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Abstract. Motivated by interpolation problems arising in image analysis, computer
vision, shape reconstruction, and signal processing, we develop an algorithm to simu-
late curve straightening flows under which curves in Rra of fixed length and prescribed
boundary conditions to first order evolve to elasticae, i.e., to (stable) critical points of
the elastic energy E given by the integral of the square of the curvature function. We
also consider variations in which the length L is allowed to vary and the flows seek to
minimize the scale-invariant elastic energy Einv, or the free elastic energy E\. Einv is
given by the product of L and the elastic energy E, and Ex is the energy functional
obtained by adding a term A-proportional to the length of the curve to E. Details of the
implementations, experimental results, and applications to edge completion problems are
also discussed.

1. Introduction. Many applications in signal processing, image analysis, shape re-
construction, and computer vision require interpolation tools in a Riemannian manifold
X. One often encounters a collection of points in X, or curves in X with some "missing"
pieces, and would like to interpolate curves between them using a set criterion such as
the minimization of a cost function that could be given, say, by an energy functional. In
this paper, we investigate interpolations based on various elastic energy functionals, to
be discussed below. The elastic energy was considered as early as 1738 by D. Bernoulli
and investigated by Euler [5].
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As an example, in the problem of recognizing objects in a given image, the extraction
and use of edges or contours present in the image play an important role. If an object of
interest is partially obscured by some others, an important task is to interpolate between
the visible edges of the object to complete the hidden contours. In [12], Mumford showed
that in the planar case - under a certain Brownian prior for edges - the most likely curves
to arise are the ones that are critical points of the (free) elastic energy.

As another example, there is a growing literature on representing images of particular
types - such as facial images - as elements of a high-dimensional "image manifold" and
using the underlying topology and geometry for image analysis. One idea is to represent
images as points in an Euclidean space and locally fit low-dimensional subspaces to
images that are clustered together [15]. Each cluster of images is then represented by
an element of a real Grassmann manifold G. Interpolation techniques in this manifold
can be used to predict properties of unobserved images. For instance, given images of an
object taken from azimuthal angles in the [0, 37r/2] range, interpolation in G will allow
us to predict properties of its image from the angle 77r/4.

The reconstruction of 3D shapes from a series of 2D cross-sections can be viewed
as an interpolation problem between points in an infinite-dimensional function space.
Jones and Chen [6] represent the contours of the 2D cross-sections as functions using the
associated distance fields and use linear interpolations to obtain a function with a 3D
domain. The contour of the original 3D shape is reconstructed as an isosurface of this
function. Alternative interpolation techniques yield variants of this construction that
may produce smoother shapes and incorporate important additional features such as the
dependence of the interpolating surfaces on more than two adjacent slices, thus yielding
reconstructions that take into account more information about the overall shape of the
objects.

In this paper, we study interpolations in Euclidean spaces. We take a geometric
approach that, in principle, will apply to general Riemannian manifolds, as the qualitative
results of [11] indicate. In this preliminary discussion, we assume that all curves are
smooth. The actual class to be considered will be made precise later. Let a: [a, b} —► Rn
be a curve parameterized by arc length, i.e., satisfying ||a'(s)|| = 1, for every s 6 [a, b\.
The curvature of a at s is given by k(s) = ||a"(s)|| and the elastic energy E of a is
defined by

1 fb
E{ot) = n / k2(s) ^s-

^ Ja

Among all smooth curves a of a given fixed length L satisfying prescribed boundary
conditions to first order, we are interested in those that are critical points of the energy
functional E. These curves are known as elasticae. After scaling, we may assume that
L = 1. Hence, we consider curves a: I —> Rn parameterized by arc length, where
I = [0,1]. More precisely, given two points P0,Pi G R™ with ||pi — poll < 1 and unit
vectors vq,v\ G R", we are interested in the (stable) critical points of the functional
E restricted to curves a: I —» Rn satisfying a(i) = Pi and a'(i) = Vi, for i = 0,1. If
||pi — poll = I, then a solution exists if and only if Vq = Vi = (p\ — po)/||Pi — Poll, and is
given by a straight line segment.
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Associated with a, there is a tangent indicatrix or direction function v: I —> S"_1 C
given by v(s) = a'(s), as illustrated in Fig. 1. The elastic energy of a can be expressed

as E = \ Jo v» ' rfs-

Fig. 1. The direction function associated with a curve in R3.

Curves with a(0) = po are determined by their direction functions via the expression
a(s) = po + fn v(u) du. The boundary conditions on a can be rephrased as v(0) = vq,
u(l) = Ui, and /g v(s) ds = d, where d = p\ — po is the total displacement of a. This last
condition ensures that the end point of the curve a is p\.

We treat E as an energy functional defined on mappings v. I —> Sn_1 and consider its
restriction to the infinite-dimensional manifold M formed by direction functions satisfy-
ing the three constraints above. We are interested in the flow on M associated with the
negative gradient field —SJME. Flows that seek to minimize the elastic energy efficiently
are known as curve straightening flows. We take a computational approach and our main
goal is to develop an algorithm to simulate the flow on M associated with —VmE, whose
flow lines approach elasticae asymptotically.

