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ABSTRACT 
Biomarker discovery using metagenomic data is becoming more prevalent for patient diagnosis, 

prognosis and risk evaluation. Selected groups of microbial features provide signatures that 

characterize host disease states such as cancer or cardio-metabolic diseases. Yet, the current predictive 

models stemming from machine learning still behave as black boxes. Moreover, they seldom generalize 

well when learned on small datasets. Here, we introduce an original approach that focuses on three 

models inspired by microbial ecosystem interactions: the addition, subtraction, and ratio of microbial 

taxon abundances. While being extremely simple, their performance is surprisingly good and compares 

to or is better than Random Forest, SVM or Elastic Net. Such models besides being interpretable, allow 

distilling biological information of the predictive core-variables. Collectively, this approach builds up 

both reliable and trustworthy diagnostic decisions while agreeing with societal and legal pressure that 

require explainable AI models in the medical domain.     

 

Keywords prediction, interpretable models, metagenomics biomarkers, microbial ecosystems 
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INTRODUCTION 

An increasing wealth of data from high-throughput molecular and imaging technologies is connecting 

medical sciences and machine learning (ML). The latter is impacting numerous areas of medicine, 
including disease diagnosis and prognosis 1-3. It is now argued that deep learning, a field of ML, will 

become the most beneficial technology to hit radiology since digital imaging and that ML will 

dramatically improve prognosis within the coming years 4. 

Simultaneously, progress made in high throughput technologies has contributed to developing new 

fields such as metagenomics, which allows qualifying and quantifying microbial ecosystem 
composition and functionality with unprecedented resolution. The association of the gut microbiota 

with human health and disease has been widely discussed 5 and links with numerous diseases such as 

obesity 6, liver cirrhosis 7, type I 8 and type 2 diabetes 9, inflammatory bowel disease 10, and colorectal 

cancer 11 have been described. Although these associations are proposed as predictive, many of these 
findings are only correlative and require controlling for confounding factors. This task remains a 

challenging objective 12.  

Ecological relationships among bacterial species such as mutualism, parasitism, and competition 13 may 

change with a shift in microbial equilibrium. Although causality is challenging to establish, identifying 

easily interpretable markers of microbial shifts can allow predicting disease states and/or progression. 
Some authors accurately predicted low microbial richness individuals 14 and we confirmed these 

predictors in independent populations 15. Others discriminated liver cirrhosis patients from controls 

using metagenomes 7. Such metagenomics predictors were also proposed in other conditions such as 

obesity, type-2 diabetes, IBD, and colorectal cancer 9,11,16,17.   

Despite these findings, metagenomics data must be analysed carefully because they are often performed 

in a small number of samples (N) compared to a very large number of variables (p). Current microbial 
catalogues, which are composed of millions of genes 18 and thousands of bacterial species and functional 

profiles 19, allow characterizing and comparing sampled ecosystems. As a consequence, most models 

tend to overfit the training data and result in predictions arising from random sampling fluctuations. To 
reduce overfitting, some authors use learning algorithms that include a dimension reduction or 

regularization methods, e.g. Elastic Net 11 or SVM-RFE 12. While these algorithms are more 

straightforward than others, they generate complex models that are difficult to interpret. ML research 

has focused on building accurate models for large data collections, often at the expense of 

interpretability.  

Providing an explanation of the prediction process is increasingly requested in precision medicine, 
especially before validating and deploying the model in patient care 20. In Europe, the new GDPR 

legislation defines that explanation of prediction models is a necessity 21. The comprehensibility — the 

extent to which a human can make sense of a model — is not necessarily sufficient to ensure that the 
model is validated. Ideally, experts need justifiability, defined as being in line with existing domain 

knowledge. Interpretable models have two desirable properties: conciseness and readability by non-

experts. They should contain simple operations (e.g. addition using integers) and be limited in size 22. 

Some authors consider the sparse linear models produced by the Lasso algorithm as interpretable 23. For 
others, the models should be presented as a decision tree or a list of rules. Tibshirani introduced the 

“sparsity bet” claiming that if the “true model” was complex, then we would need much more data than 

what are available to learn it accurately. As a consequence, learning a sparse approximation (i.e. small 

number of features) is the best one can do 24.  

Collectively, these aspects of a model defined as interpretability, are at the core of the present work. 
Causality, as the holy grail of modern biology, is out of the scope of the interpretability property of a 

predictive model. Here, we hypothesized that models inspired by ecosystem relationships and sparse 

microbial signatures can be accurate and more interpretable than state-of-the-art (i.e. SOTA) models, 

including logistic regression with elastic-net regularization (ENET) and support vector machines 

(SVM). 
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RESULTS 

A new family of models for metagenomics data  

We propose a new family of models, named BTR for Binary/Ternary/Ratio, which are an over-

simplification of linear models. For each ecosystem 𝑦"	. . . 𝑦%, the abundance or presence of either genes, 

taxonomy levels, functions, or other microbial qualities is represented by 𝑋"	. . . 𝑋' predictor variables. 

