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Abstract

State-of-the-art clustering algorithms provide little insight into the rationale for cluster 

membership, limiting their interpretability. In complex real-world applications, the latter 

poses a barrier to machine learning adoption when experts are asked to provide detailed 

explanations of their algorithms’ recommendations. We present a new unsupervised learn-

ing method that leverages Mixed Integer Optimization techniques to generate interpretable 

tree-based clustering models. Utilizing a flexible optimization-driven framework, our algo-

rithm approximates the globally optimal solution leading to high quality partitions of the 

feature space. We propose a novel method which can optimize for various clustering inter-

nal validation metrics and naturally determines the optimal number of clusters. It success-

fully addresses the challenge of mixed numerical and categorical data and achieves compa-

rable or superior performance to other clustering methods on both synthetic and real-world 

datasets while offering significantly higher interpretability.

Keywords Clustering · Interpretability · Unsupervised learning · Mixed integer 

optimization

1 Introduction

Clustering is the unsupervised classification of patterns, observations, data items, or fea-

ture vectors, into groups. The clustering problem has been addressed in many machine 

learning contexts where there is no clear outcome of interest, such as data mining, docu-

ment retrieval, image segmentation, and pattern classification; this reflects its broad appeal 

and usefulness in exploratory data analysis (Hastie et al. 2009). In many such problems, 

there is little prior information available about the data, and the decision-maker must make 
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as few assumptions about the data as possible. It is under these restrictions that clustering 

methodology is particularly appropriate for the exploration of relationships between obser-

vations to make an assessment, perhaps preliminary, of their structure.

Unlike supervised classification, there are no class labels and thus no natural measure 

of accuracy. Instead, the goal is to group objects into clusters based only on their observ-

able features, such that each cluster contains objects with similar properties and different 

clusters have distinct features. There have been numerous approaches to generating these 

clusters. Partitional methods such as K-means (MacQueen 1967) provide a single parti-

tion of the data into a fixed number of clusters; these methods have been improved by 

new initialization methods in recent decades (Arthur and Vassilvitskii 2007). Hierarchical 

methods produce a nested series of partitions (Sneath et al. 1973) based on a distance met-

ric. Other more sophisticated methods include model-based clustering (Hastie et al. 2009) 

and density-based clustering (Ester et al. 1996) which are better able to capture clusters of 

irregular shape or varied density.

The end product of a clustering algorithm is a partition of the dataset. In some cases, 

this final cluster assignment is sufficient for the machine learning purpose, such as when 

one wants to simply assess the separability of the data points into distinct clusters or use 

it as a preprocessing step in certain prediction tasks. However, in many other decision-

making applications, there is a need to interpret the resulting clusters and characterize their 

distinctive features in a compact form (Forgy 1965). For example, consider a medical set-

ting in which we seek to group similar patients together to understand subgroups within a 

patient base. In this application, it is critical to understand how the resulting clusters differ, 

whether by demographics, diagnoses, or other factors.

While the importance of cluster interpretability is well-understood, there has been lim-

ited success in addressing the issue (Doshi-Velez and Kim 2017). None of the clustering 

algorithms described above were constructed with a goal of interpretability in the original 

feature space. They therefore require a post-processing step to synthesize the cluster mean-

ings. The notion of cluster representation was introduced by Duran and Odell (1974) and 

was subsequently studied by Diday and Simon (1976) and Stepp and Michalski (1986). 

The representation of a cluster of points by its centroid has been popular across various 

applications (Radev et  al. 2004). This works well when the clusters are compact or iso-

tropic, but fails when the clusters are elongated or non-isotropic (Jain et al. 1999). These 

clusters can be better characterized computing additional metrics, such as the variance in 

each dimension. However, this increases the number of summary statistics used for each 

cluster and creates a high burden in interpretation, especially when the number of features 

grows large. Another common approach is the visualization of clusters on a two-dimen-

sional graph using Principal Component Analysis (PCA) projections (Jolliffe 2011; Rao 

1964). However, in reducing the dimensionality of the feature space, PCA obscures the 

relationship between the clusters and the original variables.

