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Abstract

The interpretation of deep learning models is a

challenge due to their size, complexity, and often

opaque internal state. In addition, many systems,

such as image classifiers, operate on low-level fea-

tures rather than high-level concepts. To address

these challenges, we introduce Concept Activa-

tion Vectors (CAVs), which provide an interpre-

tation of a neural net’s internal state in terms of

human-friendly concepts. The key idea is to view

the high-dimensional internal state of a neural net

as an aid, not an obstacle. We show how to use

CAVs as part of a technique, Testing with CAVs

(TCAV), that uses directional derivatives to quan-

tify the degree to which a user-defined concept

is important to a classification result–for exam-

ple, how sensitive a prediction of zebra is to the

presence of stripes. Using the domain of image

classification as a testing ground, we describe how

CAVs may be used to explore hypotheses and gen-

erate insights for a standard image classification

network as well as a medical application.

1. Introduction

Understanding the behavior of modern machine learning

(ML) models, such as neural networks, remains a significant

challenge. Given the breadth and importance of ML appli-

cations, however, it is important to address this challenge.

In addition to ensuring accurate predictions, and giving sci-

entists and engineers better means of designing, developing,

and debugging models, interpretability is also important to

ensure that ML models reflect our values.

One natural approach to interpretability is to describe an

ML model’s predictions in terms of the input features it

considers. For instance, in logistic regression classifiers,
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coefficient weights are often interpreted as the importance

of each feature. Similarly, saliency maps give importance

weights to pixels based on first-order derivatives (Smilkov

et al., 2017; Selvaraju et al., 2016; Sundararajan et al., 2017;

Erhan et al., 2009; Dabkowski & Gal, 2017).

A key difficulty, however, is that most ML models operate on

features, such as pixel values, that do not correspond to high-

level concepts that humans easily understand. Furthermore,

a model’s internal values (e.g., neural activations) can seem

incomprehensible. We can express this difficulty mathemat-

ically, viewing the state of an ML model as a vector space

Em spanned by basis vectors em which correspond to data

such as input features and neural activations. Humans work

in a different vector space Eh spanned by implicit vectors

eh corresponding to an unknown set of human-interpretable

concepts.

From this standpoint, an “interpretation” of an ML model

can be seen as function g : Em → Eh. When g is linear, we

call it a linear interpretability. In general, an interpretabil-

ity function g need not be perfect (Doshi-Velez, 2017); it

may fail to explain some aspects of its input domain Em and

it will unavoidably not cover all possible human concepts in

Eh.

In this work, the high-level concepts of Eh are defined us-

ing sets of example input data for the ML model under

inspection. For instance, to define concept ‘curly’, a set of

hairstyles and texture images can be used. Note the concepts

of Eh are not constrained to input features or training data;

they can be defined using new, user-provided data. Exam-

ples are shown to be effective means of interfacing with ML

models for both non-expert and expert users (Koh & Liang,

2017; Kim et al., 2014; 2015; Klein, 1989).

This work introduces the notion of a Concept Activation Vec-

tor (CAV) as a way of translating between Em and Eh. A

CAV for a concept is simply a vector in the direction of the

values (e.g., activations) of that concept’s set of examples.

In this paper, we derive CAVs by training a linear classifier

between a concept’s examples and random counterexamples

and then taking the vector orthogonal to the decision bound-

ary. This simple approach is supported by recent work using
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Figure 1. Testing with Concept Activation Vectors: Given a user-defined set of examples for a concept (e.g., ‘striped’), and random

examples a©, labeled training-data examples for the studied class (zebras) b©, and a trained network c©, TCAV can quantify the model’s

sensitivity to the concept for that class. CAVs are learned by training a linear classifier to distinguish between the activations produced by

a concept’s examples and examples in any layer d©. The CAV is the vector orthogonal to the classification boundary (vlC , red arrow). For

the class of interest (zebras), TCAV uses the directional derivative SC,k,l(x) to quantify conceptual sensitivity e©.

local linearity (Alain & Bengio, 2016; Raghu et al., 2017;

Bau et al., 2017; Szegedy et al., 2013).