A patient is predicted in a disease state with a probability of 𝑝 > 1 2⁄  if 𝛽. +∑ 	𝛽1	𝑋1 > 0
'
13" , where 

𝛽.	. . . 𝛽' are the real coefficients of a linear model. The biological assumptions are that the contribution 

of each bacterial species to the prediction is proportional to its abundance and that only a limited number 

of species is sufficient to support the prediction. BTR models are much simpler and improve 

interpretability without worsening accuracy. Our models are inspired by three hypotheses emphasizing 

relationships between species and associated ecosystem outcomes (Figure 1).  

Hypothesis 1: The unweighted cumulative abundance of a group of species can predict disease state. 
We define the binary models (i.e. Bin) as linear models with the additional constraint that each 

coefficient 𝛽". . . 𝛽' (omitting the intercept 𝛽.) must be binary — 0 or 1 (Figure 3A; see online methods; 

(1)). Biologically, these species may not interact directly with each other (e.g. non-overlapping 

resources or are not co-located) or be associated together (e.g. cooperation, or similar ecological niche 
25,26). Hypothesis 2: The difference of unweighted cumulative abundance of two groups of species can 
predict disease state. This assumption is implemented by ternary models (i.e. Ter). These are also linear 

models with the constraint that each coefficient 𝛽". . . 𝛽' (omitting the intercept 𝛽.) is limited to the 

value -1, 0 or 1 (Figure 3B; see online methods; (2)). Hypothesis 3: The ratio of unweighted cumulative 

abundance of two groups of species can predict disease state. This assumption is implemented by ratio 

models (i.e. Ratio), which are also linear models with an additional constraint: each coefficient 𝛽1. . . 𝛽' 

is limited to a value of -𝜃, 0 or 1, where 𝜃 is a positive real number, and the intercept 𝛽0 is set to zero 

(Figure 3C; see online methods; (3)). Biologically, both Ter and Ratio models can correspond to 
different types of species interactions including simultaneous cooperation and competition between 

species.  

BTR models can be illustrated as balances, where species abundance is symbolized by the cumulative 

weight (Figure 1). The concept of balances is not new in ecology and was first proposed to address the 

compositionality problem of microbiome data. A balance-based representation of the microbiome data 

can solve part of these issues and reveal biological patterns that were previously undiscovered 27. Very 
recently, other authors have applied the balance representation to the predictive context 28. Here, we 

propose more general models that encompass such balances (i.e. Ter models applied to log-transformed 

data - named TerLog; see supplementary material; Figure S7). Learning linear models on log-
transformed counts correspond to identifying balances of multiplicative relationships. Which 

relationship best characterize microbial ecosystems remains an open question. 

We devised a dedicated algorithm called predomics to learn BTR models from metagenomics data. 

Based on a genetic algorithm it supports learning high-quality models (see online methods). From a ML 

perspective, learning BTR models corresponds to minimizing the sum of a cost function (e.g. residual 

sum of squares (RSS)) and a L1 norm regularization for the sparsity, under a constraint on the unary 

value of the linear model that predicts classes.  

BTR models are accurate and improve with taxonomic specificity 

Abundance can be quantified at different taxonomic levels. We generated BTR models on six different 

public metagenomic datasets (Table S1) and nine derived types of variables, (taxonomic levels, marker 

genes and pathway table, a fused taxonomic dataset, i.e. a total of 54 datasets, see online methods). We 

compared them with the SOTA algorithms: SVM, random forest (RF) and ENET. First, we tested 
models with different numbers of features (i.e. model-size) and noticed an effect on accuracy. 

Importantly, the testing performance was relatively different form training for the SOTA, indicating 
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important overfitting. On the contrary, BTR models while being accurate, displayed comparable 
performance on both training and testing sets. The simplicity and sparsity of the BTR models diminishes 

overfitting (Figure S1). 

We applied model-size penalization on the empirical accuracy to select the best model. All algorithms 

were evaluated by measuring test accuracy in a cross-validation setting and compared between them 

using paired tests (see online methods). BTR models performed at least as well as SOTA in 39/54 

(72%). They outperformed SOTA in 16/54 (30%) and were outperformed in 15/54 (28%) (Figure 2; 
Figure S2A-C). RF displayed good results but at the expense of lower interpretability (hundreds of 

variables used in 500 trees; Figure 2; Figure 3F). 

Moreover, we tested the generalization of Bin, Ter, Ratio and TerLog models in an independent dataset. 

