P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable
Network Storage

DARRELL C. ANDERSON, JEFFREY S. CHASE, and AMIN M. VAHDAT
Duke University

This paper explores interposed request routing in Slice, a new storage system architecture for high-
speed networks incorporating network-attached block storage. Slice interposes a request switching
filter—called a uproxy—along each client’s network path to the storage service (e.g., in a network
adapter or switch). The uproxy intercepts request traffic and distributes it across a server ensem-
ble. We propose request routing schemes for I/0 and file service traffic, and explore their effect
on service structure. The Slice prototype uses a packet filter uproxy to virtualize the standard
Network File System (NF'S) protocol, presenting to NFS clients a unified shared file volume with
scalable bandwidth and capacity. Experimental results from the industry-standard SPECsfs97
workload demonstrate that the architecture enables construction of powerful network-attached
storage services by aggregating cost-effective components on a switched Gigabit Ethernet LAN.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—
Distributed file systems

General Terms: Design, Performance

Additional Key Words and Phrases: Content switch, file server, network file system, network
storage, request redirection, service virtualization

1. INTRODUCTION

Demand for large-scale storage services is growing rapidly. A prominent fac-
tor driving this growth is the concentration of storage in data centers hosting
Web-based applications that serve large client populations through the Inter-
net. At the same time, storage demands are increasing for scalable computing,
multimedia, and visualization.

A successful storage system architecture must scale to meet these rapidly
growing demands, placing a premium on the costs (including human costs)
to administer and upgrade the system. Commercial systems increasingly in-
terconnect storage devices and servers with dedicated Storage Area Networks

An earlier version of this work appeared in Proceedings of the Fourth Syposium on Operating
System Design and Implementation (OSDI’00, San Diego, CA, Oct. 2000). This work is supported by
the National Science Foundation (EIA-9972879 and EIA-9870724), Intel and Myricom. Darrell C.
Anderson is supported by a U.S. Department of Education GAANN fellowship. Jaffrey S. Chase
and Amin M.Vahdat are supported by NSF CAREER awards CCR-9624857 and CCR-9984328.
Authors’ addresses: Department of Computer Science, Duke University, Durham, NC 27708;
e-mail: {anderson, chase, vahdat}@cs.duke.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 0743-2071/02/0200-0001 $5.00

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002, Pages 1-24.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

2 3 Anderson et al.

(SANs), for example, FibreChannel, to enable incremental scaling of bandwidth
and capacity by attaching more storage to the network. Recent advances in LAN
performance have narrowed the bandwidth gap between SANs and LANS, cre-
ating an opportunity to take a similar approach using a general-purpose LAN
as the storage backplane. A key challenge is to devise a distributed software
layer to unify the decentralized storage resources.

This paper explores interposed request routing in Slice, a new architecture for
network storage. Slice interposes a request switching filter—called a uproxy—
along each client’s network path to the storage service. The uproxy may reside
in a programmable switch or network adapter, or in a self-contained module at
the client’s or server’s interface to the network. We show how a simple uproxy
can virtualize a standard network-attached storage protocol incorporating file
services as well as raw device access. The Slice uproxy distributes request traffic
across a collection of storage and server elements that cooperate to present a
uniform view of a shared file volume with scalable bandwidth and capacity.

This paper makes the following contributions:

—1It outlines the architecture and its implementation in the Slice prototype,
which is based on a uproxy implemented as an IP packet filter. We explore
the impact on service structure, reconfiguration, and recovery.

—1It proposes and evaluates request routing policies within the architecture.
In particular, we introduce two policies for transparent scaling of the name
space of a unified file volume. These techniques complement simple grouping
and striping policies to distribute file access load.

—It evaluates the prototype using synthetic benchmarks including SPECsfs97,
an industry-standard workload for network-attached storage servers. The
results demonstrate that the system is scalable and that it complies with
the Network File System (NFS) V3 standard, a popular protocol for network-
attached storage.

This paper is organized as follows. Section 2 outlines the architecture and
sets Slice in context with related work. Section 3 discusses the role of the
uproxy, defines the request routing policies, and discusses service structure.
Section 4 describes the Slice prototype, and Section 5 presents experimental
results. Section 6 concludes the article.

2. OVERVIEW

The Slice file service consists of a collection of servers cooperating to serve an
arbitrarily large virtual volume of files and directories. To a client, the ensemble
appears as a single file server at some virtual network address. The uproxy
intercepts and transforms packets to redirect requests and to represent the
ensemble as a unified file service.

Figure 1 depicts the structure of a Slice ensemble. Each client’s request
stream is partitioned into three functional request classes corresponding to
the major file workload components: (1) high-volume I/0 to large files, (2) I/O
on small files, and (3) operations on the name space or file attributes. The

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage . 3

directory servers

name e
. .
routing .~ _--
-«

--

40 _____ >

2
,
name space ,/
requests ./
‘

. " bulk 1/O %0
client A\o‘»\:
‘\ \l,o‘:\'\é\v
\ '/,, S AN
N 92 %
Z
small file N y/ S\
read/write \\ ///
placement >~ - / storage

policy array

small-file servers

Fig. 1. Combining functional decomposition and data decomposition in the Slice architecture.

uproxy switches on the request type and arguments to redirect requests to
a selected server responsible for handling a given class of requests. Bulk I/0
operations route directly to an array of storage nodes, which provide block-
level access to raw storage objects. Other operations are distributed among
specialized file managers responsible for small-file I/O and/or name space
requests.

This functional decomposition diverts high-volume data flow to bypass the
managers, while allowing specialization of the servers for each workload compo-
nent, for example, by tailoring the policies for disk layout, caching, and recovery.
A single server node could combine the functions of multiple server classes; we
separate them to highlight the opportunities to distribute requests across more
servers.

The uproxy selects a target server by switching on the request type and
the identity of the target file, name entry, or block, using a separate routing
function for each request class. Thus the routing functions induce a data de-
composition of the volume data across the ensemble, with the side effect of
creating or caching data items on the selected managers. Ideally, the request
routing scheme spreads the data and request workload in a balanced fashion
across all servers. The routing functions may adapt to system conditions, for
example, to use new server sites as they become available. This allows each
workload component to scale independently by adding resources to its server
class.

2.1 The pproxy

An overarching goal is to keep the uproxy simple, small, and fast. The puproxy
may rewrite the destination address of request packets and the source address
or other fields of response packets in order to route requests and preserve each

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

4 3 Anderson et al.

client’s view of a unified virtual service. In a few cases the uproxy may initiate
requests to the Slice ensemble and absorb their responses. The uproxy does not
alter request source addresses or otherwise obscure client identities.

The pproxy functions as a network element within the Internet architecture.
It maintains a bounded amount of state that is “soft” in the sense that it is free
to discard its state and/or pending packets without compromising correctness.
End-to-end protocols (in this case NFS/RPC/UDP or TCP) retransmit packets
as necessary to recover from drops in the uproxy. Although the puproxy resides
“within the network,” it acts as an extension of the service. For example, since
the uproxy is an upper layer protocol component, it must reside (logically) at
one end of the connection or the other; it cannot reside in the “middle” of the
connection where end-to-end encryption might hide protocol fields. The uproxy
does not require any state that is shared across clients, so it may reside on
the client host or network interface, or in a network element close to the
server ensemble. The uproxy is not a barrier to scalability because its func-
tions are freely replicable, with the constraint that each client’s request stream
passes through a single uproxy. This requirement also constrains the puproxy’s
placement to the edge of the network in the presence of asymmetric routing
[Paxson 1997].

