
Interpretable and Reconfigurable Clustering of Document
Datasets by Deriving Word-based Rules

Vipin Balachandran
Indian Institute of Technology

Madras, Chennai, INDIA
vipin.bl@gmail.com

Deepak P
IBM Research - India,

Bangalore, INDIA
deepak.s.p@in.ibm.com

Deepak Khemani
Indian Institute of Technology

Madras, Chennai, INDIA
khemani@iitm.ac.in

ABSTRACT
Clusters of text documents output by clustering algorithms are of-
ten hard to interpret. We describe motivating real-world scenarios
that necessitate reconfigurability and high interpretability of clus-
ters and outline the problem of generating clusterings with inter-
pretable and reconfigurable cluster models. We develop a cluster-
ing algorithm toward the outlined goal of building interpretable and
reconfigurable cluster models; it works by generating rules with
disjunctions and conditions on the frequencies of words, to decide
on the membership of a document to a cluster. Each cluster is com-
prised of precisely the set of documents that satisfy the correspond-
ing rule. We show that our approach outperforms the unsupervised
decision tree approach by huge margins. We show that the purity
and f-measure losses to achieve interpretability are as little as 5%
and 3% respectively using our approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Clustering; I.2.7 [Artificial Intelligence]: Natural
Language Processing—Text Analysis; I.5.4 [Pattern Recognition]:
Applications—Text Processing

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Text Clustering is the process of grouping text documents into

clusters so that the documents within a cluster are more similar
than documents across clusters (in the absence of label informa-
tion). Similarities between text documents are often assessed us-
ing the cosine similarities between TF-IDF1 vectors. Popular tech-
niques for text clustering include partitional clustering algorithms
such as K-Means [11] and hierarchical clustering algorithms such
as Single-Linkage Clustering among others [17]. It is often nec-
essary to interpret the clusters generated, for knowledge discovery

1http://en.wikipedia.org/wiki/Tf-idf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

in various scenarios. However, traditional clustering algorithms,
when applied to text data, output models which are hard to inter-
pret. For example, K-Means clusters may be represented as a set
of cluster centroids where each document could be associated with
the cluster whose centroid is most similar to it, according to the
chosen similarity measure. The Vector Space Model for represent-
ing text data, however, has as many dimensions as the vocabulary
of the collection; this makes cluster centroids hard to understand
and interpret. The centroid vector is often criticized to be not very
meaningful to describe clusters [4]. Popular text clustering toolkits
such as CLUTO2 aid visualization by tagging each cluster with de-
scriptive and discriminative features. On the other hand, algorithms
for co-clustering, those which simultaneously cluster objects and
attributes (i.e., documents and words, in the case of text) [5] have
been adapted to text data to generate sets of words along with ev-
ery cluster of documents [12]. However, a set of words associated
with each cluster is not a self-contained model as it does not fully
describe a cluster. For example, given a set of clusters and sets of
words for each, a document’s membership in a specific cluster is
not obvious (since a document may contain words from across two
cluster descriptions, and may belong to a third). Further, such a
model is not reconfigurable, i.e., the human cannot edit the model
so that the clustering for the reconfigured model can be computed
easily, or is obvious.

In this paper, we deal with the problem of clustering document
datasets to derive highly interpretable cluster models which are
self-contained and reconfigurable. We provide an approach for
Rule Generating Clustering (RGC) towards this goal and show that
the accuracy loss to achieve interpretability is very small.

2. RELATED WORK
While there is no strict criterion to decide on whether a clustering

is interpretable or not, rule-generating models are generally consid-
ered to be interpretable [14]. Interpretability (e.g., using Mamdani-
style rules) is the unique selling point of fuzzy systems [13] and is
often achieved by trading off for some accuracy [8]. On the same
lines as [13], the length-accuracy trade-off for cluster descriptions
has been addressed previously (e.g., SOR model [6]). The high
dimensionality of the document space renders SOR inappropriate.