Learned in Cirrhosis stage-1, they were tested on Cirrhosis stage-2 dataset. Results illustrated in Figure 

S4 indicate very good external validation with an average training accuracy=0.89 (sd=0.02) and testing 

accuracy=0.85 (sd=0.04). Ter and Ratio models generalized better compared to Bin and TerLog. 

Results on different taxonomic levels (Cirrhosis stage-1) displayed higher performance at the gene 

marker, species and genus level, and decreased with higher taxonomic levels. Moreover, when applied 
to a multi-taxonomic level dataset (strain to phylum as generated by 29 with different specificity levels 

mixed together; i.e. whole tax), models displayed surprisingly good performance (Figure 2B). Indeed, 

in this space, models can be powerful as they can summarize more complex rules such as: “if abundance 

of all Firmicutes minus all the Clostridiales order greater than threshold, then disease”. 

In addition to the abundance datasets described above and based on the zero-inflated nature of 
microbiome data, we trained and tested similar models on simple presence binary data derived from the 

previous 54 abundance datasets. Overall results are relatively similar indicating that the detection of 

species alone can be powerful in the prediction task (see supplementary material; Figure S2D-F; 

Figure S3). Noteworthy, when applied to presence data, BTR models indicate relationships between 
sub-ecosystem complexity or richness. These can be useful to detect switch-like mechanisms in the 

microbiome. 

BTR models are more interpretable than state of the art 

A barcode graphical representation illustrates the simplicity of BTR models. In Figure 3A-C left, the 

models are represented by red and blue lines, corresponding respectively to positive and negative 

coefficients. Their length is proportional to the coefficient. The same representation is used to visualise 
the normalized coefficients of ENET and SVMLIN models, which include 159 and 462 variables 

respectively (Figure 3D-E). The RF model is more difficult to represent graphically and only one of 

the 500 decision-trees used in the model is illustrated (Figure 3F). 

For each variable selected by BTR models, we assessed their importance in prediction. We implemented 

a variant of the well-known mean decrease accuracy (MDA) (Figure 3A-C middle; see online 
methods). Moreover, variable importance may differ from one model type to another. For instance, 

Veillonella unclassified is the most important for Bin and Ter but not for Ratio, which favours 

Streptococcus anginosus. Such importance score allows prioritizing further exploration of the features 

in the context of the predicted phenomenon. 

Predomics can discover a family of BTR models with equivalent predictive power in a given model-

size range (i.e. FBM for family of best models; Figure S5; see online methods and supplementary 
material). The selected FBM is analysed to identify the common features that are found in the models. 

For instance, in the cirrhosis stage-1 (species) dataset, the 268 models in the FBM with model-size<6 

only rely on 67 features (i.e. 16% of the whole dataset). This feature core-set, along with model co-
presence information allow us to infer a model co-presence network. It indicates the topology of 

information redundancy and complementarity in the predictive task (Figure 4A). In the left part of the 

network, there is a cluster of species that are more abundant/prevalent in the patient group and on the 

right, a cluster of species that are more abundant/prevalent in the healthy controls (Figure 4B). These 
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species display negative intra-connectivity (inside modules) and positive inter-connectivity (among 
modules), indicating respectively exclusion and inclusion in the models. An emerging property of this 

network is the clustering of phylogenetically close species as depicted by node colours (blue tones for 

Firmicutes species enriched in patients and green tones for Proteobacteria and Actinobacteria enriched 

in controls), indicating information redundancy in prediction. 

Overall, BTR models, even those as simple as composed of five features or less, are surprisingly 

accurate and select important variables. Along with the corresponding visualisation interfaces and 
different statistics on feature importance (MDA; see supplementary material), these models are much 

more interpretable compared to state-of-the-art ones. Finally, by taking advantage of the FBM we 

provide useful insight in the predictive mechanisms of the variables and allow establishing confidence 

on the predictive core features as well as subsequent models (Figure S5-S7).  

BTR models provide biological insights 

We evaluated BTR models’ ability to provide biological insight in different medical conditions. We 
focused on the liver cirrhosis dataset 7, where major patient dysbiosis was observed with decreased 

microbial richness, depletion of gut commensals, and an invasion of oral bacteria. Several markers at 

taxonomic and functional levels were associated with the disease. Predomics BTR models replicated 
original findings (see supplementary material) and identified novel bacterial features associated with 

liver cirrhosis.  

A more in-depth exploration of the species model co-occurrence network (Figure 4) emphasize the 

selection of strongly associated species as well as other redundant/complementary ones. As these 

species are phylogenetically close, they may offer similar functional services. Such is the case of an 

unknown species of Veillonella and Veillonella dispar. Notably, the model co-presence network, 
resembles the one described in the original study. The difference being that the original network was 

constructed using abundance of metagenomic species (i.e. MGS) for each metagenome. Thus, BTR 

models have the ability to distil and capture the biological information embedded in the data related to 

the prediction task.  