We also consider variations of this problem in which curves satisfy identical boundary
conditions, but the length is allowed to vary. In this context, we consider two types of
energy functionals:

(i) the scale-invariant elastic energy Einv — L ■ E, where L denotes the length of
the curve;

(ii) the free elastic energy E\ = E + XL, where A > 0.
Critical points of these functionals are known as scale-invariant elasticae and free elasti-
cae, respectively. Notice that as the value of the parameter A increases, the contribution
of the length L to the free elastic energy becomes more pronounced, so that it is natural
to expect that elasticae minimizing E\ will start to resemble straight lines. This is illus-
trated by experiments described in Sec. 6. The scale-invariant energy was introduced in

[18, 1].
Energy minimizing elasticae are determined by first order boundary conditions. There-

fore, when used as interpolating curves, they disregard many geometric properties of the
curves to be completed which may be relevant to a specific set of problems. One potential
advantage of the present geometric approach to curve straightening flows is that it is,
in principle, possible to incorporate further geometric restrictions on the curves under
consideration to reflect the known history of the curve we are trying to complete. This
problem will be investigated in a future paper.
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For closed curves, the qualitative properties of the flow in Rn associated with
have been investigated by Langer and Singer [10]. In particular, they study the stability of
closed elasticae in Rn and establish the long-term existence of flow lines. The arguments
can be easily adapted to show long-time existence of flow lines in the more general case.
Variants of this flow use different spaces of curves and metrics. For closed curves, they
have been studied in the planar case by Wen [20] and Koiso [8], and by Dziuk, Kuwert,
and Schatzle in R™ [3], using different techniques. The investigation of elasticae was
pioneered by Euler [5] in his work on elastic properties of rods. The reader may consult
[17] for a survey of early developments. More recent studies also include work by Bryant
and Griffiths [2], Langer and Singer [9, 11], Jurdjevic [7], and Mumford [12]. Other
references can be found in the aforementioned articles.

This paper is organized as follows. In Sec. 2, we study the geometric properties of
the manifold M., which will be needed in the development of our algorithms. Sec. 3 is
devoted to the calculation of the gradient field on M associated with E. In Sec. 4, we
present the implementation details in the length constrained case and some experimental
results. The reader will notice that many standard numerical calculations employed in
Sec. 4 can be easily modified for more efficiency or accuracy. Our intention was to keep
the details as simple as possible to not obscure the main argument. In Sees. 5 and 6,
we extend the results to elastic curves of variable length. In the last section, we discuss
applications to edge completion problems.

2. A moduli space of curves. For technical reasons, instead of working only with
smooth functions, we consider the vector space 7i of all absolutely continuous functions
with square integrable derivatives, i.e., the collection of all functions f: I —» Rn whose
derivatives exist almost everywhere and J* ||/'(s)||2ds is well defined. Define an inner
product on 7i by

(f,9)l = /(°) ' s(°) + [ f'(s) ' 9'(s) ds.
Jo

We use the symbol ■ to denote the standard inner product on Rn and (, } i for the inner
product on H. The inner product (,)i has properties analogous to the perhaps more
familiar Sobolev inner product J* f(s) ■ g(s) ds + J()l f'(s) ■ g'(s) ds, but it better suits
our calculations. TL equipped with this inner product is an infinite dimensional Hilbert
space.

2.1. The manifold C. Let C be the collection of all absolutely continuous functions
v: I —> Sra_1 C Rn with square integrable derivative as a function into Rn. C can
be naturally viewed as a metric subspace of H and is known to be a smooth infinite
dimensional manifold. For most purposes, the reader may think of elements of C as
smooth maps.

In order to describe the tangent vectors to the manifold C at vq : I —> §n_1, we first
recall how this can be done for a finite dimensional manifold M C RN such as a smooth
surface in R3. If p G M, then any element w of the tangent space TpM can be written as
a velocity vector w = a'(0), where a: (—e, e) —> M is a smooth path in M with a(0) = p.
We do the same in C. If vo £ C, a small path in C through vq is known as a variation of
vo- More precisely, a variation of vg is a map v : I x (—e, e) —> §"_1 such that:
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(a) u(s,0) = v0(s), for every s £ /;
(b) the time t map vt: I —* §ra_1 given by vt(s) = v(s,t) is in C, V£ £ (—e, e);
(c) the map (—e, e) —> C given by t\-^> vl is smooth.

Any tangent vector / to the manifold C at vq can be described as the time derivative
of a variation of vq aX t = 0. Therefore, f(s) = vt(s, 0) £ Tv^Sn~1, for every s £ I.
As we let s vary, we obtain an absolutely continuous (tangent) vector field with square
integrable derivative on Sn_1 along the curve vq. Hence, we will use the expressions
tangent vector to C at and vector field on §™_1 along v0 interchangeably.

A vector field / along v £ C may be viewed as a map /: I —> with the property
that f(s) J_ f (s), for every s.

Definition 2.1. The covariant derivative Df of / along v is the vector field along
v obtained by projecting the usual derivative of / at s orthogonally onto the tangent
space of §"_1 at v(s), for every s. One may interpret Df as the derivative of / from a
viewpoint intrinsic to the sphere. A vector field / along v is said to be parallel if Df = 0.
Parallel fields along curves in §n_1 are the spherical analogues of constant vector fields
along curves in Mn.