Tree-based supervised learning methods, such as CART (Breiman et  al. 1984), are a 

natural fit for problems that prioritize interpretability, since their feature splits and deci-

sion paths offer insight into the differentiating features between members in each leaf. 

Most recursive partitioning algorithms generate trees in a top-down, greedy manner, which 

means that each split is selected in isolation without considering its effect on subsequent 

splits in the tree. Bertsimas and Dunn (2017, 2019) have proposed a new algorithm which 

leverages modern mixed-integer optimization (MIO) techniques to form the entire deci-

sion tree in a single step, allowing each split to be determined with full knowledge of all 

other splits. The Optimal Classification Trees (OCT) algorithm enables the construction 

of decision trees for classification and regression that have performance comparable with 
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state-of-the-art methods such as random forests and gradient boosted trees without sacrific-

ing the interpretability offered by a single tree.

A general hybrid approach can leverage such methods by first running a partitional or 

hierarchical clustering method and using the resulting assignments as class labels. The data 

can then be fit using a classification tree, in which each leaf is given a cluster label based 

on the most common assignment of observations in that leaf, and the decision paths lead-

ing to each cluster’s leaves give insight into the differentiating features (Jain et al. 1999). 

Hancock et  al. (2003) use decision trees to interpret and refine hierarchical clustering 

results for global sea surface temperatures. While these trees give an explicit delineation of 

cluster attributes, the methods involve a two-step process of first building the clusters and 

subsequently identifying their differentiating features. Thus, the main clustering mecha-

nism utilizes a different architecture compared to the decision tree which might be hard to 

capture with univariate feature splits.

Several algorithms have been proposed to build interpretable clusters, where interpret-

ability is a consideration during cluster creation rather than considered as a later analysis 

step. Chavent et al. (1999) presented a method that constructs binary clustering trees char-

acterized by a novel transformation of the feature space. Further efforts focused on alter-

native measures for feature selection in the transformation function as well as new algo-

rithmic implementation schemes (Basak and Krishnapuram 2005). In both of these cases, 

the feature space transformation involved in these methods takes a toll on interpretability. 

Other researchers have proposed methods to construct decision trees in the original feature 

space, which more closely matches our objective. Liu et al. (2000) introduced the idea of 

translating a clustering problem to a supervised problem that is amenable to decision tree 

construction. A modified purity criterion is used to evaluate splits in a way that identifies 

dense regions as well as sparse regions. However, this method requires additional pre-pro-

cessing through the introduction of synthetic data in order to create a binary classification 

setting. Blockeel et al. (2000) also proposed a general top-down tree induction framework 

with applicability to clustering (“Predictive Clustering Trees”) as well as other supervised 

learning tasks. Fraiman et al. (2013) developed another clustering algorithm, “Clustering 

using unsupervised binary trees” (CUBT), which forms greedy splits to optimize a cluster 

heterogeneity measure. Though these algorithms make progress towards the goal of con-

structing clusters directly using trees, they both employ a greedy splitting approach and do 

not offer flexibility in the choice of cluster validation criterion.

The need for accurate and interpretable machine learning methods is undoubtedly pre-

sent, being voiced even from regulatory organizations such as the European Union (Good-

man and Flaxman 2016). Even though tree-based methods have been introduced, no exist-

ing interpretable unsupervised learning algorithm can accurately partition the feature space 

both for numerical and categorical data.

1.1  Contributions

Motivated by the limitations of existing solutions to interpretable clustering, we develop a 

novel tree-based unsupervised learning method that leverages traditional optimization and 

machine learning techniques to obtain interpretable clusters with comparable or superior 

performance when compared to existing algorithms. Our contributions are as follows: 

1. We provide an MIO formulation of the unsupervised learning problem that leads to the 

creation of globally optimal clustering trees, motivating our new algorithm Interpretable 
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Clustering via Optimal Trees (ICOT). Our method builds upon the OCT algorithm and 

extends it to the unsupervised setting. In ICOT, interpretability is taken into considera-

tion during cluster creation rather than considered as a later analysis step.