Other authors have modelled liver cirrhosis associated microbiome using curated information from the 
literature, such as the ratio of autochthonous (butyrate-producer bacteria) to non-autochthonous (oral 

bacteria, opportunistic pathogens). The authors used these taxa to build a cirrhosis dysbiosis ratio 

(CDR) score 30. Based on their description we built three redundant models using family taxonomic 

features and tested them in the liver cirrhosis stage 1 (family) dataset 7. The predomics Ratio model 
provided far superior performance (accuracy=0.86) compared with CDR-based models (accuracy=0.56 

in average) (Figure 5). The reason for CDR lower performance can be explained by the inclusion of 

the Bacteroidaceae family in the liver cirrhosis group. However, we observe the opposite association 
in the current dataset, where Bacteroidetes-related features are enriched in the control group. This is 

consistent for different taxonomic levels (Figure 5, see supplementary material). 

Quantitative prediction using BTR regression models 

In addition to classification, predomics can perform regression tasks by searching models that correlate 

with the quantitative variable to predict (see online methods). We used data from a recently published 

study where obese patients underwent Roux-en-Y gastric bypass (RYGB; n=14) and adjustable gastric 
band (AGB; n=10) surgery 31. Patients’ metagenomes were measured pre-surgery and twelve months 

post-surgery (among others). Most patients who underwent the surgery improved their body weight, 

body composition and glucose homeostasis (glycemia, insulinemia and glycated haemoglobin (i.e. 

HbA1C)) with significant variation between individuals. Metabolic improvement was measured as the 

relative change at 12 months compared to baseline. 

We searched pre-surgery metagenomic data for bacteria that could predict the improvement of BMI, 
trunk fat distribution, and HbA1C and discovered models composed of 6, 4, and 3 species reaching R2 
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values of 0.53, 0.62, 0.52 respectively (Figure 6). The algorithm generalizes well when tested in cross 
validation (20-times 5-fold CV), although we observe decreasing performance in testing sets likely due 

to the small sample size. Interestingly, the models highlight bacterial species such as Faecalibacterium 

prausnitzi, B. pseudocatenulatum and P. goldsteni, which were previously shown to be associated with 

metabolic health and low-grade inflammation (see supplementary material). While this is a proof of 
concept, these results illustrate the power of the microbiome to predict change in body composition and 

glucose homeostasis.  

DISCUSSION 

In principle, BTR models could be applied to any type of data. However, they are best suited to 

commensurable measurements (i.e. variables measurable by the same standard or measure). In the 

growing field of metagenomics, issues related to compositionality and data processing still remain to 
be solved. Recent work has shown the importance of data acquisition in subsequent analytical 

inferences. In particular, microbial loads differ significantly between individuals and are associated 

with specific types of microbial ecosystems 32. An advantage of Ratio models is that they are scale-

invariant given they do not depend on absolute measurements, thus avoiding compositionality issues. 

Algorithmically, the complexity of finding optimal BTR models grows exponentially with the number 
of variables. However, it has been proven that near-optimal binary-weighted models can be identified 

in polynomial time 33. In predomics, we implemented several heuristics that support finding near-

optimal models while remaining scalable (see online methods). 

The simplicity of a BTR model may come with the risk of over-interpretation. The existence of k species 

in a model, may correspond to different explanations ranging from simple correlation to causal relation. 

They may or may not interact together, as in the case of a niche differentiation 28. For instance, the 
buccal-originated species found in the gut of liver cirrhosis patients 7 along with the absence of 

commensals may reflect a global difference in the environment where they live rather than direct 

interaction 7. Even if BTR models represent real interactions between species, it is not recommended to 
give a causal interpretation without experimental or literature validation. Nevertheless, identifying such 

species provides important knowledge towards understanding potential mechanisms between species 

or between species and the host.  

The quality of reference datasets used in building predictive models is vital for model interpretability. 

The propagation of errors and inaccuracies in genomic datasets is a well-known issue, and affects 

automated methods for functional annotation 34. Moreover, due to the lack of biochemical 
characterization of orphan enzymatic activities, the number of sequences with unknown functions is 

extremely large, making their propagation common 35 (see supplementary material).  

Another caveat with microbiome studies resides in the potential confounders modulating microbial 

ecosystems. For instance, metformin can alter the bacterial ecosystem such that some bacterial species 

(e.g. E. coli) are increased in abundance and others are depleted 36. It is important to filter out 

confounder-related species from the data or to filter out models that are sensitive to confounders.  