Text clusters are often presented to the users as a word-cloud,
sets of representative words, a concept taxonomy, word clusters
derived during clustering (e.g., [5]) or summary words. We refer
to such easily interpretable models as word-based representations
(WBRs). WBRs, however (as mentioned earlier), do not fully de-
scribe the cluster and are hence not self-contained/comprehensive.
For example, in a text cluster that mostly contains sports news re-

2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

ports along with a few reports about celebrities who attended a
specific sports event, none of the above may generate a word in
the description that is indicative of the latter. Thus, an analysis of
the WBR corresponding to that cluster could lead one to conclude
that the cluster has only sports reports. Further, all documents in
the cluster are not guaranteed to contain any one of the words in-
cluded in the representation. WBRs are mostly read-only models;
i.e., editing of such models do not lead to an intuitive reconfig-
uration of cluster memberships. A simplistic model of deleting
documents containing the word when the word is deleted from the
cluster model would not work since documents that do not contain
any words in the description are also part of the cluster. WBRs are
hence not self-contained nor do they allow easy manual reconfigu-
ration.

2.1 Rule-Based Clustering Models
A standard approach to summarize multi-dimensional points is

to represent them by a set of hyper-rectangles [1] e.g., (3.80 ≤
GPA ≤ 4.33 ∧ 0 ≤ minutes_in_gym_per_week ≤ 30) may
describe a set of nerds. Sum of Rectangles (SOR), the canonical for-
mat for cluster descriptions in databases has been used for numeri-
cal data [6]. Text data is unique in being highly multi-dimensional
and extremely sparse. SOR representation works by discovery of
bounds and convex structures; the inherent high dimensionality and
sparsity of document datasets makes upper bound discovery im-
practical. Decision trees have been adapted for clustering [2] to
generate rules based on attribute frequencies.

2.2 Applications
Interpretability in machine learning models has been studied in

various contexts [13, 6, 2] and its need cannot be overemphasized.
Now, we describe a scenario where reconfiguration of cluster mem-
berships is highly desirable, and elaborate on other real-world sce-
narios that demand or are benefitted by interpretability and recon-
figurability of cluster models.

Service Delivery Organizations (SDO): SDOs mostly operate
by providing support to solve customer issues, and are bounded by
SLAs3. Resolution of each issue is guided by manually authored
documented procedures (e.g., call flow charts). Each such issue is
recorded in the form of a problem/change ticket whose contents
are mostly textual. In current practice, managers use text clus-
tering tools to cluster tickets that resulted in SLA violations (the
most important quality indicator), and analyze such clusters using
word-based representations such as tag clouds to identify distinct
categories of problems that led to SLA violations. Seemingly prob-
lematic clusters are then given to Quality Analysts who analyse the
clusters by reading and assimilating the tickets in those and pro-
vide insights to enable faster resolutions of such problems. Here,
we would want to minimize the number of irrelevant documents in
such clusters since they would contribute only marginally (or not
at all) to derive insights from the cluster. Rule based interpretable
models, being self contained, could boost the chances of being able
to filter out such cases by just glancing at the rules. In such a set-
ting, usage of word-based representations is counter-intuitive since
we want to remove statistically insignificant concepts, that are pre-
cisely the ones least likely to be represented in WBRs.
Other Applications: The problem outlined above is a manifes-
tation of a more general class of scenarios where users inspect
large document datasets and select a few clusters for closer man-
ual inspection. This poses the challenge of being able to refine the
clusterings at any cost, since the laborious process of inspecting
documents manually is the target of optimization. Other contexts
3http://en.wikipedia.org/wiki/Service_level_agreement

include compiling a targeted news report by selectively reading cer-
tain categories of newswire reports, selecting customers to send tar-
geted ads for a product, and recommending films to targeted groups
using a collection of film reviews, each of which require careful
manual post-processing of selected clusters to derive insights.

3. RULE-GENERATING CLUSTERING (RGC)
We propose an approach for Rule-Generating Clustering that par-

titions the dataset into non-overlapping clusters of documents where
each cluster has an associated rule that is satisfied only by the doc-
uments in that cluster. For a document dataset D comprising of
documents {d1, d2, . . . , dn} with an associated vocabulary W =
{w1, w2, . . . , wm}, RGC would yield k clusters {C1, C2, . . . , Ck}
with each cluster Ci having ni documents would have a rule Ri as-
sociated with it. Each rule Ri is a composite condition composed of
atomic conditions that relate to the frequency of individual words.
An example could be:

Ri = (f(wi1) ≥ 1) ∨ (f(wi2) < 1) ∨ . . .