2. We provide an implementation of our method with an iterative coordinate-descent 

approach that scales to larger problems, well-approximating the globally optimal solu-

tion. We use widely two established validation criteria, the Silhouette Metric (Rous-

seeuw 1987) and the Dunn Index (Dunn 1974), as the algorithm’s objective function. We 

propose additional techniques that leverage the geometric principles of cluster creation 

to improve the algorithm’s efficiency. Furthermore, we introduce sampling heuristics 

that recover fast, high-quality solutions in our empirical experiments and provide a 

complexity analysis of the local search procedure for one iteration of the algorithm.

3. We develop our algorithm in a way such that tuning of the tree’s complexity is redundant. 

This is enabled by the fact that our loss functions take into account both intra-cluster 

density as well as inter-cluster separation. The user can optionally tune the algorithm 

by selecting the maximum depth of the tree and the minimum number of observations 

in each cluster.

4. We propose a solution to the incorporation of both mixed numerical and categorical 

data. Our re-weighted distance measure prevents a single variable type from dominating 

the distance calculation and allows users to optionally tune the balance the two types of 

covariates.

5. We evaluate the performance of our method against various clustering approaches across 

synthetic datasets from the Fundamental Clustering Problems Suite (FCPS) (Ultsch 

2005) which offer different levels of variance and compactness. We demonstrate ICOT’s 

superior performance against a two-step supervised learning method across both the 

Silhouette Metric and Dunn Index, offering a 27.8% and 352.7% score improvement 

respectively. We also compare ICOT against several state-of-the-art methods that rep-

resent various clustering approaches, namely partitional, hierarchical, model-based, and 

density-based clustering. We find that ICOT is competitive against these methods across 

multiple internal validation criteria.

6. We provide examples of how the algorithm can be used in real-world settings. We 

perform clustering on patients at risk of cardiovascular disease from the Framingham 

Heart Study (FHS) dataset (Daniel Levy 2006; Feinleib et al. 1975) to identify similar 

patient profiles and group economic profiles of European countries during the Cold War 

(Krim and Hamza 2015). Through these experiments, we illustrate the effect of varying 

key parameters in the ICOT algorithm. We also compare ICOT to other state-of-the-art 

algorithms in the FHS experiment and to CUBT in the economic profile experiment. We 

discuss the interpretability of the methods as well as their performance on the internal 

validation criteria.

7. Finally, we test the capability of the algorithm to scale to large problem instances using 

both the FCPS as well as real-world data from a Boston-based bike sharing program. 

We demonstrate that our suggested heuristic techniques do not significantly impact the 

quality of the recovered solutions. In addition, our experiments illustrate that ICOT can 

efficiently handle datasets of sizes up to hundreds of thousands of observations.

The structure of the paper is as follows. In Sect. 2, we formulate the problem of optimal 

tree creation within an MIO framework. Sect. 3 provides a comprehensive description of 

the algorithm implementation. In Sects. 4 and 5, we conduct a range of experiments using 

synthetic and real-world datasets to evaluate the performance and interpretability of our 
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method compared to other state-of-the-art algorithms. In Sect. 6, we investigate the effect 

of our scaling methods on runtime and solution quality. In Sect. 7, we discuss the key find-

ings from our work and in Sect. 8 we include our concluding remarks.

2  MIO formulation

In this section, we present an MIO approach which allows us to construct globally optimal 

tree-based models in an unsupervised learning setting. In Sect. 2.1, we provide an over-

view of the MIO framework introduced by Bertsimas and Dunn (2017, 2019). Section 2.2 

introduces the validation criteria that are used as objective functions in the optimization 

problem. In Sect. 2.3, we outline the complete ICOT formulation for one of the loss func-

tions considered.

2.1  The OCT framework

The OCT algorithm formulates tree construction using MIO which allows us to define a 

single problem, as opposed to the traditional recursive, top-down methods that must con-

sider each of the tree decisions in isolation. It allows us to consider the full impact of the 

decisions being made at the top of the tree, rather than simply making a series of locally 

optimal decisions, avoiding the need for pruning and impurity measures.