We designed the Slice architecture primarily to support file storage at the
granularity of a data center or enterprise, in which the servers are colocated
at a single site. Slice is a scalable file service rather than a distributed file
system. Conceptually, the uproxies and service nodes appear to the clients as
a single IP server host or “virtual storage appliance.” Clients may be remote
from the service, but we have not explored request routing policies for multiple
widely distributed server sites. For example, the request routing policies in our
prototype do not take into account the location of the client, which would be
important for a complete wide-area distributed file system.

2.2 Network Storage Nodes

A shared array of network storage nodes provides all the disk storage used in
a Slice ensemble. The uproxy routes bulk I/0 requests directly to the network
storage array, without intervention by a file manager. More storage nodes may
be added to incrementally scale bandwidth, capacity, and disk arms.

The Slice block storage prototype is loosely based on a proposal in the
National Storage Industry Consortium (NSIC) for object-based storage devices
(OBSD) [Anderson 1999]. Key elements of the OBSD proposal were in turn
inspired by the CMU research on Network Attached Secure Disks (NASD)
[Gibson et al. 1997; Gibson et al. 1998]. Slice storage nodes are “object-based”
rather than sector-based, meaning that requesters address data as logical off-
sets within storage objects. A storage object is an ordered sequence of bytes with
a unique identifier. The placement policies of the file service are responsible for
distributing data among storage objects so as to benefit fully from all of the
resources in the network storage array.

A key advantage of OBSDs and NASDs is that they allow for crypto-
graphic protection of storage object identifiers if the network is insecure [Gibson

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage . 5

et al. 1998]. This protection allows the uproxy to reside outside of the server
ensemble’s trust boundary. In this case, the damage from a compromised pproxy
is limited to the files and directories that its client(s) had permission to access.
However, the Slice request routing architecture is compatible with conventional
sector-based storage devices if every uproxy resides inside the service trust
boundary.

This storage architecture is orthogonal to the question of which level ar-
ranges redundancy to tolerate disk failures. One alternative is to provide re-
dundancy of disks and other vulnerable components internally to each storage
node. A second option is for the file service software to mirror data or maintain
parity across the storage nodes. In Slice, the choice to employ extra redundancy
across storage nodes may be made on a per-file basis through support for mir-
rored striping in our prototype’s I/0O routing policies. For stronger protection, a
Slice configuration could employ redundancy at both levels.

The Slice block service includes a coordinator module for files that span mul-
tiple storage nodes. The coordinator manages optional block maps (Section 3.1)
and preserves atomicity of multisite operations (Section 3.3.2). A Slice configu-
ration may include any number of coordinators, each managing a subset of the
files (Section 4.2).

2.3 File Managers

File management functions above the network storage array are split across
two classes of file managers. Each class governs functions that are common to
any file server; the architecture separates them to distribute the request load
and allow implementations specialized for each request class.

—Directory servers handle name space operations, for example, to create,
remove, or lookup files and directories by symbolic name; they manage di-
rectories and mappings from names to identifiers and attributes for each file
or directory.

—Small-file servers handle read and write operations on small files and the
initial segments of large files (Section 3.1).

Slice file managers are dataless; all of their state is backed by the network
storage array. Their role is to aggregate their structures into larger storage
objects backed by the storage nodes, and to provide memory and CPU resources
to cache and manipulate those structures. In this way, the file managers can
benefit from the parallel disk arms and high bandwidth of the storage array as
more storage nodes are added.

The principle of dataless file managers also plays a key role in recovery. In ad-
dition to its backing objects, each manager journals its updates in a write-ahead
log [Hagmann 1987]; the system can recover the state of any manager from its
backing objects together with its log. This allows fast failover, in which a sur-
viving site assumes the role of a failed server, recovering its state from shared
storage [Hartman and Ousterhout 1995; Anderson et al. 1995; Thekkath et al.
1997].

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

6 3 Anderson et al.

2.4 Summary

Interposed request routing in the Slice architecture yields three fundamental
benefits:

—Scalable file management with content-based request switching. Slice dis-
tributes file service requests across a server ensemble. A good request switch-
ing scheme induces a balanced distribution of file objects and requests across
servers, and improves locality in the request stream.

—Direct storage access for high-volume I/O. The puproxy routes bulk I/0 traffic
directly to the network storage array, removing the file managers from the
critical path. Separating requests in this fashion eliminates a key scaling
barrier for conventional file services [Gibson et al. 1997; Gibson et al. 1998].
At the same time, the small-file servers absorb and aggregate I/0 operations
on small files, so there is no need for the storage nodes to handle small objects
efficiently.

—Compatibility with standard file system clients. The uproxy factors request
routing policies out of the client-side file system code. This allows the ar-
chitecture to leverage a minimal computing capability within the network
elements to virtualize the storage protocol.

2.5 Related Work

A large number of systems have interposed new system functionality by “wrap-
ping” an existing interface, including kernel system calls [Jones 1993], internal
interfaces [Heidemann and Popek 1994], communication bindings [Hamilton
et al. 1993], or messaging endpoints. The concept of a proxy mediating between
clients and servers [Shapiro 1986] is now common in distributed systems. We
propose to mediate some storage functions by interposing on standard storage
access protocols within the network elements. Network file services can benefit
from this technique because they have well-defined protocols and a large in-
stalled base of clients and applications, many of which face significant scaling
challenges today.

The Slice uproxy routes file service requests based on their content. This
is analogous to the HTTP content switching features offered by some network
switch vendors (e.g., Alteon, Arrowpoint, F5), based in part on research demon-
strating improved locality and load balancing for large Internet server sites [Pai
et al. 1998]. Slice extends the content switching concept to a file system context.

A number of recent commercial and research efforts investigate techniques
for building scalable storage systems for high-speed switched LAN networks.
These system are built from disks distributed through the network, and at-
tached to dedicated servers [Lee and Thekkath 1996; Thekkath et al. 1997,
Hartman and Ousterhout 1995], cooperating peers [Anderson et al. 1995;
Voelker et al. 1998], or the network itself [Gibson et al. 1997; Gibson et al.
1998]. We separate these systems into two broad groups.

The first group separates file managers (e.g., the name service) from the
block storage service, as in Slice. This separation was first proposed for the
Cambridge Universal File Server [Birrell and Needham 1980]. Subsequent sys-
tems adopted this separation to allow bulk I/0O to bypass file managers [Cabrera

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage . 7

and Long 1991; Hartman and Ousterhout 1995], and it is now a basic tenet of
research in network-attached storage devices including the CMU NASD work
on devices for secure storage objects [Gibson et al. 1997; Gibson et al. 1998].
Slice shows how to incorporate placement and routing functions essential for
this separation into a new filesystem structure for network-attached storage.
The CMU NASD project integrated similar functions into network file sys-
tem clients [Gibson et al. 1998]; the Slice model decouples these functions,
preserving compatibility with existing clients. In addition, Slice extends the
NASD project approach to support scalable file management as well as high-
bandwidth I/O for large files.

A second group of scalable storage systems layers the file system functions
above a network storage volume using a shared disk model. Policies for strip-
ing, redundancy, and storage site selection are specified on a volume basis;
cluster nodes coordinate their accesses to the shared storage blocks using an
ownership protocol. This approach has been used with both log-structured
(Zebra [Hartman and Ousterhout 1995] and xF'S [Anderson et al. 1995]) and
conventional (Frangipani/Petal [Lee and Thekkath 1996; Thekkath et al. 1997]
and GFS [Preslan et al. 1999]) file system organizations. The cluster may be
viewed as “serverless” if all nodes are trusted and have direct access to the
shared disk, or alternatively the entire cluster may act as a file server to un-
trusted clients using a standard network file protocol, with all I/O passing
through the cluster nodes as they mediate access to the disks.