Finally, after filtering for confounders, and manual curation, BTR models can be used to develop 

specific acquisition technologies such as microarray DNA chips, built with primers that are specific to 
the species found in the models 37. From a clinical perspective, identifying a small subset of variables 

(genes, species, pathways, etc) can be used to simultaneously predict multiple tasks. Such applications, 

after being properly validated, will be important to the medical community in their translational quest 

to improve patient care. Our predomics approach brings us a step closer towards this goal. 
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METHODS 

Methods and any associated references are available in the online version of the paper. Supplementary 

information and source data files are available in the online version of the paper. The predomics package 

is available in https://git.integromics.fr/published/predomics. 
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FIGURE LEGENDS 

 

 

Figure 1: The three balance concepts depicting the BTR models  

Top: The Binary model tests whether the cumulated abundance of a set of species is below or above a 
certain threshold. Middle: The Ternary model tests whether the cumulated abundance of a first set of 

species is below or above the cumulated abundance of a second set of species plus a certain threshold. 

Bottom: The Ratio model tests whether the cumulated abundance of a first set of species over the 

cumulated abundance of a second set of species is above a given threshold. 
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Figure 2: BTR models vs. SOTA performance across different disease and taxonomic levels 

A: Accuracy measured in the test datasets at the species level across six different datasets. The stars on 

top indicate whether the corresponding BTR or SOTA algorithms are significantly better than others 

(i.e. without stars). B: Accuracy measured in the test datasets in different taxonomic levels of gut 

microbiome quantification at different phylogenetic levels (marker gene, whole taxonomy, species, 

genus, family, order, class and phylum). Dashed bars indicate the majority class and k_* indicates the 

model-size. A 10-times 10-fold validation test values are summarized as mean +/- standard errors. 
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Figure 3: BTR models are interpretable compared to state-of-the-art 

A-C left: Barcode graphical representations indicating the coefficients of the BTR model features sorted 

by decreased correlation strength with the class to predict. A-C middle: Mean decrease accuracy (MDA) 

plots indicating feature importance computed during the cross-validation process. Blue and red colours 

indicate enrichment in patients and controls respectively. A-C right: Receiver operator characteristic 

(ROC) plots for the same BTR models. The red cross indicates the specificity and sensitivity of the 

model. D-F: A visualisation attempt of the SOTA models with barcode plots for ENET and SVMLIN 

and only one tree out of the 500 used in the RF model. Note: the features names are not readable due to 

the large number of variables in the model — here we focus on coefficient distribution). 
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Figure 4: Information network of the most predictive FBM features 

A: The network displays the top 5% strongest edges inferred using the ScaleNet network reconstruction 

approach (parameterized with bayes_hc and aracne methods, see online methods) in the FBM feature-

presence table. The size of the nodes is proportional to the average importance (MDA) in the BIN, TER 

and RATIO experiments. The colours of the nodes indicate the taxonomic family assignation as 
indicated in the legend. The red and blue edges indicate co-presence and co-absence in the models 

respectively. B: For each feature present in the network we show in the left: the prevalence of the 

features in the whole dataset (grey bar) and in the prediction classes (disease, healthy) depicted as blue 
and red dots respectively and in the right: the feature abundance distribution in the prediction classes 

(disease, healthy) depicted as blue and red box plots respectively. Grey stars indicate significant 

differences.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/409144doi: bioRxiv preprint 

https://doi.org/10.1101/409144
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 

Figure 5: Cirrhosis Dysbiosis Ratio (CDR) index compared to predomics ratio model. 

A-D: Barcode plots indicating the coefficients of the Ratio models (S13-S15) build with features from 

the CDR index and predomics discovered model (S16). Red and blue colours indicate respectively the 

numerator and denominator of the ratio model and are respectively enriched in the controls and LC 

patients. The length of the lines is proportional to the ratio factor optimized in the model. E left: 

Boxplots indicating the abundance distribution by class for all features used in these models (red is 

enriched in controls and blue in the liver cirrhosis group). right: for the same features the prevalence of 

non-zero values is depicted in grey for the whole cohort and red and blue dots respectively in the control 

and patient groups. Grey stars indicate significant difference. F: Receiver operating characteristic 

(ROC) curves for the four models (S13-S16). 
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Figure 6: Quantitative prediction of phenotypic outcome after bypass surgery. 

Left: Barcode plots indicating the coefficients of the ternary models. Middle: Percentage of mean 

decrease R2, measuring the importance of features in the fitting objective during the cross-validation 

process. Right: Scatter plots indicating the fitting of the model score (y-axis) as measured with baseline 

microbial profiles against the relative change of each of the three phenotypes (trunk fat mass, BMI and 

HbA1C) in the x-axis. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/409144doi: bioRxiv preprint 

https://doi.org/10.1101/409144
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

ONLINE METHODS 

Public datasets used in this study 

To test predomics and compare it with state-of-the-art methods, we used several public datasets. For 

the classification tasks we downloaded five curated metagenomic datasets from the ExperimentHub 29. 