The main result of this paper is a new linear interpretability

method, quantitative Testing with CAV (TCAV) (outlined in

Figure 1). TCAV uses directional derivatives to quantify

the model prediction’s sensitivity to an underlying high-

level concept, learned by a CAV. For instance, given an ML

image model recognizing zebras, and a new, user-defined

set of examples defining ‘striped’, TCAV can quantify the

influence of striped concept to the ‘zebra’ prediction as

a single number. In addition, we conduct statistical tests

where CAVs are randomly re-learned and rejected unless

they show a significant and stable correlation with a model

output class or state value. (This is detailed in Section 3.2).

Our work on TCAV was pursued with the following goals.

Accessibility: Requires little to no ML expertise of user.

Customization: Adapts to any concept (e.g., gender) and

is not limited to concepts considered during training.

Plug-in readiness: Works without any retraining or modi-

fication of the ML model.

Global quantification: Can interpret entire classes or sets

of examples with a single quantitative measure, and

not just explain individual data inputs.

We perform experiments using TCAV to gain insights and

reveal dataset biases in widely-used neural network mod-

els and with a medical application (diabetic retinopathy),

confirming our findings with a domain expert. We con-

duct human subject experiments to quantitatively evaluate

feature-based explanations and to contrast with TCAV.

2. Related work

In this section, we provide an overview of existing inter-

pretability methods, methods specific to neural networks,

and methods that leverage the local linearity of neural net-

works.

2.1. Interpretability methods

To achieve interpretability, we have two options: (1) restrict

ourselves to inherently interpretable models or (2) post-

process our models in way that yields insights. While option

1 offers simplicity as the explanation is embedded in the

model (Kim et al., 2014; Doshi-Velez et al., 2015; Tibshirani,

1994; Zou et al., 2004; Ustun et al., 2013; Caruana et al.,

2015), this option might be costly for users who already

have a working high performance model. With increasing

demands for more explainable ML (Goodman & Flaxman,

2016), there is an growing need for methods that can be

applied without retraining or modifying the network.

One of many challenges of option 2 is to ensure that the

explanation correctly reflects the model’s complex internals.

One way to address this is to use the generated explana-

tion as an input, and check the network’s output for valida-

tion. This is typically used in perturbation-based/sensitivity

analysis-based interpretability methods to either use data

points (Koh & Liang, 2017) or features (Ribeiro et al., 2016;

Lundberg & Lee, 2017) as a form of perturbation, and check

how the network’s response changes. They maintain the

consistency either locally (i.e., explanation is true for a data

point and its neighbors) or globally (i.e., explanation is true

for most data points in a class) by construction. TCAV is a

type of global perturbation method, as it perturbs data points

towards a human-relatable concept to generate explanations.
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However, even a perturbation-based method can be inconsis-

tent if the explanation is only true for a particular data point

and its neighbors (Ribeiro et al., 2016) (i.e., local explana-

tion), and not for all inputs in the class. For example, they

may generate contradicting explanations for two data points

in the same class, resulting in decreased user trust. TCAV

produces explanations that are not only true for a single data

point, but true for each class (i.e., global explanation).

2.2. Interpretability methods in neural networks

The goal of TCAV is to interpret high dimensional Em

such as that of neural network models. Saliency methods

are one of the most popular local explanation methods for

image classification (Erhan et al., 2009; Smilkov et al., 2017;

Selvaraju et al., 2016; Sundararajan et al., 2017; Dabkowski

& Gal, 2017). These techniques typically produce a map

showing how important each pixel of a particular picture is

for its classification, as shown in Figure 8. While a saliency

map often identifies relevant regions and provides a type

of quantification (i.e., importance for each pixel), there are

a couple of limitations: 1) since a saliency map is given

conditioned on only one picture (i.e., local explanation),

humans have to manually assess each picture in order to

draw a class-wide conclusion, and 2) users have no control

over what concepts of interest these maps pick up on (lack

of customization). For example, consider two saliency maps

of two different cat pictures, with one picture’s cat ears

having more brightness. Can we assess how important the

ears were in the prediction of “cats”?

Furthermore, some recent work has demonstrated that

saliency maps produced by randomized networks are similar

to that of the trained network (Adebayo et al., 2018), while

simple meaningless data processing steps, such as mean

shift, may cause saliency methods to result in significant

changes (Kindermans et al., 2017). Saliency maps may also

be vulnerable to adversarial attacks (Ghorbani et al., 2017).