The key benefits of Slice request routing apply equally to these shared disk
systems when untrusted clients are present. First, request routing is a key to
incorporating secure network-attached block storage, which allows untrusted
clients to address storage objects directly without compromising the integrity
of the file system. That is, a uproxy could route bulk I/0 requests directly to
the devices, yielding a more scalable system that preserves compatibility with
standard clients and allows per-file policies for block placement, parity or repli-
cation, prefetching, etc. Second, request routing enhances locality in the request
stream to the file servers, improving cache effectiveness and reducing block con-
tention among the servers.

The shared disk model is used in many commercial systems, which increas-
ingly interconnect storage devices and servers with dedicated Storage Area Net-
works (SANs), for example, FibreChannel. This paper explores storage request
routing for Internet networks, but the concepts are equally applicable in SANs.

Our proposal to separate small-file I/O from the request stream is similiar
in concept to the Amoeba Bullet Server [van Renesse et al. 1989], a specialized
file server that optimizes small files. As described in Section 4.4, the proto-
type small-file server draws on techniques from the Bullet Server, FFS frag-
ments [McKusick et al. 1984], and SquidMLA [Maltzahn et al. 1999], a Web
proxy server that maintains a user-level “filesystem” of small cached Web pages.

3. REQUEST ROUTING POLICIES

This section explains the structure of the uproxy and the request routing
schemes used in the Slice prototype. The purpose is to illustrate concretely

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

8 3 Anderson et al.

Table I. Some Important Network File System (NFS) Protocol Operations

Name Space Operations

lookup(dir, name) returns (fthandle, attr) Look up a name in dir; return handle and
attributes.

create(dir, name) returns (fhandle, attr) Create a file/directory and update the parent

mkdir(dir, name) returns (fhandle, attr) entry/link count and modify timestamp.

remove(dir, name), rmdir(dir, name) Remove a file/directory or hard link and update the
parent entry/link count and modify timestamp.

link(olddir, oldname, newdir, newname) Create a new name for a file, update the file link

returns (fhandle, attr) count, and update modify timestamps on the file
and newdir.

rename(olddir, oldname, newdir, newname) Rename an existing file or hard link; update the

returns (fhandle, attr) link count and modify timestamp on both the old

and new parent.

Attribute Operations
getattr(object) returns (attr) Retrieve the attributes of a file or directory.
setattr(object, attr) Modify the attributes of a file or directory, and
update its modify timestamp.

I/0 Operations

read(file, offset, len) returns (data, attr) Read data from a file, updating its access
timestamp.
write(file, offset, len) returns (data, attr) Write data to a file, updating its modify timestamp.

Directory Retrival |
readdir(dir, cookie) returns (entries, cookie) | Read some or all of the entries in a directory. |

the request routing policies enabled by the architecture, and the implications of
those policies for the way the servers interact to maintain and recover consistent
file system states. We use the NF'S V3 protocol as a reference point because it
is widely understood and our prototype supports it.

The pproxy intercepts an NFS request addressed to virtual NFS servers, and
routes the request to a physical server by applying a function to the request
type and arguments. It then rewrites the IP address and port to redirect the
request to the selected server. When a response arrives, the uproxy rewrites
the source address and port before forwarding it to the client, so the response
appears to originate from the virtual NFS server.

The request routing functions must permit reconfiguration to add or remove
servers, while minimizing state requirements in the uproxy. The uproxy directs
most requests by extracting relevant fields from the request, perhaps hashing
to combine multiple fields, and interpreting the result as a logical server site
ID for the request. It then looks up the corresponding physical server in a
compact routing table. Multiple logical sites may map to the same physical
server, leaving flexibility for reconfiguration (Section 3.3.1). The routing tables
constitute soft state; the mapping is determined externally, so the uproxy never
modifies the tables.

The pproxy examines up to four fields of each request, depending on the
policies configured:

—Request type. Routing policies are keyed by the NFS request type, so the
uproxy may employ different policies for different functions. Table I lists
the important NFS request groupings discussed in this paper.

—File handle. Each NFS request targets a specific file or directory, named by
a unique identifier called a file handle (or fhandle). Although NFS fhandles
are opaque to the client, their structure can be known to the uproxy, which

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage . 9

acts as an extension of the service. Directory servers encode a fileID in each
fhandle, which the uproxies extract as a routing key.

—Read/write offset. NFS I/O operations specify the range of offsets covered
by each read and write. The uproxy uses these fields to select the server or
storage node for the data.

—Name component. NFS name space requests include a symbolic name com-
ponent in their arguments (see Table I). A key challenge for scaling file man-
agement is to obtain a balanced distribution of these requests. This is par-
ticularly important for name-intensive workloads with small files and heavy
create/lookup/remove activity, as often occurs in Internet services for mail,
news, message boards, and Web access.

We now outline some uproxy policies that use these fields to route specific
request groups.

3.1 Block I/O

Request routing for read/write requests have two goals: separate small-file
read/write traffic from bulk I/0, and decluster the blocks of large files across
the storage nodes for the desired access properties (e.g., high bandwidth or a
specified level of redundancy). We address each in turn.

When small-file servers are configured, the prototype’s routing policy defines
a fixed threshold offset (e.g., 64 KB); the uproxy directs I/0 requests below the
threshold to a small-file server selected from the request fhandle. The threshold
offset is necessary because the size of each file may change at any time. Thus
the small-file servers also receive a subset of the I/0 requests on large files; they
receive all I/0 below the threshold, even if the target file is large. In practice,
large files have little impact on the small-file servers because there tends to be
a small number of these files, even if they make up a large share of the stored
bytes. Similarly, large file I/O below the threshold is limited by the bandwidth of
the small-file server, but this affects only the first threshold bytes, and becomes
progressively less significant as the file grows.

The uproxy redirects I/0 traffic above the threshold directly to the network
storage array, using some placement policy to select the storage site(s) for each
block. A simple option is to employ static striping and placement functions that
compute on the block offset and/or fileID. More flexible placement policies would
allow the uproxy to consider other factors, for example, load conditions on the
network or storage nodes, or file attributes encoded in the fhandle. To generalize
to more flexible placement policies, Slice optionally records block locations in
per-file block maps managed by the block service coordinators. The pproxies
interact with the coordinators to fetch and cache fragments of the block maps
as they handle I/O operations on files.

As one example of an attribute-based policy, Slice supports a mirrored strip-
ing policy that replicates each block of a mirrored file on multiple storage nodes,
to tolerate failures up to the replication degree. Mirroring consumes more stor-
age and network bandwidth than striping with parity, but it is simple and
reliable, avoids the overhead of computing and updating parity, and allows
load-balanced reads [Arpaci-Dusseau et al. 1999; Lee and Thekkath 1996].

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

10 o Anderson et al.

3.2 Name Space Operations

Effectively distributing name space requests presents different challenges from
I/0 request routing. Name operations involve more computation, and name
entries may benefit more from caching because they tend to be relatively
small and fragmented. Moreover, directories are frequently shared. Directory
servers act as synchronization points to preserve integrity of the name space,
for example, to prevent clients from concurrently creating a file with the same
name, or removing a directory while a name create is in progress.

A simple approach to scaling a file service is to partition the name space into
a set of volumes, each managed by a single server. Unfortunately, this voLUME
PARTITIONING strategy compromises transparency and increases administrative
overhead in two ways. First, volume boundaries are visible to clients as mount
points, and naming operations such as link and rename cannot cross volume
boundaries. Second, the system develops imbalances if volume loads grow at
different rates, requiring intervention to repartition the name space. This may
be visible to users through name changes to existing directories.