This signifies that a document that contains at least one occurence
of wi1 or does not contain wi2 would be part of Ci. The key dif-
ference from some well-known clustering algorithms is that some
documents CD in D may still be unclustered since they do not sat-
isfy any cluster’s rule.

Centroid similarity Ranking (CR):A novel feature selection
method forms the skeleton of the RGC approach. Traditional fea-
ture selection methods such as tf-idf, term contribution [10] rank
features such that the top few features would be able to cover most
of the documents in the dataset and that a clustering using such
top features would lead to high accuracy when compared against
available extrinsic labels. This is different from our objective of se-
lecting highly pure words; words such that most of the documents
containing them are homogeneous. Every attribute w has an asso-
ciated set of documents Dw, the set of documents containing w.
Documents are expressed as tf-idf vectors and let the centroid vec-
tor of Dw be denoted by c̄vw. The homogeneity value of a word w
is the fraction of documents in Dw that are closer to c̄vw than any
other centroid c̄vv for any word v that has presence in at least 1%
of the documents. Formally,

|{d ∈ Dw : ∀v �=w(Sim(d, c̄vw) ≥ Sim(d, c̄vv))}|/|Dw|
where Sim(., .) denotes the cosine similarity of the argument vec-
tors. CR prioritizes words with high homogeneity values. Like
any other clustering approach, other similarity measures could be
employed to form variants of the approach.

The different phases of the algorithm are:

1. Cluster Generation: This phase uses CR to select top-t
words and builds one cluster per word using the documents
that contain that word. All rules at this phase are of the form
f(w) ≥ 1.

2. Merging of Clusters: This phase merges the most similar
pair of clusters (in agglomerative fashion [9]) to generate a
single bigger rule associated with the merged cluster, until
there are exactly k clusters. The clusters chosen for merge
may have overlaps. This is dealt with, by adding negated
conditions as illustrated in Example 1.

3. Coverage Enhancement: This attempts to bring in more
documents into the clustering, thus enhancing coverage. This
is done by choosing from among the set of words not yet in-
cluded in the clustering; if the set of documents containing

Alg. 1 RGC-N
1: C ← φ, R← φ,Wα = top-t words acc. to CR
2: for w ∈Wα do
3: C = [C, {w}], R = [R, {fw ≥ 1}]
4: end for
5: while |C| < k do
6: Remove the most similar pair of clusters ci, cj from C
7: Avoid_Overlap(ci, cj)
8: Merge them and add them to C
9: end while

10: Reduce_Cluster_Rules(C,R)
11: while W has words yet to be considered do
12: pick w ∈W where |Dw − C| is maximum
13: if Dw overlaps with the cluster with which it has maximum

similarity then
14: Merge Dw with that cluster
15: end if
16: end while

the chosen word overlaps with only one cluster, and if it bears
maximum similarity with that cluster, a merger is performed.

The Algorithm (Algorithm 1) identifying Wα, the top-t words
according to CR that covers at least α% of the dataset. The clus-
ter generation phase (lines 2-4) generates one cluster out of each
word in Wα, the cluster comprising of all words containing at least
one occurence of the word. It may be noted that these clusters
need not be disjoint and may overlap. The Merging phase (lines 5-
10) starts off with multiple overlapping clusters, and merges them
to k clusters, eliminating overlaps when necessary (as described
in Example 1). The Merging phase may introduce some redun-
dancy in the rules due to merging to a cluster to which overlap was
avoided earlier; here, the negated condition added earlier could be
eliminated due to the merger (as illustrated in Example 1). The
ReduceClusterRules(.) function eliminates such redundancies
in an easy and straightforward way. The coverage enhancement
phase (lines 11-15) considers remaining words, picking those words
that occur in most unclustered documents first. Each such word that
has a single overlapping cluster would have itself added to the clus-
ter if it bears maximal similarity with that cluster. Each such merger
leads to a merger of the corresponding rules using a disjunction.