2.3. Linearity in neural network and latent dimensions

There has been much research demonstrating that linear

combinations of neurons may encode meaningful, insightful

information (Alain & Bengio, 2016; Raghu et al., 2017;

Bau et al., 2017; Szegedy et al., 2013; Engel et al., 2017).

Both (Bau et al., 2017) and (Alain & Bengio, 2016) show

that meaningful directions can be efficiently learned via

simple linear classifiers. Mapping latent dimensions to

human concepts has also been studied in the context of

words (Mikolov et al., 2013), and in the context of GANs to

generate attribute-specific pictures (Zhu et al., 2017). A sim-

ilar idea to using such concept vectors in latent dimension in

the context of generative model has also been explored (En-

gel et al., 2017).

Our work extends this idea and computes directional deriva-

tives along these learned directions in order to gather the

importance of each direction for a model’s prediction. Us-

ing TCAV’s framework, we can conduct hypothesis testing

on any concept on the fly (customization) that make sense

to the user (accessibility) for a trained network (plug-in

readiness) and produce a global explanation for each class.

3. Methods

This section explains our ideas and methods: (a) how to

use directional derivatives to quantify the sensitivity of ML

model predictions for different user-defined concepts, and

(b) how to compute a final quantitative explanation (TCAVQ

measure) of the relative importance of each concept to each

model prediction class, without any model retraining or

modification.

Without loss of generality, we consider neural network mod-

els with inputs x ∈ R
n and a feedforward layer l with m

neurons, such that input inference and its layer l activations

can be seen as a function fl : R
n → R

m.

3.1. User-defined Concepts as Sets of Examples

The first step in our method is to define a concept of in-

terest. We do this simply by choosing a set of examples

that represent this concept or find an independent data set

with the concept labeled. The key benefit of this strategy is

that it does not restrict model interpretations to explanations

using only pre-existing features, labels, or training data of

the model under inspection.

Instead, there is great flexibility for even non-expert ML

model analysts to define concepts using examples and ex-

plore and refine concepts as they test hypotheses during

analysis. Section 4 describes results from experiments with

small number of images (30) collected using a search engine.

For the case of fairness analysis (e.g., gender, protected

groups), curated examples are readily available (Huang et al.,

2007).

3.2. Concept Activation Vectors (CAVs)

Following the approach of linear interpretability, given a

set of examples representing a concept of human interest,

we seek a vector in the space of activations of layer l that

represents this concept. To find such a vector, we consider

the activations in layer l produced by input examples that

in the concept set versus random examples. We then define

a “concept activation vector” (or CAV) as the normal to

a hyperplane separating examples without a concept and

examples with a concept in the model’s activations (see red

arrow in Figure 1).

This approach lends itself to a natural implementation.

When an analyst is interested in a concept C (say, striped
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textures) they may gather a positive set of example inputs

PC (e.g., photos of striped objects) and and a negative set N
(e.g., a set of random photos). Then, a binary linear classifier

can be trained to distinguish between the layer activations

of the two sets: {fl(x) : x ∈ PC} and {fl(x) : x ∈ N}.1

This classifier vl
C ∈ R

m is a linear CAV for the concept C.

3.3. Directional Derivatives and Conceptual Sensitivity

Interpretability methods like saliency maps use the gradients

of logit values with respect to individual input features, like

pixels, and compute
∂hk(x)

∂xa,b

where hk(x) is the logit for a data point x for class k and

xa,b is a pixel at position (a, b) in x. Thus, saliency uses

the derivative to gauge the sensitivity of the output class k
to changes in the magnitude of pixel (a, b).

By using CAVs and directional derivatives, we instead gauge

the sensitivity of ML predictions to changes in inputs to-

wards the direction of a concept, at neural activation layer l.
If vl

C ∈ R
m is a unit CAV vector for a concept C in layer l,

and fl(x) the activations for input x at layer l, the “concep-

tual sensitivity” of class k to concept C can be computed as

the directional derivative SC,k,l(x):

SC,k,l(x) = lim
ǫ→0

hl,k(fl(x) + ǫvl
C)− hl,k(fl(x))

ǫ

= ∇hl,k(fl(x)) · v
l
C , (1)

where hl,k : Rm → R. This SC,k,l(x) can quantitatively

measure the sensitivity of model predictions with respect

to concepts at any model layer. It is not a per-feature met-

ric (e.g., unlike per-pixel saliency maps) but a per-concept

scalar quantity computed on a whole input or sets of inputs.