Now, we introduce a Riemannian structure on C\ i.e., we define an inner product on
each tangent space TVC that varies smoothly on C. Instead of using the inner product
that TVC inherits from Ti., we use a variant of (,}i that is intrinsic to C. Let f,g be
vector fields on Sn_1 along v. The inner product of / and g is defined by

</,<?> = /(0)-s(0)+ f1 Df(s)-Dg(s)ds.
Jo

The manifold C is complete with respect to the metric (,) since C includes all absolutely
continuous curves v: I —> §™-1 with square integrable derivative.

2.2. The moduli space M. As discussed in Sec. 1, we are interested in direction func-
tions satisfying the constraints i;(0) = vo, f(l) = i>i, and v(s) ds = d. Therefore, we
define a map <p: C —> S™""1 x S™-1 x Rn by

<t>(v) = (^(u),^2^),^3^)) = (u(0),u(l), [ v(s)ds),
Jo

and let M = 0_1(a), where a = (vo,vi,d). If \\d\\ < 1, M is non-empty and consists of
the absolutely continuous maps v: I —> §n_1 with square integrable derivative satisfying
the desired constraints.

Remark 2.2. The functions / i—> /(0) and / i—> /(1) that evaluate / at the end
points are not continuous on the space of all square integrable functions with the usual
L2-norm. This is one of the reasons why we consider absolute continuous functions and
use the inner products (, )i and {,) on TL and TVC, respectively.

A geometric argument outlined below shows that d<fiv : TVC—*T(pi^Sn~1xT(p2^Sn~1x
Rn is surjective, for any v £ C. Therefore, if ||d|| < 1, M is a submanifold of C of
codimension 3n — 2. Here is a sketch of the argument. Let a: I —* Mn be a curve such
that q'(s) — v(s) and a(0) = po■ Given 0 ^ w\ £ we construct a variation of
v such that d(f>v(f) = (u>i,0, 0), where / = ut(s, 0). Let 0f(u(0), W\) be the orthogonal
transformation of K" which rotates the plane u(0) — W\ by an angle £||tui|| and is the
identity on its orthogonal complement. Let R1 = Rl{pu. w(0), U'i) be the corresponding
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rotation of Rn centered at po- Then, a variation of a which coincides with Rl in a small
neighborhood of a(0) and is the identity on a neighborhood of a(l) will induce a variation
of v with the desired properties. Similarly, we show that any vector of the form (0, W2, 0)
is in the image of d(j>v. To conclude, consider vectors of the form (0, 0, W3) with W3 E R".
In this case, it suffices to consider a variation of a which coincides with translations of
Rn by tw3 in a small neighborhood of a(l) and is the identity on a neighborhood of a(0).

Let / be a vector field representing a tangent vector to M at v. Then, / can be written
as f(s) = Vt(s, 0), where v(s,t) is a variation satisfying the constraints i>(0,£) = Vo,
v(l,t) = vi, and fQ v(s,t) ds — d, for every t. Differentiating these with respect to t at
t — 0, we obtain the corresponding constraints on / and conclude that / is tangent to
M. at v if and only if /(0) = 0, /(1) = 0, and J^ f(s) ds = 0.

2.3. The derivative of <fi. We now compute the derivative of (f> explicitly. This will
allow us to rewrite the three conditions on / in terms of the inner product (,). In
particular, we will be able to exhibit a basis for the fiber of the normal bundle of M in
C at v and calculate the gradient of the elastic energy functional E on M.. The following
well-known lemma on covariant integration will be needed in our argument.

Lemma 2.3. Let f(s) be a square integrable vector field 011 §n_1 along the curve v. I —»
Sn_1, v E C. Given a tangent vector Fo to S™-1 at the point u(0), there is a unique
absolutely continuous vector field F(s) on S™"1 along v with square integrable derivative
such that F(0) = F0 and DF(s) = f(s), almost everywhere.

Proof. We only present a proof of the lemma in the smooth case, since the differential
equation that yields the solution will be used in our simulations. Viewing F as a map
into Kn, we can rewrite the differential equation DF = f as

F'{s) = f{s) +a{s)v(s), (2.1)

where a(s) is a scalar function to be determined. For a solution F of Eq. 2.1 to induce a
vector field on §"-1, we must have F(s) • v(s) = 0, for every s. Differentiating this, we
obtain F'(s) • v(s) + F(s) ■ v'(s) = 0, or F'(s) ■ v(s) = —F(s) ■ v'(s). Hence, we must have

—F(s) ■ v'(s) = F'(s) ■ v(s) = (f(s) + a(s)v(s)) ■ v(s) = a(s).