An important goal of name management in Slice is to automatically dis-
tribute the load of a single file volume across multiple servers, without impos-
ing user-visible volume boundaries. We propose two alternative name space
routing policies to achieve this goal. MKDIR sWITCHING yields balanced distri-
butions when the average number of active directories is large relative to the
number of directory server sites, but it binds large directories to a single server.
For workloads with very large directories, NAME HASHING yields probabilistically
balanced request distributions independent of workload. The cost of this effec-
tiveness is that more operations cross server boundaries, increasing the cost
and complexity of coordination among the directory servers (Section 4.3).

MExkDpIR sWITCHING works as follows. In most cases, the uproxy routes name
space operations to the directory server that manages the parent directory; the
uproxy identifies this server by indexing its routing table with the fileID from
the parent directory fhandle in the request (refer to Table I). On a mkdir request,
the uproxy decides with probability p to redirect the request to a different
directory server, placing the new directory—and its descendents—on a different
site from the parent directory. The policy uniquely selects the new server by
hashing on the parent fhandle and the symbolic name of the new directory;
this guarantees that races over name manipulation involve at most two sites.
Reducing directory affinity by increasing p makes the policy more aggressive in
distributing name entries across sites; this produces a more balanced load, but
more operations involve multiple sites. Section 5 presents experimental data
illustrating this tradeoff.

NaME HASHING extends this approach by routing all name space operations
using a hash on the name component and its position in the directory tree, as
given by the parent directory fhandle. This approach represents the entire vol-
ume name space as a unified global hash table distributed among the directory
servers. It views directories as distributed collections of name entries, rather
than as files accessed as a unit. Conflicting operations on any given name en-
try (e.g., create/create, create/remove, remove/lookup) always hash to the same

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage o 11

server, where they serialize on the shared hash chain. Operations on different
entries in the same directory (e.g., create, remove, lookup) may proceed in par-
allel at multiple sites. For good performance, NAME HASHING requires sufficient
memory to keep the hash chains memory-resident, since the hashing function
sacrifices locality in the hash chain accesses. Also, readdir operations span
multiple sites; this is the right behavior for large directories, but it increases
readdir costs for small directories.

3.3 Storage Service Structure

Request routing policies impact storage service structure. The primary chal-
lenges are coordination and recovery to maintain a consistent view of the file
volume across all servers, and reconfiguration to add or remove servers within
each class.

Most of the routing policies outlined above are independent of whether small
files and name entries are bound to the server sites that create them. One op-
tion is for the servers to share backing objects from a shared disk using a block
ownership protocol (see Section 2.5); in this case, the role of the uproxy is to
enhance locality in the request stream to each server. Alternatively, the system
may use fixed placement in which items are controlled by their create sites un-
less reconfiguration or failover causes them to move; with this approach backing
storage objects may be private to each site, even if they reside on shared net-
work storage. Fixed placement stresses the role of the request routing policy in
the placement of new name entries or data items. The next two subsections dis-
cuss reconfiguration and recovery issues for the Slice architecture with respect
to these structural alternatives.

3.3.1 Reconfiguration. Consider the problem of reconfiguration to add or
remove file managers, that is, directory servers, small-file servers, or map co-
ordinators. For requests routed by keying on the fileID, the system updates
uproxy routing tables to change the binding from fileIDs to physical servers
if servers join or depart the ensemble. To keep the tables compact, Slice maps
the fileID to a smaller logical server ID before indexing the table. The num-
ber of logical servers defines the size of the routing tables and the minimal
granularity for rebalancing. The uproxy’s copy of the routing table is a “hint”
that may become stale during reconfiguration. The uproxy may load new tables
lazily from an external source; this requires that servers identify and forward
misdirected requests.

This approach generalizes to policies in which the logical server ID is derived
from a hash that includes other request arguments, as in the NAME HASHING ap-
proach. For NAME HASHING systems and other systems with fixed placement, the
reconfiguration procedure must move logical servers from one physical server
to another. One approach is for each physical server to use multiple backing
objects, one for each hosted logical server, and reconfigure by reassigning the
binding of physical servers to backing objects in the shared network storage
array. Otherwise, reconfiguration must copy data from one backing object to
another. In general, an ensemble with N servers must move 1/Nth of its data

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

12 o Anderson et al.

to rebalance after adding or losing a physical server [Karger et al. 1997]. A
key step for reconfiguration is to update the routing tables for each uproxy. For
example, the uproxy may refresh the table from a server after a logical server
migration causes the old tables to become stale. It is not necessary to synchro-
nize the table refresh with migration; if servers can identify misdirected re-
quests, then the uproxy’s copy of the table is only a “hint.” It is the responsibility
of the servers to synchronize incoming requests with migration oflogical servers
among physical servers.

3.3.2 Atomicity and Recovery. File systems have strong integrity require-
ments and frequent updates; the system must preserve their integrity through
failures and concurrent operations. The focus on request routing naturally im-
plies that the multiple servers must manage distributed state.

File managers prepare for recovery by generating a write-ahead log in shared
storage. For systems that use the shared-disk model without fixed placement,
all operations execute at a single manager site, and it is necessary and sufficient
for the system to provide locking and recovery procedures for the shared disk
blocks [Thekkath et al. 1997]. For systems with fixed placement, servers do
not share blocks directly, but some operations must update state at multiple
sites through a peer-peer protocol. Thus there is no need for distributed locking
or recovery of individual blocks, but the system must coordinate logging and
recovery across sites, for example, using two-phase commit.

For MKDIR SWITCHING, the operations that update multiple sites are those in-
volving the “orphaned” directories that were placed on different sites from their
parents. These operations include the redirected mkdirs themselves, associated
rmdirs, and any rename operations involving the orphaned entries. Since these
operations are relatively infrequent, as determined by the redirection probabil-
ity parameter p, it is acceptable to perform a full two-phase commit as needed
to guarantee their atomicity on systems with fixed placement. However, NAME
HASHING requires fixed placement—unless the directory servers support fine-
grained distributed caching—and any name space update involves multiple
sites with probability (N — 1)/N or higher. While it is possible to reduce com-
mit costs by logging asynchronously and coordinating rollback, this approach
weakens failure properties because recently completed operations may be lost
in a failure.

Shared network storage arrays present their own atomicity and recovery
challenges. In Slice, the block service coordinators preserve atomicity of oper-
ations involving multiple storage nodes, including mirrored striping, truncate/
remove, and NFS V3 write commitment (commit). Amiri et al. [2000] addressed
atomicity and concurrency control issues for shared storage arrays; the Slice
coordinator protocol complements [Amiri et al. 2000] with an intention logging
protocol for atomic filesystem operations [Anderson and Chase 2000]. The ba-
sic protocol is as follows. At the start of the operation, the uproxy sends to
the coordinator an intention to perform the operation. The coordinator logs the
intention to stable storage. When the operation completes, the uproxy noti-
fies the coordinator with a completion message, asynchronously clearing the
intention. If the coordinator does not receive the completion within some time

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage o 13

bound, it probes the participants to determine if the operation completed, and
initiates recovery if necessary. A failed coordinator recovers by scanning its
intentions log, completing or aborting operations in progress at the time of the
failure. In practice, the protocol eliminates some message exchanges and log
writes from the critical path of most common-case operations by piggybacking
messages, leveraging the NFS V3 commit semantics, and amortizing intention
logging costs across multiple operations.

4. IMPLEMENTATION

The Slice prototype is a set of loadable kernel modules for the FreeBSD oper-
ating system. The prototype includes a uproxy implemented as a packet filter
below the Internet Protocol (IP) stack, and kernel modules for the basic server
classes: block storage service and block storage coordinator, directory server,
and small-file server. A given server node may be configured for any subset of
the Slice server functions, and each function may be present at an arbitrary
number of nodes. The following subsections discuss each element of the Slice
prototype in more detail.