We are given the training data (�,�) , containing n observations (�
�
, yi) , i = 1,… , n , 

each with p features and a class label yi ∈ {1,… , K} as an indicator of which of the K 

potential labels is assigned to point i. We assume without loss of generality that the values 

of each training vector are normalized such that �
�
∈ [0, 1]p . A decision tree recursively 

partitions the feature space to identify a set of distinct, hierarchical regions that form a 

classification tree. The final tree T  is comprised of nodes that can be categorized in:

• Branch Nodes: Nodes t ∈ TB apply a split with parameters � and b. For observation i, if 

the corresponding vector �
�
 satisfies the relation �T�

�
< b , the point will follow the left 

branch from the node. Otherwise it takes the right branch.
• Leaf Nodes: Nodes t ∈ TL assign a class to all the points that fall into them. Each leaf 

node is characterized by one class which is generally determined by the most frequently 

occurring class among the observations that belong to it.

First, we formally define the constraints that construct the decision tree. We use the nota-

tion p(t) to refer to the parent node of node t, and A(t) to denote the set of ancestors of node 

t. We define the split applied at node t ∈ TB with variables �t ∈ ℝ
p and b

t
∈ ℝ . The vector 

�
t
 indicates which variable is chosen for the split, meaning that ajt = 1 for the variable j 

used at node t. b
t
 gives the threshold for the split, which is between [0, 1] after normaliza-

tion of the feature vector. If a branch node does not apply a split, then we model this by 

setting �
t
= � and b

t
= 0 . Together, these form the constraint �T

t
x < b

t
 . The indicator vari-

ables d
t
 are set to 1 for branch nodes and 0 for leaf nodes. Using the above variables, we 

introduce the following constraints that allows us to model the tree structure (for a detailed 

analysis of the constraints, see Bertsimas and Dunn (2017)):
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We next enforce the hierarchical structure of the tree. Branch nodes are allowed to apply a 

split only if their parent nodes apply a split:

Next we present the corresponding constraints that track the allocation of points to leaves. 

For this purpose, we introduce the indicator variables zit = �{x
i
 is in node t} and l

t
= �

{leaf t contains any points}. We let N
min

 be a constant that defines the minimum number of 

observations required in each leaf. We apply the following constraints:

We also enforce each point to belong to exactly one leaf:

Finally, we introduce constraints that force the assignments of observations to leaves to 

obey the structure of the tree given by the branch nodes. We want to apply a strict ine-

quality for points going to the lower leaf. To accomplish this, we define the vector � ∈ ℝ
p 

as the smallest separation between two observations in each dimension p, and �
max

 as the 

maximum over this vector.

In the classification setting the objective function of MIP formulation is comprised of two 

components, prediction accuracy and tree complexity. The tradeoff between those two 

parameters is controlled by the complexity parameter � . Given the training data (�
�
, yi) , 

i = 1… n , a general formulation of the objective function is the following:

where Rxy(t) is a loss function assessed on training data and |T| is the number of branch 

nodes in the tree T.

The above model can be used as an input for an MIO solver. Empirical results sug-

gest that such a model leads to optimal solutions in minutes when the maximum depth 

of the tree is small (approximately 4). Effectively, the rate of finding solutions is directly 

(1)

p
∑

j=1

ajt = dt, ∀t ∈ TB,

(2)0 ≤ b
t
≤ d

t
, ∀t ∈ TB,

(3)ajt ∈ {0, 1}, j = 1,… , p, ∀t ∈ TB

(4)dt ≤ dp(t), ∀t ∈ TB�{1}

(5)zit ≤ lt, ∀t ∈ TL,

(6)

n
∑

i=1

zit ≥ Nminlt, ∀t ∈ TL

(7)

∑

t∈TL

zit = 1, i = 1,… , n

(8)a
⊺

m
xi ≥ bt − (1 − zit), i = 1,… , n, ∀t ∈ TB, ∀m ∈ AR(t)

(9)a
⊺

m
(xi + �) ≤ bt + (1 + �max)(1 − zit), i = 1,… , n, ∀t ∈ TB, ∀m ∈ AL(t)

minimize
T

Rxy(T) + �|T|
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dependent to the number of binary variables zit and therefore a faster implementation was 

needed for more complex problems. For this reason, the authors introduced the idea of 

warm starts as the initial starting point of the method. Using a high-quality integer feasible 

solution as a warm start increases the speed of the algorithm and provides a strong initial 

upper bound on the final solution. In addition, heuristics, like local search, allow a further 

speed up as shown in Bertsimas and Dunn (2017, 2019) that leads to a good approximation 

of the optimal solution.