Therefore, Eq. 2.1 can be written as

F'(s) = - (v'(s) ■ F(s)) v(s) + f(s),

which is a non-homogeneous linear equation and therefore admits a unique global solution
for any given initial condition. □

2.3.1. The derivative ofcp1. Let / be a tangent vector to C at v. Write f(s) = vt(s, 0),
where v(s,t) is a variation of v. Here, we are abusing notation and calling the variation
v as well. Differentiating 01(u(s, t)) = v(0,t) with respect to t at t — 0, we obtain

d(t>l(f) = ut(0,0) = /(0).
We wish to write /(0) in terms of the inner product (, ). Let {ej, eg,, e^-1} be an
orthonormal basis of r„(0)Sn-1. Abusing notation, for i = 1,..., n— 1, let eg(s) denote the
unique parallel field along v with eg(0) = el0. (It is well-known that
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(eg(s), ejj(s),..., eo_1(s)} is an orthonormal basis of Sn_1, for every s e /.) Then,
we can write

n—1 n—1

dti(f) = /(o) = £ (/(0) • 4(0)) 4(0) = £ </, 4> eg(0).
i=1 i=1

This is the desired expression for dcpl in terms of (,).
2.3.2. The derivative of <fi2. In order to compute d(j>l(f) = /(1), we express it in the

orthonormal basis {eo(l), ej}(l),..., eQ_1(l)} of T„(i)Sn-1 as

/(i) = 2(/(i)-4(i))4(i).»=i
We write the coefficients /(1) • eg(l) as follows:

pl d

(2.2)

/(l) ■ 4(1) - /(0) • 4(0) = J ± (f(s) ■ 400) ds

= [ Df(s) ■ el0(s)ds
Jo

= (f,seo) •

Here, we used the fact that eg(s) is parallel and D(sel0)(s) = el0(s). This implies that

/(1) • 4(1) = /(0) • 4(0) + (/, sei) = (/, el) + (/, sel) = (/, ej + sej).

Hence,
n—1

#?,(/) = /(l) = £ </, ej + sei) 4(1). (2.3)
i= 1

2.3.3. Tfte derivative o/03. Since 03(^) = /J" v(s)ds, we have that

#«(/)=/ /(s)rfs.
Jo

Let {ej, ef,..., e"} be an orthonormal basis of Rn. For each s S /, project orthogonally
onto the tangent space of §n_1 at u(s) to obtain vector fields ej(s) on §n_1 along v. Write
f(s) as

f(s) = ■ ei) ei = ' ei(s)) ei-
j=l >=i

Then,

d(ftW = f0 = f{s)-ej(s)dsSje[. (2.4)
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Let Ej(s) be the (unique) vector field along v such that DEj(s) = ej(s) and Ej(0) = 0.
The existence of Ej is guaranteed by Lemma 2.3. Integrating by parts, we obtain

[ f{s)-ej(s)ds = (f(s)-Ej(s))\1-[ Df{s)-Ej(s)ds
Jo J 0

= f(l)-Ej(l)- f Df{s)-Efc) da (2'5)
Jo

= f(l)-EJ(l)-(f,8j),
where £j(s) is the vector field along v satisfying D£j(s) = Ej(s) and £j(0) = 0. By Eq.
2.3,

n—1
/(l) = ]T(/,e0fc + Se0fc)e0fc(l).

k= 1

Therefore,

71— 1

/(1) • Ej( 1) = £ (/>eo + sek0) (e0fc(l) • £,(1)) .
k=1

Using this in (2.5), we obtain

[ f(s)' ej{s) ds = (f^o+seo) (eo(!) • Eji1)) -
Jo k= i

= ^/>^a^(eo+seo )^-(/>£j) (2-6)

= aJfc(eo + seo)"j - >

where aj^ = eg(l) ■ Ej{\). Hence, by Eq. 2.4,
^n —1

#»(/) = aifc(eo + seo)J ~ £i J ei"

We summarize our calculations in the following proposition.

Proposition 2.4. Let v e C, and let f(s) be a vector field on §n_1 along v. If hj =

(Efc=i ajfc(e§ + se§)) - Ej, 1 <j<n, then

n—1 n—1

d4>lU) = (/> eo) eo(°); #«(/) = X] eo + seo) eo(x);
i=l i=l

n

i= 1

Theorem 2.5. The map 0: C —> §™_1 x §™_1 x has the property that d(f>v: TVC —>
x T^>2(„)§71'~1 x Rn is surjective, for any v € C. If wo,^i S §n_1, del"

and ||d|| < 1, then the moduli space M = M(vq,v\,d) = (p~1(vo,v\,d) is a (framed)
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submanifold of C of codimension 3n —2. Moreover, the vector fields el0, sel0, 1 <i< n— 1,
and £j, 1 < j < n, form a basis of the orthogonal complement Nv of the kernel of d<j)v in
TVC. In particular, for any #eM, these vectors form a basis of the fiber of the normal
bundle of M. in C.

Proof. It only remains to show that the vector fields el0(s), sel0(s), and £j(s) span Nv.
By Proposition 2.4, a vector field / on §n_1 along v is in the kernel of dcpv if and only if
the following conditions are satisfied:

(i) (/.eo) = 0, for i = 1,.. ,,n- 1;
(ii) (/> eo + seb) m 0, for i = 1,..., n - 1;
(iii) (fihj) =0, forj = 1,

Therefore, the vector fields eg, eg + seg, and hj — ajk(£o~^seo)~£j span Nv. Since
these span the same linear subspace of TVC as eg, seq, and Ej, the result follows. □

3. The gradient of the elastic energy. As a functional on C, the elastic energy
E of v. I —> §n_1 can be expressed as

E(Hi' vs-vsds. (3-1)

We are interested in the gradient of E restricted to the moduli space M.. Given a tan-
gent vector / to C at v, we write it as /(s) = vt(s, 0), for some variation v. Differentiating
(3.1), we obtain

dE(f)= f vs-vstds= f vs ■ fs ds = f vs-Dfds. (3.2)
Jo Jo Jo

The last equality comes from the fact that vs is tangent to Sn_1 at v(s).
Let Y(s) be a vector field on §ra_1 along v such that DY = vs and F(0) = 0, whose

existence is guaranteed by Lemma 2.3. Then, we can write Eq. 3.2 as

dE(f)= f1 DY ■ Df ds = (Y, /).
Jo (3.3)

We view Y as a tangent vector to C at v. If v £ M. and / G Tv A4, let X be the
orthogonal projection of Y onto TvA4. Then, dE(f) = (Y, f) = (X,f) . Therefore,

WmE(s) = X(s)- (3.4)

i.e., the vector field X along v is the gradient of E: M —» R at v.
We are interested in the flow on M associated with the negative gradient field -Vjk£.