3.4. Testing with CAVs (TCAV)

Testing with CAVs, or TCAV, uses directional derivatives

to compute ML models’ conceptual sensitivity across entire

classes of inputs. Let k be a class label for a given super-

vised learning task and let Xk denote all inputs with that

given label. We define the TCAV score to be

TCAVQC,k,l =
|{x ∈ Xk : SC,k,l(x) > 0}|

|Xk|
(2)

i.e. the fraction of k-class inputs whose l-layer acti-

vation vector was positively influenced by concept C,

TCAVQC,k,l ∈ [0, 1]. Note that TCAVQC,k,l only depends

on the sign of SC,k,l, one could also use a different metric

that considers the magnitude of the conceptual sensitivi-

ties. The TCAVQ metric allows conceptual sensitivities to

be easily interpreted, globally for all inputs in a label.

1For convnets, a layer must be flattened so width w, height h,
and c channels becomes a vector of m = w × h× c activations.

3.5. Statistical significance testing

One pitfall with the TCAV technique is the potential for

learning a meaningless CAV. After all, using a randomly

chosen set of images will still produce a CAV. A test based

on such a random concept is unlikely to be meaningful.

To guard against spurious results from testing a class against

a particular CAV, we propose the following simple statistical

significance test. Instead of training a CAV once, against a

single batch of random examples N , we perform multiple

training runs, typically 500. A meaningful concept should

lead to TCAV scores that behave consistently across training

runs.

Concretely we perform a two-sided t-test of the TCAV

scores based on these multiple samples. If we can reject the

null hypothesis of a TCAV score of 0.5, we can consider

the resulting concept as related to the class prediction in a

significant way. Note that we also perform a Bonferroni

correction for our hypotheses (at p < α/m with m = 2) to

control the false discovery rate further. All results shown in

this paper are CAVs that passed this testing.

3.6. TCAV extensions: Relative TCAV

In practice, semantically related concepts (e.g., brown hair

vs. black hair) often yield CAVs that are far from orthogonal.

This natural, expected property may be beneficially used to

make fine-grained distinctions since relative comparisons

between related concepts are a good interpretative tool (Kim

et al., 2015; Doshi-Velez et al., 2015; Tibshirani, 1994;

Salvatore et al., 2014).

Relative CAVs allow making such fine-grained comparisons.

Here the analyst selects two sets of inputs that represent

two different concepts, C and D. Training a classifier on

fl(PC) and fl(PD) yields a vector vl
C,D ∈ R

m. The vector

v
l
C,D intuitively defines a 1-d subspace in layer l where

the projection of an embedding fl(x) along this subspace

measures whether x is more relevant to concept C or D.

Relative CAVs may, for example, apply to image recogni-

tion, where we can hypothesize that concepts for ‘dotted’,

‘striped’, and ‘meshed’ textures are likely to exist as internal

representations, and be correlated or overlapping. Given

three positive example sets Pdot, Pstripe, and Pmesh, a relative

CAV can be derived by constructing, for each, a negative in-

put set by complement (e.g., {Pdot ∪ Pmesh} for the stripes).

The TCAVQ measures enabled by the resulting relative CAV

are used in many of the experiments in the following Sec-

tion 4, e.g., to gauge the relative importance of stripes to

zebras and that of diagnostic concepts for diabetic retinopa-

thy.
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4. Results

We first show evidence that CAVs align with intended con-

cepts of interest, by sorting images based on how similar

they are to various concepts (Section 4.1.1) and by using an

activation maximization technique, empirical deep dream,

on the CAVs (Section 4.1.2). We then summarize gained

insights and revealed biases of two widely used networks

using TCAV (Section 4.2.1). For further validation, we cre-

ate a dataset and settings where we have an approximated

ground truth for TCAVQ. We show that TCAV closely tracks

the ground truth (Section 4.3.1) while saliency maps are

unable to communicate this ground truth to humans (Sec-

tion 4.3.2). Finally we apply TCAV to help interpret a model

predicting diabetic retinopathy (DR) (Section 4.4), where

TCAV provided insights when the model diverged with the

domain expert’s knowledge.