They were generated in several independent studies using shotgun metagenomics (Table S1) and were 
processed bioinformatically and curated independently by Pasolli et al 29. In short, metagenomes were 

sequenced on the Illumina platform at an average depth of 45 Million reads. MetaPhlAn (v2.0) was 

used on the pre-processed reads with default settings to generate microbial community profiles (from 
kingdom to species taxonomic levels). To obtain functional profiles, HUMAnN23 (v0.7.1) was used on 

the pre-processed reads with default parameters. Three main outputs: gene family abundance, pathway 

abundance, and pathway coverage were generated. The R code used to download and format the data 

used in our experiments is provided in the supplementary material package. We derived 54 datasets out 
of the original data (i.e. six different cohorts and for each six taxonomic levels, a marker gene and a 

pathway table along with a fused taxonomic dataset). These same 54 datasets were also transformed as 

presence/absence derivatives used for additional experiments 

For the regression experiments, we used shotgun metagenomics data from a recently published study, 

where morbidly obese patients underwent bariatric surgery 31. Patients’ microbial DNA was sequenced 
using SOLiD before surgery and one, three, and twelve months after surgery. Reads were cleaned and 

contaminants were removed before mapping them against the 3.9M gene catalogue 19. Counts were 

rarefied at 11 million reads and normalized. Metagenomic species (MGS) abundance was computed as 

the average of the 50 most connected genes of each MGS after 20% presence filtering 19. See original 

study for more information 31.  

Novel ecologically inspired models 

The new family of BTR models (for Binary/Ternary/Ratio) is inspired by possible relationships between 

species within an ecosystem 13 with 𝑋"	. . . 𝑋' the predictor variables of a metagenomic sample. For 

simplicity, 𝑋1 represents the abundance of the 𝑗67 bacterial species, and each patient can be classified 

into two conditions: healthy or diseased. Until now, the algorithms yielding the most interpretable 

models are based on sparse logistic regression such as the Lasso algorithm 23 or its improvement the 
Elastic Net algorithm. Here, we argue that it is possible to consider even simpler models that improve 

interpretability without worsening the accuracy when compared to state-of-the-art algorithms.  

The implicit biological assumptions underlying the explicability of such linear models are: 1) the 

contribution of each bacterial species to the prediction is proportional to its abundance, and 2) that only 

a limited number of species are sufficient to support the prediction. Our BTR models are inspired by 

three hypotheses emphasizing relationships between species and associated ecosystemic outcomes. 

They are particular types of linear models, which are generally a sequence of real coefficients 𝛽.	. . . 𝛽'. 

A patient is predicted as ill with a probability 𝑝 > 1 2⁄  if and only if 𝛽. +∑ 𝛽1	𝑋1 > 0
'
13" .  

The binary models (i.e. Bin) are defined based on the first hypothesis that the unweighted cumulative 
abundance of a limited group of species may be sufficient to support the prediction. This translates in a 

linear model with the additional constraint that each coefficient 𝛽". . . 𝛽' (omitting the intercept 𝛽.) is 

limited to the value 0 or 1. An example of a binary model is in (1), Figure 3A, which may be interpreted 

as “if the cumulated abundance of s__Veillonella_unclassified and s__Clostridium_perfringens is 

smaller than 0.18 (i.e. 18% of the total microbial abundance), then the individual is classified as 
healthy”. Such model can correspond to the end result of different types of relations: either no direct 

interaction between these species (e.g. use non-overlapping resources of the corresponding environment 

or not colocated), or a real interaction (be it cooperation or competition as both are possible) 25,26. 

(1) s__Veillonella_unclassified + s__Clostridium_perfringens < 0.18 then class = healthy 
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The ternary models (i.e. Ter) are defined based on the second hypothesis that both cumulative and 
difference of abundance of a limited group of species may be enough to support the prediction. This 

translates in a linear model with the additional constraint that coefficients 𝛽". . . 𝛽' (omitting the 

intercept 𝛽.) are limited to the value -1, 0 or 1. An example of a ternary model is in (2), Figure 3B. It 

may be interpreted as follows: “if the abundance of s__Alistipes_indistinctus minus the cumulative 

abundance of s__Streptococcus_anginosus and s__Veillonella_unclassified is greater than -0.083, then 
the patient is classified as being healthy”. Such model can correspond to the end result of different types 

of interactions including cooperation between s__Streptococcus_anginosus and 

s__Veillonella_unclassified and also competition between both species and s__Alistipes_indistinctus. 