Flows of this type that seek to minimize the elastic energy efficiently are known as curve
straightening flows. For closed curves (with p0 = pi and i>o = fi), a qualitative analysis
was carried out by Langer and Singer in [10]. They show that the energy functional
E satisfies a property known as the Palais-Smale condition [13, 14] which, among other
things, guarantees the long-term existence of flow lines. The arguments can be easily
adapted to show that the same is true in the more general setting.



368 W. MIO, A. SRIVASTAVA, and E. KLASSEN

4. Algorithms and Experimental Results. We take a computational approach to
finding the optimal curves given by limiting elasticae. In our simulations, we start with a
curve in C, project it onto Ai so that the constraints t>(0) = i>o, u(l) = vi, and f0 v(s) ds
are satisfied, and let it evolve under the flow associated with the negative gradient field
—\7mE- First order local approximations to flow lines are used so that they may move
points slightly off the manifold M.. To account for this, projections back onto AA are
used at each step. There are two main computational tasks involved:

(i) to project paths v G C onto the manifold A4 to initialize the process and keep
the flow lines in A4;

(ii) to compute the gradient vectors VmE f°r the updates.
We now describe the details of the implementation. To represent a direction function
v: I —> S™-1 on a digital computer, we divide the interval [0,1] into T equal segments
of size A = l/T and use a discretized version of v G C given by (u(s), s = 0,1,... ,T}.
We adopt this convention in general: given a function a defined on the interval /, a will
denote its discretization.

4.1. Integrating Vector Fields. Given a vector field / along v, Lemma 2.3 gives a vector
field F along v such that DF = / and F(0) = F0. We use the following discretized
computation:

F(s + 1) = F(s) + A(/"(*) - (vs ■ F(s))v(s)). (4.1)

The vector field vs is computed using vs(s) = (v(s + 1) — v(s))/A. Equation 4.1 is used
to compute the discretized vector fields Ej, j = 1,..., n and ij, j = 1,..., n.

4.2. Computation of the Jacobian. To project a curve v G C onto M, we use the
derivative d<j>v restricted to the (3n — 2)-dimensional subspace Nv orthogonal to the
kernel of d(j>v. Proposition 2.4 shows how to compute the Jacobian matrix J using the
basis of Nv formed by the vectors ej, s£q, and ij, where 1 < k < n — 1 and 1 < j < n.
For the tangent space Sn_1 x Sn_1 x R") = x Sn_1 x Rn, we use

the basis formed by (e§(0),0,0), (0, eg(l),0), and the standard basis of R".
For k = 1,... ,n - 1 and i,j — 1 ,n, define the following scalars:

ajk= ek0(T) ■ Ej(T);

bjk = [ 4(s) ■ Ej(s)ds ~ A [ go(s) ' Ej(s) ) ;
/ 0

f 1

Ks=0

(T —1
Ej(s) ■ Ej(s)ds ~ A ( ^ Ei(s) ■ Ej(s)

K S = 0
/ 0

Both a = (ajfc) and b — (bjk) are nx(n-l) matrices, and c = (c^) is an n x n matrix.
In this notation, the Jacobian J is given by the following (3n — 2) x (3n — 2) matrix:

J =
In-1 0 0
In — 1 In — 1 ^

a a — b abT —
(4.2)

4.3. Projecting a path v onto M.. One of our tasks is to start with a point v G C and
iteratively project it onto the manifold M. Recall that maps C to the space §ra_1 x
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x Mn, while d<j>v maps the tangent space TV(C) to the tangent space Ttj>(v)(§n~1 x
5n_1 x Kn), as illustrated in Fig. 2.

Fig. 2. maps the manifold C to §n 1 xS" 1 X Rn, while d<j>v maps the tangent
space TV(C) onto the tangent space (Sn_1 X Sn_1 X Rn).

The basic idea is to evaluate 4>{v) and check how far it is from the desired value a =
(vo,vi,d) by computing the residual vector w = {wi,w2,w3) 6 x Sn_1 xl"),
characterized by the following properties:

(a) for i = 1,2, if we travel ||w,|| units of length along the great circle on §n_1
starting at <pl(v) in the direction of Wi, we reach the point u»_i;

(b) w3=d - cp3(v).
Then, we pull back this residual vector w to Nv C TVC under J to determine how to
move v in C, to first order. The vector w is computed as follows:

Wi = cos 1 (vq ■ v(0))tt^j7, uq = (vq - v(0)) - ((v0 - v(0)) • v(0))v(0);IMI
W2 = cos-1(vi • v{T))-rp-r, m = (vi - v{T)) - ((i>i - v(T)) ■ v(T))v{T);IMI
W3 = (d — f v(s)ds) ~ d — A | v(s) j .