4.1. Validating the learned CAVs

The first step is to convince ourselves that the learned CAVs

are aligned with the intended concepts of interest. We first

sort the images of any class with respect to CAVs for inspec-

tion. Then we learn patterns that maximally activate each

CAV using an activation maximization technique for further

visual confirmation.

4.1.1. SORTING IMAGES WITH CAVS

We can use CAVs to sort images with respect to their relation

to the concept. This is useful for qualitative confirmation

that the CAVs correctly reflect the concept of interest. As

a CAV encodes the direction of a concept in the vector

space of a bottleneck, vlC ∈ R
m using the activations of

the concept pictures, fl(xi) ∈ R
m as described Section 3.2,

we can compute cosine similarity between a set of pictures

of interest to the CAV to sort the pictures. Note that the

pictures being sorted are not used to train the CAV.

Figure 2. The most and least similar pictures of stripes using ‘CEO’

concept (left) and neckties using ‘model women’ concept (right)

The left of Figure 2 shows sorted images of stripes with

respect to a CAV learned from a more abstract concept,

‘CEO’ (collected from ImageNet). The top 3 images are

pinstripes which may relate to the ties or suits that a CEO

may wear. The right of Figure 2 shows sorted images of

neckties with respect to a ‘model women’ CAV. All top 3

images show women in neckties.

This also suggests that CAVs can be as a standalone similar-

ity sorter, to sort images to reveal any biases in the example

images from which the CAV is learned.

4.1.2. EMPIRICAL DEEP DREAM

Another way to visually confirm our confidence in a CAV is

to optimize for a pattern that maximally activates the CAV

and compare that to our semantic notions of the concept.

Activation maximization techniques, such as Deep Dream or

Lucid (Mordvintsev et al., 2015; Olah et al., 2017), are often

used to visualize patterns that would maximally activate a

neuron, set of neurons or random directions. This technique

is also applied to AI-aided art (Mordvintsev et al., 2015). As

is typically done, we use a random image as a starting point

for the optimization to avoid choosing an arbitrary image.

Using this technique, we show that CAVs do reflect their

underlying concepts of interest. Figure 3 shows the results

of deep dreamed patterns for knitted texture, corgis and

Siberian huskey CAVs. We include results from all lay-

ers and many other CAVs in the appendix. This suggests

that TCAV can be used to identify and visualize interesting

directions in a layer.

Figure 3. Empirical Deepdream using knitted texture, corgis and

Siberian huskey concept vectors (zoomed-in)

4.2. Insights and biases: TCAV for widely used image

classifications networks

In this section, we apply TCAV to two popular networks to

1) further confirm TCAV’s utility, 2) reveal biases, and 3)

show where concepts are learned in these networks.

4.2.1. GAINING INSIGHTS USING TCAV

We applied TCAV for two widely used networks (Szegedy

et al., 2015; 2016). We tried various types of CAVs, in-

cluding color, texture, objects, gender and race. Note that

none of these concepts were in the set of the network’s class

labels; instead all were collected from (Bau et al., 2017;

Huang et al., 2007; Russakovsky et al., 2015) or a popular

image search engine. We show TCAV results with CAVs

learned from all (for GoogleNet) or a subset (for Inception

V3) of layers.

As shown in Figure 4, some results confirmed our common-

sense intuition, such as the importance of the red concept for

fire engines, the striped concept for zebras, and the Siberian

husky concept for dogsleds. Some results also confirmed
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Figure 4. Relative TCAV for all layers in GoogleNet (Szegedy

et al., 2015) and last three layers in Inception V3 (Szegedy et al.,

2016) for confirmation (e.g., fire engine), discovering biases (e.g.,

rugby, apron), and quantitative confirmation for previously qualita-

tive findings in (Mordvintsev et al., 2015; Stock & Cisse, 2017)

(e.g., dumbbell, ping-pong ball). TCAVQs in layers close to the

logit layer (red) represent more direct influence on the prediction

than lower layers. ‘*’s mark CAVs omitted after statistical testing.

our suspicion that these networks were sensitive to gender

and race, despite not being explicitly trained with these

categories. For instance, TCAV provides quantitative con-

firmations to the qualitative findings from (Stock & Cisse,

2017) that found ping-pong balls are highly correlated with

a particular race. TCAV also finds the ‘female’ concept

highly relevant to the ‘apron’ class. Note that the race con-

cept (ping-pong ball class) shows a stronger signal as it gets

closer to the final prediction layer, while the texture concept

(e.g., striped) influences TCAVQ in earlier layers (zebra

class).

