of these
savings stems from the simple ‘‘bookkeeping’’ needed to solve the problem.
Thus, our technique can be incorporated easily into task-specific functions with
minimum development time regardless of computer language used.
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