Jo \s=o /

Let 7 = (71,..., 73n—2) be the (3n — 2)-tuple consisting of the coordinates of w in the
orthonormal basis formed by the vectors eo(0), eg(l), and the standard basis of R",
where 1 < k < n — 1. The scalars 7are given by:

7» = wi-eo(0), i = 1,..., n — 1;

7n-i+i = w2 ■ el0(T), i = 1,..., n - 1; (4.3)

72n—2+i = w3(i), i = 1,... ,n.

4.4. Updating the Curve v. Let (3 = J-1 (7), and define dv G TVC by
n—1 n—1 n

dv(s) = ^2Piel0(s) + 0n-i+iselo(s) + ^/32n-2+l£;l(s).
2 = 1 i= 1 2=1
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To update v, as a first order approximation to geodesies in C, for each s G {0,..., T},
we follow ||dv(s)|| units of length along the great circle on §n_1 starting at v(s) in the
direction of the vector dv(s), as illustrated in Fig. 3. If dv(s) ^ 0, then the update is
computed as follows:

Vnew(s) = cos(||Ju(s)||)iJ(s) + ~ dv(s). (4.4)
\\dv(s)\\

Fig. 3. The arrow represents the tangent vector dv(s) g 1.
Each v(s) is updated along a great circle.

4.5. The Gradient of E. Let Y be the vector field such that DY — vs and Y(0) = 0,
which can be computed using Eq. 4.1. Project Y orthogonally onto TV(M) to obtain X.
To implement this, we first apply Gram-Schmidt to {eg, sig, ij } to obtain an orthonormal
basis of TVC. Since {e^seg} already is an orthonormal set, it suffices to correct the
collection {£j} to obtain, say, {0j}. Then, the vector field X is given by:

n—1 n—1 n

X = Y - J^(Y,4)e'0 - ^(Y,se'0)Se'0 - Y,6^. (4.5)
»=l i=\ j=i

The algorithmic steps are summarized next.

Algorithm 4.1 (Projection onto A4). Start with a curve v that is not in M.
(1) Compute the vector 7 according to Eq. 4.3.
(2) Compute the Jacobian matrix using Eq. 4.2.
(3) Compute (3 and update v according to Eq. 4.4. Go to step 1.

Algorithm 4.2 (Finding Elasticae). Start with a curve v in C.
(1) Project it onto the manifold M using Algorithm 4.1.
(2) Compute the gradient vector field X according to Eq. 4.5.
(3) Update the curve v using Eq. 4.4 with X replacing dv.
(4) Go to step 1.

Shown in Fig. 4 are some examples of elasticae satisfying boundary conditions po, Pi,
vo, and To initialize the gradient search, we first randomly generate many curves in
C and select the one for which \\4>(v) — a|| is minimal. This curve is shown as a broken
line in each plot. Next, we project it onto M. using the steps described earlier; this
projected curve is our initial condition and is plotted in thin lines. Finally, we perform
ten iterations of the gradient flow to reach the elastica drawn as a solid line. Fig. 5 shows
some examples of elasticae in K3.
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Fig. 4. Elastic curves in M2: in each panel, the broken line shows an
initial curve in C, the thin line shows its projection onto vM, and the
solid line shows the elasticae obtained after ten gradient iterations.

Fig. 5. Elastic curves in R3: broken lines show initial curves in C,
thin lines show their projections onto A4, and solid lines show the
elasticae obtained after ten gradient iterations.

Remark 4.3. To randomly initialize the gradient search as proposed, we need the full
description of residual vectors given above. However, once the curve v is in the manifold
M, the conditions ij(0) — vq and ti(l) = v\ are automatically satisfied in subsequent
steps since the gradient vector X has the property that X(0) = 0 and X(l) = 0. This
means that we may assume that the residual vectors needed during the gradient search
have the simpler form (0,0,1^3).
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5. Scale-invariant and free elasticae. We now consider the analogous problem for
curves with prescribed boundary conditions to first order whose lengths are allowed to
vary. We only consider curves (3:1—* Rn parameterized with constant speed. Thus, if
the length of (3 is L, ||/3'(s)|| = L, for every s £ I. Let a: I —> Rn be the length-one curve
obtained by scaling (3 by a factor 1/L so that a(s) = f3(s)/L, and let v: I —* §n_1 be
the direction function of a. Given po 6 Rn, if we impose the extra condition /?(0) = po,
then /3(s) = po + L /Qs v{u) du. This establishes a one-to-one correspondence between the
curves (3 under consideration and pairs (L, v) G (0, oc) x C. If we use a logarithmic scale
for the length by writing L = ex, then f3 is represented by a pair (i,a)elxC via the
expression (3{s) = po + ex /Qs v(u) du.