Example 1:Consider two clusters c1 and c2 chosen for merger,
represented by rules fw1 ≥ 1 and fw2 ≥ 1 respectively. Let it
be the case that c1 overlaps with another cluster c having a rule
fw ≥ 1. Since we want to eventually have non-overlapping clusters
in the output, we resort to avoiding the overlap between the merged
cluster and c. In RGC-N, we accomplish this merger by forming a
new cluster merging c1 and c2 but excluding those documents that
are in c. This leads to the following rule:

(fw1 ≥ 1 ∧ !(fw ≥ 1)) ∨ fw2 ≥ 1

The condition (fw1 ≥ 1 ∧ !(fw ≥ 1)) represents c1\c, which is
then merged (using disjunction) with c2. This negated condition
may be removed later if the merged cluster and c become part of a
single cluster by mergers later on.

4. OTHER APPROACHES
UDT [2] is an approach for interpretable clustering that generates

text clusters that could be represented by rules on word frequen-
cies, and hence, is fully reconfigurable. This decision tree based
technique works by starting with the entire corpus as the dataset
associated with the root node, and progressively splits it into child

nodes using word frequency conditions in a recursive operation.
The information gain guided splitting continues as long as node
sizes are larger than a threshold. This hierarchical clustering ap-
proach differs from RGC since it could generate much more than
k leaf clusters. It may be specifically noted that UDT ’s only pa-
rameter, the threshold on the maximum size of the dataset at a leaf
node is very different from the k parameter for RGC and popular
clustering algorithms such as K-Means.

5. EXPERIMENTAL EVALUATION
We now empirically analyze the proposed approaches against

UDT and C-RG. We first describe the datasets and the evaluation
metrics that we use in our experiments. In the subsections that fol-
low, we describe the results for the various analyses performed and
sample rules generated from the vatrious techniques.

5.1 Datasets and Evaluation Measures
The datasets that we use for our evaluation are listed in Table 1.

These datasets were previously used for validating document clus-
tering algorithms in [16]. While Sports and K1b are entire datasets,
the rest are subsets of datasets described in [16]; these subsets were
chosen to ensure a wide variety in total dataset sizes, as well as in
the average number of documents per class. We use the default
setting of CLUTO toolkit for the K-Means experiments.

We evaluate the quality of the various clustering algorithms against
extrinsic document labels that are available with the datasets; each
document is assigned to a unique specific class in each of the datasets
that we have considered. Further, we also evaluate the interpretabil-
ity of the rule bases generated by the algorithms using the average
length of the rules generated. The extrinsic document labels avail-
able are referred to as class labels hereon. We employ the following
measures in our evaluation:

1. (Net) Purity: The purity of a cluster is defined as the frac-
tion of the maximally represented class in a cluster. The net
purity is computed as the weighted average of purities across
clusters, weighted by their cardinalities. For RGC, unclus-
tered documents are assumed to be misclustered.

2. F-Measure: F-Measure [15, 3, 7] combines the precision
and recall ideas from information retrieval. For clustering
evaluation, each class is treated as a query, and each cluster
is treated as the result of the query. The f-measure for the
class is then the harmonic mean of the precision and recall.

3. Rule Length: Each rule generated by interpretable cluster-
ing algorithms that we consider are composed of atomic con-
ditions that express a frequency threshold based condition.
We refer to the length of a rule as the number of atomic con-
ditions that it has.

5.2 Comparison with UDT
UDT typically generates much more leaf clusters than k. It is

desirable that the number of clusters in the output be close to the
number of classes (i.e., k); else purity values may not be mean-
ingful. For example, a clustering that puts each document in its
own cluster would have a net purity of 1.0. This makes an abso-
lute comparison between our algorithms (that always generate only
k clusters) and UDT inappropriate. On the same lines, the aver-
age rule length is also not meaningful to consider for comparison
since the denominator for averaging is much higher for UDT as
compared to our algorithms. However, the total rule length across
clusters is still indicative of the interpretability of the clustering.
Larger rules are intuitively harder to interpret. Figure 1 shows that

Table 1: Datasets Used
Dataset Documents Words #Classes
Sports 8580 18324 7
K1b 2340 21839 6

Ohscal3 2864 11465 3
R4 1013 7015 4
C3 3893 15490 3

Cranmed 2431 41681 2

Figure 1: Total Rule Lengths.