2.2  Loss functions for cluster quality

Clustering validation, the evaluation of the quality of a clustering partition (Maulik and 

Bandyopadhyay 2002), has long been recognized as one of the vital issues essential to the 

success of a clustering application (Liu et  al. 2010). External clustering validation and 

internal clustering validation are the two main categories of clustering quality metrics. The 

main difference lies in whether or not external labels are used to assess the clusters; internal 

measures evaluate the goodness of a clustering structure without respect to ground-truth 

labels (Larose and Larose 2014). An example of external validation measure is entropy, 

which evaluates the “purity” of clusters based on the given class labels (Wu et al. 2009). 

True class labels are not present in real-world datasets, and thus these cases necessitate the 

use of internal validation measures for cluster validation.

We will consider two internal validation measures as loss functions for our MIO formu-

lation of our problem. The chosen loss functions consider the global assignment of obser-

vations to clusters. The score of a clustering assignment depends on both the compactness 

of the observations within a single cluster, as well as its separation from observations in 

other clusters. Compactness measures how closely related the objects in a cluster are. Sep-

aration measures how distinct a cluster is from other clusters. Several internal validation 

metrics have been proposed to balance these two objectives (Liu et al. 2010). Two common 

criteria, the Silhouette Metric and Dunn Index, are outlined below.

Silhouette Metric The Silhouette Metric introduced by Rousseeuw (1987) compares the 

distance from an observation to other observations in its cluster relative to the distance 

from the observation to other observations in the second closest cluster. The Silhouette 

Metric for observation i is computed as follows:

where a(i) is the average distance from observation i to the other points in its cluster, and 

b(i) is the average distance from observation i to the points in the second closest cluster. In 

other words, b(i) = min
k

b(i, k) where b(i, k) is the average distance of i to points in cluster 

k, minimized over all clusters k other than the cluster that point i is assigned to. From this 

formula it follows that −1 ≤ s(i) ≤ 1.

When s(i) is close to 1, one may infer that the ith sample has been “well-clustered”, i.e. 

it was assigned to an appropriate cluster. If observation i has score close to 0, it suggests 

that it could also be assigned to the nearest neighboring cluster with similar quality. If s(i) 

is close to -1, one may argue that such a sample has been assigned to the wrong partition. 

These individual scores can be averaged to reflect the quality of the global assignment.

(10)s(i) =
b(i) − a(i)

max(b(i), a(i))
,
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Dunn Index The Dunn Index (Dunn 1974) characterizes compactness as the maximum dis-

tance between observations in the same cluster, and separation as the minimum distance 

between two observations in different clusters. The metric is computed as the ratio of the 

minimum inter-cluster separation to the maximum intra-cluster distance.

where we let the maximum distance of cluster C be denoted by Δ
C
 and the distance between 

clusters i and j be denoted by �(Ci, Cj) . If the dataset contains compact and well-separated 

clusters, the distance between the clusters is expected to be large and the diameter of the 

clusters is expected to be small. Thus, large values of the metric correspond to better parti-

tions and signify that the distance between clusters is large relative to the distance between 

points within a cluster.

We provide an example to illustrate how an internal validation criterion can be used 

to geometrically partition the space through a decision tree. In Fig. 1, we cluster observa-

tions from the Ruspini dataset (Ruspini 1970) using the Silhouette Metric. In Fig. 1a, the 

algorithm identifies the best candidate splits on both features, x
1
 and x

2
 , at the root node, 

and then compares their resultant cluster scores, as measured by the Silhouette Metric. The 

x
2
 split provides a better cluster assignment, so this split is chosen as denoted by the solid 

line. After the first data partition, splits are considered for each of the child nodes, which 

corresponds to further separating the lower and upper halves of the graph. Upon identifica-

tion of candidate x
1
 and x

2
 splits on the left child node, the x

1
 split is chosen based on the 

Silhouette Metric of the global cluster assignment, as shown in Fig. 1b. The process is then 