We also observed that the statistical significance testing

(Section 3.5) of CAVs successfully filters out spurious re-

sults. For instance, it successfully filtered out spurious CAVs

where the ‘dotted’ concept returned high TCAVQ (e.g.,

mixed4a) for zebra classes. The statistical significance test-

ing of CAVs successfully eliminated CAVs in this layer; all

CAVs that passed this testing consistently returned ‘striped’

as the most important concept.

In some cases, it was sufficient to use a small number of pic-

tures to learn CAVs. For the ‘dumbbell’ class, we collected

30 pictures of each concept from a popular image search

engine. Despite the small number of examples, Figure 4

shows that TCAV successfully identified that the ‘arms’ con-

cept was more important to predict dumbbell class than

other concepts. This finding is consistent with previous

qualitative findings from (Mordvintsev et al., 2015), where

a neuron’s DeepDream picture of a dumbbell showed an

arm holding it. TCAV allows for quantitative confirmation

of this previously qualitative finding.

4.2.2. TCAV FOR WHERE CONCEPTS ARE LEARNED

In the process of learning CAVs, we train a linear classifier

to separate each concept. We can use the performance of

these linear classifiers to obtain lower-bound approximates

for which layer each concept is learned.

Figure 5. The accuracies of CAVs at each layer. Simple concepts

(e.g., colors) achieve higher performance in lower-layers than more

abstract or complex concepts (e.g. people, objects)

Figure 5 shows that the accuracy of more abstract concepts

(e.g., objects) increases in higher layers of the network.

The accuracy of simpler concepts, such as color, is high

throughout the entire network. This is a confirmation of

many prior findings (Zeiler & Fergus, 2014) that lower

layers operate as lower level feature detectors (e.g., edges),

while higher layers use these combinations of lower-level

features to infer higher-level features (e.g., classes). The

accuracies are measured by a held out test set of 1/3 the size

of the training set.

4.3. A controlled experiment with ground truth

Figure 6. A controlled training set: Regular images and images

with captions for the cab and cucumber class.

The goal of this experiment is demonstrate that TCAV can

be successfully used to interpret the function learned by
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a neural network in a carefully controlled setting where

ground truth is known. We show quantitative results of

TCAV and compare these with our evaluation of saliency

maps.

To this end we create a dataset of three arbitrary classes

(zebra, cab, and cucumber) with potentially noisy captions

written in the image (example shown in Figure 6). The

noise parameter p ∈ [0, 1.0] controls the probability that

the image caption agrees with the image class. If there is

no noise (p = 0), the caption always agrees with the image

label, e.g. a picture of a cab always contains the word “cab”

at the bottom. At p = .3, each picture has a 30% chance

of having the correct caption replaced with a random word

(e.g. “rabbit”).

We then train 4 networks, each on a dataset with a differ-

ent noise parameter p in [0, 1]. Each network may learn to

pay attention to either images or captions (or both) in the

classification task. To obtain an approximated ground truth

for which concept each network paid attention, we can test

the network’s performance on images without captions. If

the network used the image concept for classification, the

performance should remain high. If not, the network perfor-

mance will suffer. We create image CAVs using each class’s

images, and caption CAVs using captions with other pixels

in the image randomly shuffled.

4.3.1. QUANTITATIVE EVALUATION OF TCAV

Figure 7. TCAV results with approximated ground truth: Both cab

and cucumber classes, TCAVQ closely matches the ground truth.

For the cab class, the network used image concept more than the

caption concept regardless of the models.

Overall, we find that the TCAV score closely mirrors the

concept that the network paid attention to (Figure 7). Accu-

racy results suggest that, when classifying cabs, the network

used the image concept more than the caption concept, re-

gardless of the noise parameter. However, when classifying

cucumbers, the network sometimes paid attention to the

caption concept and sometimes the image concept. Figure 7

shows that the TCAVQ closely matches this ground truth. In

the cab class, the TCAVQ for the image concept is high, con-

sistent with its high test performance on caption-less images.

In the cucumber class, the TCAVQ for the image concept

increases as noise level increases, consistent with the obser-

vation that accuracy also increases as noise increases.