Given Po,Pi 6 R" and € §n_1, we are interested in curves (3 satisfying the
boundary conditions /3(0) = po, /3(1) = Pi, f3'(0)/L = ^o, and f3'(l)/L = v\. These
conditions can be rephrased in terms of the pair (x,v) as u(0) = vo, v(l) — vi, and
fg v(s) ds = d/ex, where d = pi — pq. Therefore, we consider the function ip: W x C
§n_1 x §"_1 x Mn given by

tp(x,v) = ^v(0),v(l),ex J v(s) ds

and define M = ip~l{vo, V\,d). We are considering RxC with the product metric denoted
(, ). The R factor is endowed with the usual Euclidean metric and C is equipped with
the metric (, ) defined in Sec. 2. Hence, if Wi G ffi and /, is tangent to C at v, for i = 0,1,
then

{{wojo), =w0-w1 + (/0,/i).

The adoption of a logarithmic scale for length measurements has the virtue of turning
the domain of ip into a complete Riemannian manifold.

We consider two types of elastic energy functionals for curves of variable length: the
scale-invariant elastic energy Einv: US x C —> R, given by

1 r1
Einv(x,v) = - J vs-vs ds,

and, for each A > 0, the free elastic energy : R x C —» R, defined by

1 f1Ex{x,v) = — J vs ■ vsds + XL

1 f l

= ttt / vs-vsds + \ex.2e* J0

The scale-invariant energy of a curve [3 is simply the elastic energy of the associated
normalized length-one curve a = (1/L)p.

The critical points of the restriction of Elnv and E\ to J\f - which we also denote by
Einv and E\ - are called scale-invariant elasticae and free elasticae, respectively.

As before, a simple geometric argument shows that dip/XtV) is surjective. We now
compute the derivative of V' = (V'1) V*2; explicitly. Any tangent vector to Af at (x,v)
is of the form (w, /), where w e R and / is a vector field on §n_1 along v. For any point
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(x,v) elxC, the calculations of Sec. 2 imply that
n—1 n—1

dip1(w1 f) = /(0) = £</,4K(0) = ^ ((u), /), (0, eg)) ef)(0)
2=1 2=1

and
n—1

di[>2(w, f) = /(1) = 5^</' eo + seo) eo(l)
2=1

n—1

= X! ((™> (°' eo + seo))
2=1

As in Sec. 2, let e^, 1 < j < n, be an orthonormal basis of Rn. Differentiating tp3(x,v) =
ex fQ v(s) ds and using Proposition 2.4, we obtain

di/j3(w, f) = exw f v(s)ds + ex f f(s)ds
Jo Jo

71 / r1 \ 71
= eXwJ2[ / v(s) • ei ds ) ei + e'T ei

j=i ' j=i

= eXw X ( [ vi(s)ds] ei + eX X</> ei
i=i Vo y j=i

= e*X

where Vj{s) = v(s) ■ e{, hj = ajk(e^ + se§)) - £j, and ajk = Ej{ 1) ■ eg(l), for
1 < j < n. This completes the calculation of dip and yields the following analogues of
Proposition 2.4 and Theorem 2.5.

Proposition 5.1. Let (x,v) eRx C and (w,f) eRx TVC. Then,
n—1

dip1(w, f) = X (K/M0,eo))e^(0);
2=1

n—1

#2(w, /) = X (°' e° + seo)) ̂ (i);
2 — 1

dip3(w, f) = X e{.

Theorem 5.2. The map ^:lxC-> S™-1 x S™""1 x R™ given by

tp(x,v) — ̂ w(O),i>(l), ex J v(s)ds

has the property that dip(XtV): R x TVC —> T^i^jS™-1 x x Rn is surjective,
for any (x,v) G R x C. If vq,vi G S"_1 and d G Rn, then the moduli space Af =
■N"(vo,vi,d) = if)~1(vo,Vi,d) is a (framed) submanifold of R x C of codimension 3n — 2.



374 W. MIO, A. SRIVASTAVA, and E. KLASSEN

Moreover, the vectors (0, el0), (0, seg), 1 < i < n — 1, and (— j^ Vj{s) ds,£j), 1 < j < n,
form a basis of the orthogonal complement of the kernel of dip(XtV), at any (x, v) 6lxC.
In particular, if (x, v) G A/", these vectors form a basis of the fiber of the normal bundle
of Af in R x C at (x, i>).

We conclude this section with a calculation of the gradient of Einv: Af —> M and
E\: Af —> R. Let (w,/) be a tangent vector to R x C at (x,v). As usual, we write
(u>,/) = (xt,vt) at t = 0. Differentiating

1 f1
Ernv(x,v) = - / vs- vs ds

* Jo

with respect to t. at t = 0, and letting Y be the field along v whose covariant derivative
is vs and Y(0) = 0, we obtain

dEinv{w,f)= [ (fs,vs) ds = [ (Df,vs) ds — (Y, f)
Jo Jo (5.1)

= ((0,Y),K/)).

Projecting the vector (0, Y) orthogonally onto the tangent space of Af at (x, v), we obtain
the gradient of Einv at (x,i>). Similarly, differentiating

1 [l
Ex(x,v) = — J vs-vsds + \ex,

dEx(w, /) = (J vs ■ Vsds^j w + i j vs ■ fs ds + Aexw

+ Aex^) w+^ Jq DY-Dfds

we obtain

/ e

E{v) +X eAw+±-(Yf)
(5.2)

ex / e*

E(v)

The orthogonal projection of the vector

E{v) . x Y—— + Ae , —
ex ex

onto T(x^v)Af gives the gradient of E\ at (x, v).