(11)SM =
1

n

n
∑

i=1

s(i),

(12)DI =

min
1≤i<j≤m

�(Ci, Cj)

max
1≤k≤m

Δk

,

Fig. 1  An example of a clustering tree built on the Ruspini dataset
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completed for the right child node, and an x
1
 split is also chosen here in Fig. 1c. Now, each 

of the four leaves is evaluated, which corresponds to exploring splits in the four quadrants 

defined by the solid blue lines. There are no splits within any of these four leaves that 

improve the overall score of the clustering assignment, so the tree construction is complete. 

The final tree is shown in Fig. 1d. The resultant tree provides a final partition which clearly 

elucidates the distinguishing features of each group. We note that this example demon-

strates a greedy tree construction. In the ICOT algorithm, all splits would be subsequently 

reoptimized with respect to the overall tree. However, in this case the greedy tree is able to 

provide the optimal partition.

Note that both of our considered criteria require the definition of at least two clusters 

since they both involve a pairwise distance computation between clusters to measure sepa-

ration. As a result, calculations for the null-case are not considered. The determination of 

the best internal validation criterion for a given dataset remains an open question in the 

field of unsupervised learning theory (Liu et al. 2010). As stated in Halkidi et al. (2001), 

the Dunn Index is more computationally expensive and more sensitive to noisy data com-

pared to the Silhouette Metric. It is also less robust to outliers compared to the Silhouette 

Metric which averages an observation-based score for the global assignment. However, 

empirical results suggest that the Dunn Index has superior performance in returning intui-

tive partitions of the data when they are well-separated.

2.3  The ICOT formulation

The OCT framework needs to be modified to address an unsupervised learning task. We 

present changes in the original MIO formulation of OCT to be able to partition the data 

space into distinct clusters following the same structure and notation as in Sect. 2.1. We 

outline in detail the model for the Silhouette Metric loss function. The Dunn Index for-

mulation follows closely and is thus omitted. There are two primary modifications in the 

ICOT formulation compared to the OCT: 

1. The objective function is comprised solely by the chosen cluster quality criterion, such 

as the Silhouette Metric, and does not include any penalty for the tree complexity. The 

separation component of the validation criterion naturally controls the complexity of the 

tree and thus for the ICOT formulation the complexity parameter is rendered redundant.

2. Each leaf of the tree is equivalent to a cluster. Observations in different leaves are not 

allowed to belong to the same cluster.

The objective of the new formulation is to maximize the Silhouette Metric (SM) of the 

overall partition. The Silhouette Metric quantifies the difference in separation between a 

point and points in its cluster, versus the separation between that point and points in the 

second closest cluster.

Let dij be the distance (i.e. Euclidean) of observation i from observation j. We define K
t
 

to be number of points assigned assigned to cluster t.

We define c
it
 to be the average distance of observation i from cluster t:

(13)Kt =

n
∑

i=1

zit, ∀t ∈ TL
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We define r
i
 to be the average distance of observation i from all the points assigned in the 

same cluster:

We then let qi denote the minimum average distance of observation i to the observations 

from the next closest cluster. We define auxiliary variables �
it
 to enforce this constraint, 

such that �
it
 an indicator of whether t is the second closest cluster for observation i.

Finally, to define the Silhouette Metric of observation i, we will need the maximum value 

between r
i
 and qi which normalizes the metric.

The score for the Silhouette Metric for each observation is computed as s(i) and the overall 

score for the clustering assignment is then the average overall all the Silhouette Metric 

scores from the training population:

(14)cit =
1

Kt

n
∑

j=1

dijzjt, ∀i = 1,… , n, t ∈ TL.

(15)
ri =

∑

t∈TL

citzit, ∀i = 1,… , n.

(16)
qi ≥

∑

t∈TL

�itcit, i = 1,… , n.

(17)

∑

t∈TL

�
it
= 1, i = 1,… , n.