Figure 8. Saliency map results with approximated ground truth:

Models trained on datasets with different noise parameter p (rows)

and different saliency map methods (columns) are presented. The

approximated ground truth is that the network is paying a lot more

attention to the image than the caption in all cases, which is not

clear from saliency maps.

4.3.2. EVALUATING SALIENCY MAPS WITH HUMAN

SUBJECTS

Saliency maps are an alternative way to communicate the

same information, and are commonly used as an inter-

pretability method for image-based networks (see Section 2).

Qualitatively, as shown in Figure 8 for the cab class, it is

not clear that the four networks used the image concept

more than the caption concept. In this section, we quantita-

tively evaluate what information saliency maps are able to

communicate to humans, via a human subject experiment.

We took the saliency maps generated from the previous sec-

tion to conduct a 50-person human experiment on Amazon

Mechanical Turk. For simplicity, we evaluated two of the

four noise levels (0% and 100% noise), and two types of

saliency maps ((Sundararajan et al., 2017) and (Smilkov

et al., 2017)).

Each worker did a series of six tasks (3 object classes × 2

saliency map types), all for a single model. Task order was

randomized. In each task, the worker first saw four images

along with their corresponding saliency masks. They then

rated how important they thought the image was to the

model (10-point scale), how important the caption was to

the model (10-point scale), and how confident they were

in their answers (5-point scale). In total, turkers rated 60

unique images (120 unique saliency maps).

Overall, saliency maps correctly communicated which con-

cept was more important only 52% of the time (random

chance is 50% for two options). Wilcox signed-rank tests

show that in more than half of the conditions, there was

either no significant difference in the perceived importance

of the two concepts, or the wrong concept was identified

as being more important. Figure 9 (top) shows one exam-

ple where saliency maps communicated the wrong concept



Testing with Concept Activation Vectors (TCAV)

Figure 9. For the cab class, the ground truth was that the image

concept was more important than the caption concept. However,

when looking at saliency maps, humans perceived the caption

concept as being more important (model with 0% noise), or did not

discern a difference (model with 100% noise). In contrast, TCAV

results correctly show that the image concept was more important.

Overall, the percent of correct answers rated as very confident was

similar to that of incorrect answers, indicating that saliency maps

may be misleading.

importance. In spite of this, the percent of correct answers

rated as very confident was similar to that of incorrect an-

swers (Figure 9 bottom), suggesting that interpreting using

saliency maps alone could be misleading. Furthermore,

when one of the saliency map methods correctly communi-

cated the more important concept, it was always the case

that the other saliency map method did not, and vice versa.

4.4. TCAV for a medical application

We now apply TCAV to the real-world problem of predicting

diabetic retinopathy (DR), a treatable but sight-threatening

condition, from retinal fundus images (Krause et al., 2017).

We consulted with a medical expert about our results.

The model of interest predicts DR level using a 5-point

grading scale based on complex criteria, from level 0 (no

DR) to 4 (proliferative). Doctors’ diagnoses of DR level

depend on evaluating a set of diagnostic concepts, such as

microaneurysms (MA) or pan-retinal laser scars (PRP), with

different concepts being more prominent at different DR

levels. We sought to test the importance of these concepts

to the model using TCAV.

For some DR levels, TCAV identified the correct diagnostic

concepts as being important. As shown in Figure 10 (top),

the TCAV score was high for concepts relevant to DR level

4, and low for a non-diagnostic concept. For DR level 1,

TCAV results sometimes diverge from doctors’ heuristics (

Figure 10 bottom). For example, aneurysms (HMA) had a

relatively high TCAV score, even though they are diagnostic

of a higher DR level (see HMA distribution in Figure 10).

However, consistent with this finding, the model often over-

predicted level 1 (mild) as level 2 (moderate). Given this, the

doctor said she would like to tell the model to de-emphasize

the importance of HMA for level 1. Hence, TCAV may

Figure 10. Top: A DR level 4 image and TCAV results. TCAVQ is

high for features relevant for this level (green), and low for an

irrelevant concept (red). Middle: DR level 1 (mild) TCAV results.