4.1 The pproxy

The Slice uproxy is prototyped as a loadable packet filter module [Mogul et al.
1987] that intercepts packets exchanged with registered NFS virtual server
endpoints. The module is configurable to run as an intermediary at any point in
the network between a client and the server ensemble, preserving compatibility
with NF'S clients. Our premise is that the functions of the uproxy are simple
enough to integrate more tightly with the network switching elements, enabling
wire-speed request routing. The uproxy may also be configured below the IP
stack on each client node, to avoid the store-and-forward delays imposed by
host-based intermediaries in our prototype.

The pproxy is a nonblocking state machine with soft state consisting of pend-
ing request records and routing tables for I/O redirection, MKDIR SWITCHING, and
NAME HASHING, as described in Section 3. The prototype statically configures the
policies and table sizes for name space operations and small-file I/O; it does
not yet detect and refresh stale routing tables for reconfiguration. These poli-
cies use the MD5 [Rivest 1992] hash function; we determined empirically that
MD?5 yields a combination of balanced distribution and low cost that is superior
to competing hash functions available to us. For reads and writes beyond the
threshold offset the uproxy may use either a static block placement policy or
a local cache of per-file block maps supplied by a block service coordinator (see
Section 4.2).

The puproxy also maintains a cache over file attribute blocks returned in
NFS responses from the servers. Directory servers maintain the authoritative
attributes for files; the system must keep these attributes current to reflect I/0
traffic to the block storage nodes, which affects the modify time, access time,
and/or size attributes of the target file. The uproxy updates these attributes in
its cache as each operation completes, and returns a complete set of attributes

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

14 o Anderson et al.

to the client in each response (some clients depend on this behavior, although
the NFS specification does not require it). The uproxy generates an NFS setattr
operation to push modified attributes back to the directory server when it evicts
attributes from its cache, or when it intercepts an NFS V3 write commit request
from the client. Most clients issue commit requests for modified files from a
periodic system update daemon, and when a user process calls fsync or close on
a modified file.

The prototype may yield weaker attribute consistency than some NFS im-
plementations. First, attribute timestamps are no longer assigned at a central
site; we rely on the Network Time Protocol (NTP) [Mills 1985] to keep clocks
synchronized across the system. Most NF'S installations already use NTP to
allow consistent assignment and interpretation of timestamps across multiple
servers and clients. Second, a read or an uncommitted write is not guaranteed
to update the attribute timestamps if the uproxy fails and loses its state. In
the worst case an uncommitted write might complete at a storage node but not
affect the modify time at all (if the client also fails before reissuing the write).
The NFS V3 specification permits this behavior: uncommitted writes may af-
fect any subset of the modified data or attributes. Third, although the attribute
timestamps cached and returned by each uproxy are always current with re-
spect to operations from clients bound to that uproxy, they may drift beyond
the “3-second window” that is the de facto standard in NFS implementations
for concurrently shared files. We consider this to be acceptable since NFS V3 of-
fers no firm consistency guarantees for concurrently shared files anyway. Note,
however, that NFS V4 [Pawlowski et al. 2000] proposes to support consistent
file sharing through a leasing mechanism similar to NQ-NFS [Macklem 1994];
it will then be sufficient for the uproxy to propagate file attributes when a client
renews or relinquishes a lease for the file. The current uproxy bounds the drift
by writing back modified attributes at regular intervals.

Since the uproxy modifies the contents of request and response packets, it
must update the UDP or TCP checksums to match the new packet data. The
prototype uproxy recomputes checksums incrementally, generalizing a tech-
nique used in other packet rewriting systems. The uproxy’s differential check-
sum code is derived from the FreeBSD implementation of Network Address
Translation (NAT). The cost of incremental checksum adjustment is propor-
tional to the number of modified bytes and is independent of the total size of
the message. It is efficient because the uproxy rewrites at most the source or
destination address and port number, and in some cases certain fields of the file
attributes.

4.2 Block Storage Service

The Slice block storage servers use a kernel module that exports disks to the
network. The storage nodes serve a flat space of storage objects named by
unique identifiers; storage is addressed by (object, logical block), with physical
allocation controlled by the storage node software as described in Section 2.2.
The key operations are a subset of NF'S, including read, write, commit, and re-
move. The storage nodes accept NFS file handles as object identifiers, using an

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage o 15

external hash to map them to storage objects. Our current prototype uses the
Fast File System (FFS) as a storage manager within each storage node. The
storage nodes prefetch sequential files up to 256 KB beyond the current access,
and also leverage FFS write clustering.

The block storage service includes a coordinator implemented as an extension
to the storage node module. Each coordinator manages a set of files, selected
by fileID. The coordinator maintains optional per-file block maps giving the
storage site for each logical block of the file; these maps are used for dynamic
I/O routing policies (Section 3.1). The coordinator also implements the intention
logging protocol to preserve failure atomicity for file accesses involving multiple
storage sites (Section 3.3.2), including remove/truncate, consistent write com-
mitment, and mirrored writes, as described in Anderson and Chase [2000]. The
coordinator backs its intentions log and block maps within the block storage ser-
vice using a static placement function. A more failure-resilient implementation
would employ redundancy across storage nodes.

4.3 Directory Servers

Our directory server implementations use fixed placement and support both the
NAME HASHING and MKDIR SWITCHING policies. The directory servers store directory
information as webs of linked fixed-size cells representing name entries and file
attributes, allocated from memory zones backed by the block storage service.
These cells are indexed by hash chains keyed by an MD5 hash fingerprint on
the parent file handle and name. The directory servers place keys in each newly
minted file handle, allowing them to locate any resident cell if presented with
an fhandle or an (fhandle, name) pair. Attribute cells may include a remote
key to reference an entry on another server, enabling cross-site links in the
directory structure. Thus the name entries and attribute cells for a directory
may be distributed arbitrarily across the servers, making it possible to support
both NAME HASHING and MKDIR SWITCHING policies easily within the same code
base.

Given the distribution of entries across directory servers, some NFS oper-
ations involve multiple sites. The uproxy interacts with a single site for each
request. Directory servers use a simple peer-peer protocol to update link counts
for create/link/remove and mkdir/rmdir operations that cross sites, and to fol-
low cross-site links for lookup, getattr/setattr, and readdir. For NAME HASHING
we implemented rename as a link followed by a remove.

Support for recovery and reconfiguration is incomplete in our prototype. Di-
rectory servers log their updates, but the recovery procedure itself is not im-
plemented, nor is the support for shifting ownership of blocks and cells across
servers.

To amortize costs associated with update logging, directory servers use a
group commit [Hagmann 1987] policy. Log writes are delayed until a sufficient
number of operations queue or until a timeout, and then written with a single
operation. We also block new operations while a previous write is in progress,
regardless of the number of operations queued. This bounds log 1/0 traffic
automatically without introducing significant delay.

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

16 o Anderson et al.

mapping file

uniq [offlloff2| . |off—| R 3
\ | filelen |1en1|1en2| |len8| EnEe Lo RS
data file

Fig. 2. Small-file server data structures.

4.4 Small-File Servers

The small-file server is implemented by a module that manages each file as a
sequence of 8 KB logical blocks. Figure 2 illustrates the key data structures and
their use for a read or write request. The locations for each block are given by a
per-file map record. The server accesses this record by indexing an on-disk map
descriptor array using the fileID from the fhandle. Like the directory server,
storage for small-file data is allocated from zones backed by objects in the block
storage service.

Each map record gives a fixed number of (offset, length) pairs mapping 8 KB
file extents to regions within a backing object. Each logical block may have less
than the full 8 KB of physical space allocated for it; physical storage for a block
rounds the space required up to the next power of 2 to simplify space manage-
ment. New files or writes to empty segments are allocated space according to
best fit, or if no good fragment is free, a new region is allocated at the end of
the backing storage object. The best-fit variable fragment approach is similar
to SquidMLA [Maltzahn et al. 1999].