RGC outperforms UDT by almost 4 times; the total rule lengths of
RGC and UDT stand at 494 and 1946 respectively. Although UDT
seemingly gives high purity, such high purities are achieved with as
many as 60-90 clusters and are hence not very useful. Evaluations
based on other measures such as Entropy and F-Measure also were
found to assert that RGC and RGC-N are much better than UDT.
In summary, RGC is seen to empirically perform much better than
UDT for text clustering.

5.3 Comparison with K-Means
Now, we analyze RGC and its performance against the K-Means

algorithm. High values of net purity and f-measure are desirable
whereas lower values of entropy indicate that the clustering corre-
sponds better to the labels. The Purity of the clusterings generated
are illustrated in Figure 2. K-Means performs consistently better
than RGC leading to an average purity of 0.93 wheras the RGC
clusterings have a purity of 0.88 on the average. The F-Measure
plot (Figure 3) also reveals a similar behavior with RGC faring 0.03
lesser than K-Means clusterings on an average.

6. SUMMARY AND CONCLUSIONS
Document clustering techniques are well evolved and give very

high accuracies, but often produce models that are hard to inter-
pret. However, in certain real world scenarios where clusters of
documents are to be selected for manual review, it becomes nec-
essary to produce an interpretable and reconfigurable model of the
clustering. A variety of such scenarios exist. Most document clus-
tering algorithms in literature score poorly on the combined goal
of interpretability and reconfigurability of cluster models. Our ap-
proach for interpretable document clustering, RGC, associates each
cluster with a rule of conditions on word frequencies; the rule is
satisfied by only those documents that belong to the cluster. How-
ever, such an approach could leave out some documents as un-
clustered. An empirical evaluation against UDT illustrates the ef-
fectiveness of our approaches. Our analysis of the well studied
accuracy-interpretability trade-off in the context of RGC shows that
the RGC clusterings are only at most 5% less pure than those from
classical clustering algorithms for a wide variety of text datasets.

Figure 2: Net Purity.

Figure 3: F-Measure.

7. REFERENCES
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace

clustering of high dimensional data for data mining applications. In SIGMOD,
1998.

[2] J. Basak and R. Krishnapuram. Interpretable hierarchical clustering by
constructing an unsupervised decision tree. IEEE TKDE, 2005.

[3] F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In KDD,
pages 436–442. ACM, 2002.

[4] D. Boley. Hierarchical taxonomies using divisive partitioning. Technical
report, 1998.

[5] I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. In
KDD, 2003.

[6] B. Gao and Ester. Cluster description formats, problems and algorithms. In
SIAM Intl. Conference on Data Mining, 2006.

[7] A. Hotho, S. Staab, and G. Stumme. Ontologies improve text document
clustering. In ICDM, pages 541–544, 2003.

[8] H. Ishibuchi and Y. Nojima. Analysis of interpretability-accuracy tradeoff of
fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J.
Approx. Reasoning, 2007.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Comput. Surv., 1999.

[10] T. Liu, S. Liu, Z. Chen, and W. Ma. An evaluation on feature selection for text
clustering. In ICML, 2003.

[11] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In 5th Sym. of Maths, Statistics and Probability, 1967.

[12] B. Mandhani, S. Joshi, and K. Kummamuru. A matrix density based algorithm
to hierarchically co-cluster documents and words. In World Wide Web
Conference, 2003.

[13] D. D. Nauck. Measuring interpretability in rule-based classification systems.
In ICFS, 2002.

[14] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[15] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques, 2000.

[16] Y. Zhao and G. Karypis. Criterion functions for document clustering:
Experiments and analysis. In TR, Univ. of Minnesota, 2001.

[17] Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for
document datasets. In DMKD, 2002.