The model often incorrectly predicts level 1 as level 2, a model

error that could be made more interpretable using TCAV: TCAVQs

on concepts typically related to level 1 (green, MA) are high in

addition to level 2-related concepts (red, HMA). Bottom: the HMA

feature appears more frequently in DR level 2 than DR level 1.

be useful for helping experts interpret and fix model errors

when they disagree with model predictions.

5. Conclusion and Future Work

The method presented here, TCAV, is a step toward creating

a human-friendly linear interpretation of the internal state

of a deep learning model, so that questions about model

decisions may be answered in terms of natural high-level

concepts. Crucially, these concepts do not need to be known

at training time, and may easily be specified during a post

hoc analysis via a set of examples.

Our experiments suggest TCAV can be a useful technique in

an analyst’s toolbox. We provided evidence that CAVs do in-

deed correspond to their intended concepts. We then showed

how they may be used to give insight into the predictions

made by various classification models, from standard image

classification networks to a specialized medical application.

There are several promising avenues for future work based

on the concept attribution approach. While we have focused

on image classification systems, applying TCAV to other

types of data (audio, video, sequences, etc.) may yield new

insights. TCAV may also have applications other than inter-

pretability: for example, in identifying adversarial examples

for neural nets (see appendix). Finally, one could ask for

ways to identify concepts automatically and for a network

that shows super-human performance, concept attribution

may help humans improve their own abilities.
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Schütt, K. T., Dähne, S., Erhan, D., and Kim, B. The

(un) reliability of saliency methods. arXiv preprint

arXiv:1711.00867, 2017.

Klein, G. Do decision biases explain too much. HFES,

1989.

Koh, P. W. and Liang, P. Understanding black-box

predictions via influence functions. arXiv preprint

arXiv:1703.04730, 2017.

Krause, J., Gulshan, V., Rahimy, E., Karth, P., Widner, K.,

Corrado, G. S., Peng, L., and Webster, D. R. Grader

variability and the importance of reference standards for

evaluating machine learning models for diabetic retinopa-

thy. Computing Research Repository, abs/1710.01711,

2017.

Lundberg, S. and Lee, S. A unified approach to interpret-

ing model predictions. Computing Research Repository,

abs/1705.07874, 2017.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and

Dean, J. Distributed representations of words and phrases

and their compositionality. In Advances in Neural Infor-

mation Processing Systems, pp. 3111–3119, 2013.

Mordvintsev, A., Olah, C., and Tyka, M. Inceptionism:

Going deeper into neural networks. Google Research

Blog. Retrieved June, 20:14, 2015.

Olah, C., Mordvintsev, A., and Schubert, L. Feature vi-

sualization. Distill, 2017. doi: 10.23915/distill.00007.

https://distill.pub/2017/feature-visualization.



Testing with Concept Activation Vectors (TCAV)

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.

Svcca: Singular vector canonical correlation analysis for

deep understanding and improvement. arXiv preprint

arXiv:1706.05806, 2017.

Ribeiro, M. T., Singh, S., and Guestrin, C. “why should i

trust you?”: Explaining the predictions of any classifier.

arXiv preprint arXiv:1602.04938, 2016.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M., et al. Imagenet large scale visual recognition chal-

lenge. International Journal of Computer Vision, 115(3):

211–252, 2015.

Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F.,

Augimeri, A., Lopez, M., Arabia, G., Morelli, M., Gilardi,

M., and Quattrone, A. Machine learning on brain mri

data for differential diagnosis of parkinson’s disease and

progressive supranuclear palsy. Journal of Neuroscience

Methods, 222:230–237, 2014.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,

Parikh, D., and Batra, D. Grad-cam: Why did you say

that? arXiv preprint arXiv:1611.07450, 2016.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Watten-

berg, M. Smoothgrad: removing noise by adding noise.

arXiv preprint arXiv:1706.03825, 2017.

Stock, P. and Cisse, M. Convnets and imagenet beyond accu-

racy: Explanations, bias detection, adversarial examples

and model criticism. arXiv preprint arXiv:1711.11443,

2017.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-

tion for deep networks. arXiv preprint arXiv:1703.01365,

2017.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties of

neural networks. arXiv preprint arXiv:1312.6199, 2013.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,

A., et al. Going deeper with convolutions. Computer

Vision and Pattern Recognition, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,

Z. Rethinking the inception architecture for computer

vision. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 2818–2826,

2016.

Tibshirani, R. Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society, Series B,

58:267–288, 1994.
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