This structure allows efficient space allocation and supports file growth. For
example, a 8300-byte file would consume only 8320 bytes of physical storage
space, 8192 bytes for the first block, and 128 for the remaining 108 bytes. Un-
der a create-heavy workload, the small-file allocation policy lays out data on
backing objects sequentially, batching newly created files into a single stream
for efficient disk writes. The small-file servers comply with the NFS V3 commit
specification for writes below the threshold offset.

Map records and data from the small-file server backing objects are cached
in a simple block buffer cache. This structure performs well if file accesses
and the assignment of fileIDs show good locality. In particular, if the directory
servers assign fileIDs with good spatial locality, and if files created together are
accessed together, then the cost of reading the map records is amortized across
multiple files whose records fit in a single block.

5. PERFORMANCE

This section presents experimental results from the Slice prototype to show the
overheads and scaling properties of the interposed request routing architecture.
We use synthetic benchmarks to stress different aspects of the system, then
evaluate whole-system performance using an industry-standard SPECsfs97
workload.

The storage nodes for the test ensemble are Dell PowerEdge 4400s with a
733 MHz Pentium-IIT Xeon CPU, 256 MB RAM, and a ServerWorks LE chipset.

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage o 17

Table II. Bulk I/0 Bandwidth in the Test Ensemble

| | Single Client | Saturation |
Read 77.9 MB/s 510 MB/s
Write 76.1 MB/s 424 MB/s
Read-mirrored 77.2 MB/s 501 MB/s
Write-mirrored 55.7 MB/s 250 MB/s

Each storage node has eight 18 GB Seagate Cheetah drives (ST318404LC)
connected to a dual-channel Ultra-160 SCSI controller. Servers and clients are
450 MHz Pentium-III PCs with 512 MB RAM and Asus P2B motherboards
using a 440 BX chipset. The machines are linked by a Gigabit Ethernet network
with Alteon ACEnic 710025 adapters and a 32-port Extreme Summit-7i switch.
The switch and adapters use 9 KB (“Jumbo”) frames. The adapters run locally
modified firmware that supports header splitting for NFS traffic. This allows
the NF'S stack to avoid copies in the read and write path. The adapters occupy
a 64-bit/66 MHz PCI slot on the Dell 4400s, and a 32-bit/33 MHz PCI slot on
the PCs. All kernels are built from the same FreeBSD 4.0 source pool.

5.1 Read/Write Performance

Table II shows raw read and write bandwidth for large files. Each test (dd)
issues read or write system calls on a 1.25 GB file in a Slice volume mounted
with a 32 KB NFS block size and a read-ahead depth of four blocks. The pproxies
use a static I/0 routing function to stripe large-file data across the storage array.
We measure sequential access bandwidth for unmirrored files and mirrored files
with two replicas.

The left column of Table II shows the I/O bandwidth driven by a single PC
client. We modified the FreeBSD client for zero-copy reading and writing, allow-
ing higher bandwidth with lower CPU utilization; in this case, read performance
is limited by a prefetch depth bound in FreeBSD. Similarly, write performance
is limited by the number of outstanding writes. Mirrored read bandwidth is
nearly identical to nonmirrored. The client reads one mirror replica the same
way it would read the only copy in the nonmirrored case. Mirroring degrades
write bandwidth because the client host writes to both mirrors.

The right column of Table II shows the aggregate bandwidth delivered to
eight clients, saturating the storage node I/O systems. Each storage node
sources reads to the network at 64 MB/s and sinks writes at 53 MB/s. While
the Cheetah drives each yield 33 MB/s of raw bandwidth, achievable disk band-
width is below 75 MB/s per node because the 4400 backplane has a single SCSI
channel for all of its internal drive bays, and the FreeBSD 4.0 driver runs the
channel in Ultra-2 mode because it does not yet support Ultra-160.

5.2 Overhead of the uproxy

The interposed request routing architecture is sensitive to the costs to inter-
cept and redirect file service protocol packets. Table III summarizes the CPU
overheads for a client-based uproxy under a synthetic benchmark that stresses
name space operations, which place the highest per-packet loads on the yuproxy.

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

18 o Anderson et al.

Table III. pproxy CPU Utilization (500 MHz
Alpha 21264) for 6,250 Packets/Second

| Operation | CPU |
Packet interception 0.7%
Packet decode 4.1%
Redirection/rewriting 0.5%
Soft state logic 0.8%

The benchmark repeatedly unpacks (untar) a set of zero-length files in a direc-
tory tree that mimics the FreeBSD source distribution. Each file create gen-
erates seven NFS operations: lookup, access, create, getattr, lookup, setattr,
setattr. We used iprobe (Instruction Probe), an on-line profiling tool for Alpha-
based systems, to measure the uproxy CPU cost on a 500 MHz Compaq 21264
client (4 MB L2). This untar workload generates mixed NF'S traffic at a rate of
3125 request/response pairs per second.

The client spends 6.1% of its CPU cycles in the uproxy. Redirection replaces
the packet destination and/or ports and restores the checksum as described in
Section 4.1, consuming a modest 0.5% of CPU time. The cost of managing soft
state for attribute updates and response pairing accounts for 0.8%. The most
significant cost is the 4.1% of CPU time spent decoding the packets to prepare
for rewriting. Nearly half of the cost is to locate the offsets of the NFS request
type and arguments; NFS V3 and ONC RPC headers each include variable-
length fields (e.g., access groups and the NFS V3 file handle) that increase the
decoding overhead. Minor protocol changes could reduce this complexity. While
this complexity affects the cost to implement the uproxy in network elements,
it does not limit the scalability of the Slice architecture.

5.3 Directory Service Scaling

We use a synthetic, metadata-intensive benchmark to evaluate scalability of
the prototype directory service using the NAME HASHING and MKDIR SWITCHING poli-
cies. In this test, our workload generator runs with one event-driven process
per client machine, producing a mix of NFS V3 requests through a raw socket,
independent of any client NFS implementation. It measures latency and de-
livered throughput in NFS operations per second (NFSOPS). This synthetic
benchmark is similar to the SPECsfs97 benchmark, described and used for the
overall scalability tests below in Section 5.4. The operation mix summarized
in Table IV is modeled after the SPECsfs97 operation distribution, adjusted to
emphasize costs associated with metadata operations. Read, write, and commit
I/0 operations are removed from the distribution set, and replaced with a cor-
responding number of file and directory create and remove operations.

We run our benchmark across 15 client machines and vary the number of
directory servers. For this test we fix the MKDIR SWITCHING affinity at p = 0.1, that
is, the uproxy selects a new server for 90% of the mkdir requests, to distribute
load aggressively across the server set. Under NAME HASHING, the pproxy hashes
to select a server for every file create and directory mkdir.

Figure 3 illustrates Slice directory service scaling under the NAME HASHING
and MKDIR SWITCHING policies, labeled Slice-NH-n and Slice-MS-n, respectively,

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI
CMO053A-273 ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage o 19

Table IV. Standard and Modified Metadata-Intensive
SPECsfs97 Operation Distributions

| Operation | | Standard | Modified |
lookup 27% 27%
read 18% 0%
write 9% 0%
getattr 11% 11%
readlink 7% 7%
readdir 2% 2%
create 1% 9%
remove 1% 9%
mkdir 0% 8%
rmdir 0% 8%
fsstat 1% 1%
setattr 1% 1%
readdirplus 9% 9%
access 7% 7%
commit 5% 0%

—&—Slice-NH-1
—&— Slice-NH-2
—a— Slice-NH-3
—— Slice-NH-4
- - % - - Slice-MS-1
- - @ - - Slice-MS-2
- -+ - - Slice-MS-3
------ Slice-MS-4

Average Latency (ms/op)

0 7000 14000 21000 28000

Offered Load (NFSOPS)

Fig. 3. Directory service scaling.

varying the server set size n. Our synthetic benchmark increases the offered
load on the X-axis, measuring the average operation latency on the Y-axis. For
MKDIR SWITCHING we chose the most aggressive p = 1, that is, the uproxy hashes
to select a target for every mkdir request to distribute the directories across
the N server sites.