For Bin and Ter models we can optionally constrain the intercept to be equal to zero. 

(2) s__Alistipes_indistinctus - (s__Streptococcus_anginosus + s__Veillonella_unclassified) > -

0.083 then class = healthy 

Finally, the ratio models are defined based on the third assumption that the disease state of the patient 

may be determined by the ratio of the cumulative abundance of two groups of species rather than their 

difference. These are also linear models with an additional constraint: each coefficient 𝛽". . . 𝛽' is 

constrained to have either the value -𝜃, 0 or 1, where 𝜃a positive real number, and the intercept, 𝛽., is 

set to zero. An example of a ratio model is in (3), Figure 3C. It may be interpreted as follows: “if the 

abundance of s__Subdoligranulum_unclassified is 𝜃	 = 	81 times greater than the total abundance of 

the group of species s__Megasphaera_micronuciformis + s__Streptococcus_anginosus then the 

individual is classified as healthy”.  

(3) 
:__<=>?@ABCDE%=A=F_=%GAE::BHBI?

:__JICE:'7EIDE_FBGD@%=GBH@DFB:	K	:__<6DI'6@G@GG=:_E%CB%@:=:
> 81	𝑡ℎ𝑒𝑛	𝑐𝑙𝑎𝑠𝑠 = ℎ𝑒𝑎𝑙𝑡ℎ𝑦 

BTR models can be used for classification regression tasks. In this case once the model’s score is 

computed, two additional parameters are learned 𝛼 and 𝛽. using a linear regression to estimate a transfer 

function from the microbiome relative abundance to that in which the predicted variable is expressed. 

The predomics optimization algorithm 

Learning optimal BTR models is a very hard computational task. Because weights are discrete, usual 

techniques coming from convex optimization do not apply here. A naïve way to generate optimal BTR 
models would be to perform an exhaustive search though the space of all models. Unfortunately, this is 

not feasible in practice because the computation time would be exponential with the number of features. 

The BTR learning problem is known as NP-Hard (a notion from computation complexity theory), which 
means that no algorithm can solve this problem exactly in polynomial time, unless a widely believed 

conjecture turns out to be false 33.  

Because tractable optimal algorithms are out of reach at the moment, we can only apply approximate 

heuristic methods, without any guarantee on the optimality of the outcome. One such popular family of 

heuristics is the genetic algorithm, which is a stochastic optimization technique. It adopts concepts from 

evolutionary biology — populations, reproduction, mutation and generations. Although the general 
principle behind all genetic algorithms is the same, the strategies used can be tailored and so did we for 

the problem of BTR model construction. The outline of the algorithm is described below, and the full 

implementation is provided along with the supplementary material package. 

1. The first step of any genetic algorithm is the generation of an initial set of candidate models, 

which is usually called the “initial population” 𝑃6, typically composed of 100 random models. 

This step is crucial, because it sets the initial exploration space. Most existing genetic algorithm 
build this set by simply drawing random candidate models. In our case, we observed that 

combining various algorithms to generate this initial population boosts the final accuracy. More 

precisely, we combine models generated by a beam-search algorithm, models obtained by a 
logistic regression followed by a weight discretization phase (33) and purely random models. 

These models are chosen of different sizes (i.e. parsimony), typically ∈	 {1: 30}. 
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2. Then, the algorithm performs 100 iterations (if no convergence criterion is set). At each 

iteration 𝑡, the algorithm generates a new set of improved models 𝑃6K" (a new population) based 

on the previous population 𝑃6. More precisely, to build 𝑃6K", the algorithm performs four 

consecutive stages, which are the evaluation, selection, crossover and mutation. 

i. During the evaluation stage, all models in 𝑃6 are evaluated according to their predictive 
accuracy. Each of the three remaining stages outputs a modified population based on 

the population of the previous stage.  

ii. Typically, 50% of the models are selected half randomly and half based on the best 

accuracies. This selection will be at the origin of the new generation of models 𝑃6K" . 
iii. During the cross-over stage, pairs of models are randomly drawn among those who 

survived the selection stage, and their features are combined randomly to generate new 

models, which are added to the population.  
iv. In the mutation stage, a fraction of the models, selected randomly, are mutated. The 

mutation of a candidate model is the process of either removing, or adding a random 

feature, or even altering the weights of one or more of its features. At this stage the 

𝑃6K" is created and will serve as initial population of 𝑃6K[ and so on. 