6. Algorithms and Experimental Results. The computational tasks for variable
length elastic curves are similar to the ones discussed in Sec. 4 with a few exceptions
that are listed here.
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6.1. Computation of the Jacobian. In the basis of the orthogonal complement N(X}V)
of the kernel of dip(x^ formed by the vectors (0,eo), (0, seg), and (— f Vj(s) ds,£j), the
Jacobian matrix of the restriction of dtp(Xi„) to N^x^ is given by:

In-i 0 0
J = /„_! 7n_! bT , (6.1)

exa ex(a — b) ex(abT — c — ggT)

where a, b, and c are as in Sec. 4 and g = (gji) is the n x 1 matrix whose entries
are given by gji — fgVj(s)ds = J* v(s) ■ e{(s)ds. Here, we are using the basis of
T(Sn~1 x §n_1 x M") formed by eg(0), eo(l), and the standard basis of R" .

6.2. Projecting (x,v) onto Af. The projection of (x,v) onto Af requires that we com-
pute the residual vector w, which is done as follows:

wi = cos~l{v0 ■ t)(0))77^77, u0 = (v0 - v(0)) - ((v0 - v(0)) • 6(0))6(0);
IKII

w2 = cos-1 (ui • €(T))tt^-7, m = (ui - v{T)) - ((vi - v{T)) ■ v(T))v{T)-,
IN II

W3 = (d - ex J v(s)ds) ~ d — exA ^(s)^ •

The vector 7 is the same as in Eq. 4.3.
6.3. Updating (x,v). Let (3 = Then, x is updated as follows:

x new

i=1
X + dx, dx = - ^2 p2n-2+i ( A ( ^2 v(s) ' ei ) ) • (6-2)

The curve v is updated as before using Eq. 4.4.
6.4. The Gradient of Einv and E\. Let Y be the vector field such that DY = vs and

Y(0) = 0, computed using Eq. 4.1. By (5.2), to obtain V(XtV)E\, we project the vector
(wi,Y/ex) orthogonally onto where w\ = —E(y)/ex + Xex. Let (Zi,Zi), i =

1,..., 3n—2, be an orthonormal basis of the subspace spanned by (0, eg), (0, sig), (~fg v(s)-
e{ds,ij), which can be obtained using the Gram-Schmidt method. Then, the gradient
of E\ is given by

Y ^ ~( Y \
V{x,v)E\ = (wlt —) - ( (wi,-^)>(zi>zi)J {zi,Zi). (6.3)

A similar calculation yields, using (5.1),

3n—2

V(x,v)Einv = (0, Y) - ^2 ((°' ^)> iZi' Zi)) (zii Zi)~ (6-4)
i= 1

6.5. Experimental results. Shown in Fig. 6 are some examples of free elasticae com-
puted using this approach. The left panel displays the vertices of an equilateral triangle
with tangent vectors as shown. The curves represent free elasticae between these points
for the values 1, 11, 41, 91, and 161 of the parameter A. As the value of A grows, the
contribution of the length to the energy becomes more significant and the elasticae be-
come tighter trying to approach the straight line segment connecting the end points, as
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expected. A similar result is displayed in the middle panel for two vertically displaced
points with horizontal tangents pointing in opposite directions. The last panel shows an
example of a free elastica in R3.

Fig. 6. Free elastic curves: (i) The left panel shows a sequence of
free elasticae connecting points in a triangle for several values of the
parameter A. (ii) A similar result for two vertically separated points
with opposite horizontal direction vectors, (iii) A free elastica in R3.

Figure 7 displays several stages of the evolution of a planar curve toward a free elastica
and a plot of the corresponding evolution of the free elastic energy.

Fig. 7. Several stages of the evolution of a planar curve toward a
free elastica and a plot of the corresponding evolution of the free
elastic energy.

7. Applications to edge completion. Edge completion is an important application
of elasticae to computer vision. If objects of interest in a given image are partially
obscured, an important task is to interpolate between the visible edges to complete the
hidden contours. Boundaries, or contours, of objects provide important clues in object
recognition. The ability of the human visual system to interpolate between the visible
edges is well documented and we would like to develop a computational approach to such
interpolations.

Shown in Fig. 8 are four examples of edge completion using scale-invariant elasticae.
The left panels show images of objects whose contours were extracted using standard
edge detection procedures. The middle panels show the same images with some parts
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artificially obscured. The right panels show superpositions of the interpolating scale-
invariant elasticae and the original contours. The actual boundaries are shown as a
broken lines and the completion curves are drawn using solid white lines. The boundary
conditions for the interpolating elasticae were estimated using points near the ends of
the visible edges.

FlG. 8. Edge completion using scale-invariant elasticae.

Several researchers have proposed the use of elasticae for completing partially occluded
edges in a statistical framework. In [12], Mumford showed that - under a Brownian prior
for edges - the most likely curves to occur are free elasticae. The use of scale-invariant
elasticae in this context has been proposed in [4], [19], [16]. Other references can be
found in [16]. These statistical formulations are especially useful in situations where
several edges are to be completed in the same image and the right pairings of edges are
not obvious. In these probabilistic models, one generates stochastic completion fields and
selects the most likely curves for edge completion. These high probability curves are
curves of least elastic energy, which can be produced using the algorithms developed in
this paper.
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