Both policies scale by balancing load and capacity. In this experiment, adding
a server raises the saturation point. There is an obvious disparity between
policies; NAME HASHING exhibits higher latencies and lower saturation points.
Most operations execute identically under either policy—the uproxy routes the
request to the proper server which directly handles the request.

The difference between policies lies in how they handle file and directory
creation and the corresponding name space linkage. Under MKDIR SWITCHING,
the uproxy keeps all file entries on the same server as their parent directory,
but shunts some mkdir requests to a different server. These spanning entries

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

20 o Anderson et al.

12

—e— 20,000 ops/s
—— 17,500 ops/s
—&— 15,000 ops/s
—»— 12,500 ops/s

10 -]

Average Latency (ms/op)

0 20 40 60 80 100
Directory Affinity (%)

Fig. 4. Impact of affinity for MKDIR SWITCHING.

require peer—peer operations to link a name on the parent directory server to
the actual object on another. Also, peer—peer operations require synchronous
log flushes (with group-commit [Hagmann 1987]) for recovery purposes. A NAME
HASHING uproxy redirects both mkdir and file create requests. This inflates the
number of peer—peer operations, degrading performance. Furthermore, readdir
operations execute at a single server under the MKDIR SWITCHING policy because
all name entries exist at their parent directory’s site. Under NAME HASHING,
directories are distributed across all servers, requiring the first server to contact
every other server in order to satisfy the readdir request.

Figure 4 shows the effect of varying directory affinity (1 — p) for MKDIR SWITCH-
ING under the modified, metadata intensive SPECsfs-like workload summarized
in Table IV. The X-axis gives the probability 1 — p that a new directory is placed
on the same server as its parent; the Y-axis shows the average per-operation
latency observed by the clients. This test uses 10 client nodes hosting our work-
load generator configured to the metadata intensive operation set, and four
directory servers.

Directory affinity drives two competing latency trends. First, directory
servers synchronously flush their logs before initiating a cross-server opera-
tion. The frequency of cross-server operations decreases as directory affinity
goes up, containing more operations within a single server. Second, increasing
affinity eventually degrades performance due to load imbalance. This effect is
more pronounced under heavier load where good distribution is necessary to
prevent saturation.

5.4 Overall Performance and Scalability

We now report results from SPECsfs97, an industry-standard benchmark for
network-attached storage. SPECsfs97 runs as a group of workload generator
processes that produce a realistic mix of NF'S V3 requests, check the responses
against the NFS standard, and measure latency and delivered throughput

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI
CMO053A-273 ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage o 21

8000

6000

4000 +

2000 -

Delivered Load (NFSOPS)

0 1250 2500 3750 5000 6250 7500
Offered Load (NFSOPS)

Fig. 5. SPECsfs97 throughput at saturation.

in NFS operations per second (NFSOPS). SPECsfs is designed to benchmark
servers but not clients; it sends and receives NFS packets from user space
without exercising the client kernel NFS stack. SPECsfs is a demanding,
industrial-strength, self-scaling benchmark. We show results as evidence that
the prototype is fully functional, complies with the NFS V3 standard, and is
independent of any client NFS implementation, and to give a basis for judging
prototype performance and scalability against commercial-grade servers.

The SPECsfs file set is skewed heavily toward small files: 94% of files are
64 KB or less. Although small files account for only 24% of the total bytes ac-
cessed, most SPECsfs I/0 requests target small files; the large files serve to “pol-
lute” the disks. Thus saturation throughput is determined largely by the num-
ber of disks. The Slice configurations for the SPECsfs experiments use a single
directory server, two small-file servers, and a varying number of storage nodes.
Figures 5 and 6 report results; lines labeled “Slice-N” use N storage nodes.

Figure 5 gives delivered throughput for SPECsfs97 in NFSOPS as a func-
tion of offered load. As a baseline, the graph shows the 850 NFSOPS saturation
point of a single FreeBSD 4.0 NF'S server on a Dell 4400 exporting its disk ar-
ray as a single volume (using the CCD disk concatenator). Slice-1 yields higher
throughput than the NFS configuration due to faster directory operations,
but throughput under load is constrained by the disk arms. The results show
that Slice throughput scales with larger numbers of storage nodes, up to 6600
NFSOPS for eight storage nodes with a total of 64 disks.

Figure 6 gives average request latency as a function of delivered throughput.
Latency jumps are evident in the Slice results as the ensemble overflows its
1 GB cache on the small-file servers, but the prototype delivers acceptable la-
tency at all workload levels up to saturation. For comparison, we include vendor-
reported results from spec.org for a recent (4Q99) commercial server, the EMC
Celerra File Server Cluster Model 506. The Celerra 506 uses 32 Cheetah drives
for data and has 4 GB of cache. EMC Celerra is an industry-leading product:
it delivers better latency and better throughput than the Slice prototype in

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

22 o Anderson et al.

—&—NFS
—&— Slice-1
—— Slice-2
—— Slice-4
—¥— Slice-6
—— Slice-8
------ Celerra 506

Average Latency (ms/op)

0 1250 2500 3750 5000 6250 7500
Delivered Load (NFSOPS)

Fig. 6. SPECsfs97 latency.

the nearest equivalent configuration (Slice-4 with 32 drives), as well as better
reliability through its use of RAID with parity. What is important is that the
interposed request routing technique allows Slice to scale to higher NFSOPS
levels by adding storage nodes and/or file manager nodes to the LAN. Celerra
and other commercial storage servers are also expandable, but the highest
NFSOPS ratings are earned by systems using a VOLUME PARTITIONING strategy to
distribute load within the server. For example, this Celerra 506 configuration
exported eight separate file volumes. The techniques introduced in this paper
allow high throughputs without imposing volume boundaries; all of the Slice
configurations serve a single unified volume.

6. CONCLUSION

This paper explores interposed request routing in Slice, a new architecture for
scalable network-attached storage. Slice interposes a simple redirecting uproxy
along the network path between the client and an ensemble of storage nodes
and file managers. The uproxy virtualizes a client/server file access protocol
(e.g., NFS) by applying configurable request routing policies to distribute data
and requests across the ensemble. The ensemble nodes cooperate to provide a
unified, scalable file service.

The Slice uproxy distributes requests by request type and by target object,
combining functional decomposition and data decomposition of the request
traffic. We describe two policies for distributing name space requests, MKDIR
SWITCHING and NAME HASHING, and demonstrate their potential to automatically
distribute name space load across servers. These techniques complement sim-
ple grouping and striping policies to distribute file access load.

The Slice prototype delivers high bandwidth and high request throughput on
an industry-standard NF'S benchmark, demonstrating scalability of the archi-
tecture and prototype. Experiments with a simple uproxy packet filter show the
feasibility of incorporating the request routing features into network elements.
The prototype demonstrates that the interposed request routing architecture

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

Interposed Request Routing for Scalable Network Storage o 23

enables incremental construction of powerful distributed storage services while
preserving compatibility with standard file system clients.
For more information please visit http://www.cs.duke.edu/ari/slice.