3. At the end of the evolution process, a population of models 𝑃HB%EA is provided on which the 

family of best models (FBM) can be selected. The best model is obtained by applying a model-

size penalization. The penalized accuracy 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦'I%EAB^I? = 	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 − ƛ	𝑘 is 

computed, where k is the number of features in the model (i.e. parsimony) and ƛ is an 

hyperparameter controlling the penalization of the accuracy. The number of selected features 

in the BTR models depends on this hyper-parameter and will increase when ƛ decreases. We 

believe that applying the sparsity bet criterion to our models will improve their overall 
generalization. 

For classification tasks, we can optimize different parameters such as accuracy (default), AUC, F1, 

precision or recall. For regression tasks we can optimize the rho, R2 (default) or standard error of the 
regression. The interested reader may look at our code for more information, available at the project’s 

repository https://git.integromics.fr/published/predomics. 

Experimental design 

The BTR models are tested on the 109 different datasets (see above) and compared with the methods 

from the state-of-the-art machine learning algorithms: support vector machine (SVM) with linear and 

Gaussian kernel (data not shown), Random Forest and Elastic Net (an improvement of Lasso, 
alpha=0.5). A more specific comparison between TerLog models and the geometric mean balance 

algorithm is provided in supplementary material. Our experimental pipeline proceeds as follows: 

1. Feature normalization: frequency tables are used as already processed by Pasolli et al 29. 

2. Features with low standard deviation are filtered out. The threshold corresponds to the 

maximum second derivative of the distribution of the feature’s standard deviation. 

3. The accuracy in generalisation of each method is estimated by 10-times 10-fold cross validation 
for the classification tasks and a 20-times 5-fold cross validation for the regression tasks. Each 

model is fitted on the training data of each cross-validation fold and tested on the corresponding 

test data.  
4. The feature selection is embedded for the BTR models and Elastic Net. For SVM and random 

forest we do not apply a feature selection, besides the model size experiments (Figure S1) 

where feature selection is based on the Mann-Whitney score test score as introduced in 38. The 

feature selection step is included in the cross-validation loop in order to avoid the selection bias 
39.  

5. Once the best learner is identified, it is compared with a paired t-test with all others over the 

100 CV points. Those that are not significantly different are considered equivalent (pval<0.05).  
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Family of best models 

A family of best models (i.e. FBM) is defined as the set of models returned by the predomics algorithm, 
whose accuracy is within a given window of the best model accuracy. This window is defined by 

computing a significance threshold assuming that the model accuracy follows a binomial distribution 

(p<0.05). An FBM can be analysed in detail to distil biological information in the predictive context 

(see supplementary material). 

Feature importance 

Similarly, to what is proposed in the random forest algorithm, feature importance is defined as the 
usefulness of features to predict, given all other features and best models of the FBM. The first step is 

to perform a k-fold cross-validation of the learning algorithm. During each fold, the out-of-bag error on 

each model composing the FBM is computed. To measure the importance of the 𝑗67	feature, its values 

are permuted within the out-of-bag data and the out-of-bag error is again computed on this perturbed 

data set for each FBM model. The importance score for the 𝑗67 feature is computed by averaging over 

all FBM models the difference in out-of-bag error before and after the permutation.  The mean decrease 

accuracy (MDA) is finally computed as the average of these values over all the folds and is displayed 

along with the standard error of the mean. 

Moreover, we propose a second concept of importance (named PDA), based on the mean prevalence in 

FBM models (i.e. percentage of times a given feature is selected in a model composing the FBM). Next, 
we compute the average model prevalence for each fold during the cross-validation process and finally, 

propose the CV-averaged PDA along with the standard error of the mean as measure of feature 

importance. This is illustrated in Figure S8B. 

 

Regression models 

Predomics can learn also regression models. These models are evaluated by either maximizing, 
Spearman rho or Spearman R2 or minimizing the scaled standard error of regression (SER). The model 

score at this stage reflects the cumulative/difference/ratio of relative abundance of the species and needs 

to be scaled in the ranges of the variable to predict. For this reason, in this regression setting, we estimate 

two additional parameters alpha (i.e. multiplication factor) and beta (i.e. intercept). 

Network reconstruction 

Different methods can be used to reconstruct the feature co-presence network in model selection data. 
Here we used the Scalenet methodo 40. To accurately reconstruct such network ScaleNet first reduces 

the reconstruction problem into a large number of simpler reconstruction problems, then employs state-

of-the-art reconstruction methods to solve them. Finally, a consensual voting strategy between the 
methods is adopted to identify the most accurate sub-graphs. The different sub-graphs are then 

connected like pieces of a larger puzzle. The main originality of the method lies in its powerful problem 

reduction based on spectral decomposition. Learning small problems instead of a large one with few 

observations as is the cas in omics data is showed to lower the overfitting effect 40. Here we used the 
top 5% strongest edges inferred using the ScaleNet network reconstruction approach (parameterized 

with bayes_hc and aracne methods) in the FBM-presence table.  
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