ACKNOWLEDGMENTS

This work benefited from discussions with many people, including Khalil Amiri,
Mike Burrows, Carla Ellis, Garth Gibson, Dan Muntz, Tom Rodeheffer, Chandu
Thekkath, John Wilkes, Ken Yocum, and Zheng Zhang. Andrew Gallatin as-
sisted with hardware and software in numerous ways. We thank the anony-
mous reviewers and our OSDI shepherd, Timothy Roscoe, for useful critiques
and suggestions.

REFERENCES

Awmiri, K., GiBsoN, G., aND GorpiNGg, R. 2000. Highly concurrent shared storage. In Proceed-
ings of the IEEE International Conference on Distributed Computing Systems (ICDCS, April
2000).

ANDERSON, D. 1999. Object based storage devices: a command set proposal. Technical report
(Oct.), National Storage Industry Consortium.

ANDERSON, D. C. anp CHASE, J. S. 2000. Failure-atomic file access in an interposed network stor-
age system. In Proceedings of the Ninth IEEE International Symposium on High Performance
Distributed Computing (HPDC, Aug. 2000).

ANDERSON, T., DAHLIN, M., NEEFE, J., PATTERSON, D., RostLL1, D., AND WaNG, R. 1995. Serverless
network file systems. In Proceedings of the ACM Symposium on Operating Systems Principles
(Dec. 1995). 109-126.

Arpaci-Dusseau, R. H., ANDERSoN, E., TREUHAFT, N., CULLER, D. E., HELLERSTEIN, J. M., PATTERSON,
D. A., anp YELICK, K. 1999. Cluster I/0 with River: Making the fast case common. In 7/0 in
Parallel and Distributed Systems (IOPADS, May 1999).

BiRRELL, A. D. AND NEEDHAM, R. M. 1980. A universal file server. IEEE Trans. Softw. Eng. SE-6,
5 (Sept.), 450-453.

CABRERA, L.-F. anp Long, D. D. E. 1991. Swift: Using distributed disk striping to provide high I/0
data rates. Comput. Syst. 4, 4 (Fall), 405-436.

GiBsoN, G. A., NacLg, D. F., Amigri, K., Cuang, F. W., FEINBERG, E. M., Gosiorr, H., LEg, C., OzCERI,
B, RiepEL, E., RocHBERG, D., AND ZELENKA, J. 1997. File server scaling with network-attached
secure disks. In Proceedings of the 1997 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (New York, NY, June 15-18 1997). ACM Press,
New York, NY, 272-284. Also published in Perf. Eval. Rev. 25, 1.

GiBsoN, G. A., Nactg, D. F., Amirr, K., CHang, F. W., Gosiorr, H., Harpiy, C., RiepkL, E., RocaBERG, D.,
AND ZELENKA, J. 1998. A cost-effective, high-bandwidth storage architecture. In Proceedings of
the Eighth International Conference on Architectural Support for Programming Languages and
Operating Systems (Oct. 1998).

Hacmany, R. 1987. Reimplementing the Cedar file system using logging and group commit. In
Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP, Nov. 1987).
155-162.

Hawrrron, G., PoweLL, M. L., AND MITCHELL, J. J. 1993. Subcontract: A flexible base for distributed
programming. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles
(Dec. 1993). 69-79.

HarTMAN, J. H. AND OusTERHOUT, J. K. 1995. The Zebra striped network file system. ACM Trans.
Comput. Syst. 13, 3 (Aug.), 274-310.

HEemeMANN, J. S. aND PopEk, G. J. 1994. File-system development with stackable layers. ACM
Trans. Comput. Syst. 12, 1 (Feb.), 58-89.

Jones, M. B. 1993. Interposition agents: Transparently interposing user code at the system
interface. In Proceedings of the Fourteenth Symposium on Operating Systems Principles
(Dec. 1993). 80-93.

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

P1: GLB/GLS/LBK/HGA P2: GKJ/GNI

CMO053A-273

ACM-TRANSACTION March 12, 2002 13:49

24 o Anderson et al.

KARGER, D., LEamaN, E., LeicaTON, T., LEVINE, M., LEWIN, D., AND PaNIGRAHY, R. 1997. Consistent
hashing and random trees: Distributed caching protocols for relieving hot spots on the World
Wide Web. In Proceedings of the Twenty-Ninth ACM Symposium on Theory of Computing
(E1 Paso, TX, May 1997). 654—663.

Leg, E. K. anp THERRATH, C. A. 1996. Petal: Distributed virtual disks. In Proceedings of the
Seventh Conference on Architectural Support for Programming Languages and Operating
Systems (Cambridge, MA, Oct. 1996). 84-92.

Mackiem, R. 1994. Not quite NFS, soft cache consistency for NFS. In USENIX Association
Conference Proceedings (Jan. 1994). 261-278.

Marrzann, C., RicHARDSON, K., AND GRUNWALD, D. 1999. Reducing the disk I/0 of Web proxy server
caches. In USENIX Annual Technical Conference (June 1999).

McKusick, M. K., Joy, W., LEFFLER, S., AND FaBRY, R. 1984. A fast file system for UNIX. ACM
Trans. Comput. Syst. 2, 3 (Aug.), 181-197.

Miis, D. 1985. Network Time Protocol (NTP). RFC 958, Internet Engineering Task Force.

Mogut, J., RasHip, R., AND Accerta, M. 1987. The packet filter: An efficient mechanism for user-
level network code. In Proceedings of the 11th ACM Symposium on Operating Systems Principles
(SOSP, Nov. 1987). 39-51.

Pa1, V. S,, Aron, M., BaNnGa, G., SVENDSEN, M., DRUSCHEL, P., ZWAENOPOEL, W., AND NaruM, E. 1998.
Locality-aware request distribution in cluster-based network servers. In Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages and Operating
Systems (Oct. 1998).

PawrLowski, B., SHEPLER, S., BEaME, C., CALLAGHAN, B., EisLEr, M., Novick, D., RoBiNsoN, D., AND
TuurLow, R. 2000. The NF'S version 4 protocol. In Second International Systems and Network-
ing (SANE) Conference (May 2000).

Paxson, V. 1997. End-to-end routing behavior in the Internet. IEEE/ACM Trans. Network. 5,
5 (Oct.), 601-615.

PresLaN, K., BARRY, A., Brassow, J., ERICKsoN, G., NYcaarD, E., Sasor, C., Sorris, S., TEIGLAND, D., AND
O’KEErFE, M. 1999. A 64-bit, shared disk file system for Linux. In Sixteenth IEEE Mass Storage
Systems Symposium (March 1999).

Rwvest, R. L. 1992. The MD5 Message-Digest Algorithm. RFC 1321, Internet Engineering Task
Force.

Suapiro, M. 1986. Structure and encapsulation in distributed systems: The proxy principle. In
Proceedings of the Sixth International Conference on Distributed Computing Systems (May 1986).

THEKKATH, C., MANN, T., anD LEE, E. 1997. Frangipani: A scalable distributed file system. In Ninth
International Conference on Architectural Support for Programming Languages and Operating
Systems (Oct. 1997). 224-237.

VAN RENESSE, R., TANENBAUM, A., AND WiLscHUT, A. 1989. The design of a high-performance file
server. In The 9th International Conference on Distributed Computing Systems (Newport Beach,
CA, June 1989). IEEE Press, Piscataway, NJ, 22-27.

VOELKER, G. M., ANDERSON, E. J., KiMBrREL, T., FEELEY, M. J., CHASE, J. S., KARLIN, A. R., AND LEVY,
H. M. 1998. Implementing cooperative prefetching and caching in a globally-managed mem-
ory system. In Proceedings of the ACM Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’98, June 1998).

Received December 2000; revised May 2001; accepted July 2001

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.