(18)�it ≤ M(1 − zit), i = 1,… , n, ∀t ∈ TL.

(19)m
i
≥ r

i
, i = 1,… , n.

(20)mi ≥ qi, i = 1,… , n.

(21)si =
qi − ri

mi

, i = 1,… , n.

Fig. 2  An illustration in a synthetic example of a local optimum that might be identified by a greedy unsu-

pervised learning algorithm
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Putting all of this together gives the following MIO formulation for the ICOT model:

Figure  2 illustrates the benefit of an optimization framework over greedy tree construc-

tion. The synthetic dataset seen in the figure has two dense lower regions and one less 

dense upper region. In a greedy approach, the first split separates the lower clusters and 

cuts through the upper cluster. While it is clearly better to split horizontally first (since it 

(22)SM =

1

n

n
∑

i=1

s
i
.

minimize
x

−
1

n

n
∑

i=1

si

subject to si =
qi − ri

mi

, i = 1,… , n,

mi ≥ qi, i = 1,… , n,

mi ≥ ri, i = 1,… , n,

qi ≥

∑

t∈TL

�itcit, i = 1,… , n,

∑

t∈TL

�it = 1, i = 1,… , n,

�it ≤ M(1 − zit), i = 1,… , n, ∀t ∈ TL,

ri =
∑

∀t∈TL

citzit, i = 1,… , n,

cit =
1

Kt

n
∑

j=1

dijzjt, i = 1,… , n,∀t ∈ TL,

Kt =

n
∑

i=1

zit ∀t ∈ TL,

p
∑

j=1

ajt = dt, ∀t ∈ TB,

0 ≤ bt ≤ dt, ∀t ∈ TB,

dt ≤ dp(t), ∀t ∈ TB�{1},

zit ≤ lt, ∀t ∈ TL,

n
∑

i=1

zit ≥ Nminlt, ∀t ∈ TL,

∑

t∈TL

zit = 1, i = 1,… , n,

a⊺
m

xi ≥ bt − (1 − zit), i = 1,… , n, ∀t ∈ TB, m ∈ AR(t),

a⊺

m
(xi + �) ≤ bt + (1 + �max)(1 − zit), i = 1,… , n, ∀t ∈ TB,∈ AL(t),

ajt, dt ∈ {0, 1}, j = 1,… , p, ∀t ∈ TB,

zit, lt ∈ {0, 1}, i = 1,… , p, ∀t ∈ TL,

�it ∈ {0, 1}, i = 1,… , n, ∀t ∈ TL.
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does not split a region), a greedy algorithm chooses the split without consideration of the 

possibility of future splits. Therefore, if the tree can only make one split, it is better to sepa-

rate the lower clusters since they have such high density. ICOT’s optimization approach 

considers the global tree structure, avoiding such pitfalls and identifying the true optimal 

partition. It starts by making a horizontal split and subsequently separates the high-density 

lower regions without cutting through the upper cluster. A globally optimal partition has 

Silhouette Metric score equal to 0.758 whereas the greedy tree yields only 0.688.

3  Algorithm overview

In this section, we outline the practical details of the algorithm implementation. Sec-

tion  3.1 describes ICOT’s coordinate-descent algorithm that approximates the globally 

optimal solution in an efficient and intuitive manner. Section 3.2 addresses the challenge 

of computing distance scores in the presence of mixed numerical and categorical varia-

bles and introduces a solution for appropriately handling distance in this setting. Finally, in 

Sect. 3.3 we propose heuristics in our algorithm implementation which leverage the under-

lying structure of the data to more quickly traverse the search space and identify high-

quality solutions.

3.1  Coordinate-descent implementation

The MIO formulation provides the optimization framework for our problem solving 

approach. In practice, the algorithm is implemented using a coordinate-descent procedure 

which allows it to scale to much higher dimensions than directly solving the optimization 

problem. The implementation provides a good approximation of the optimal solution while 

still abiding by the same core principles of the original formulation.

ICOT initializes a greedy tree and subsequently runs a local search procedure until the 

objective value, a cluster quality measure, converges. This process is repeated from many 

different starting greedy trees, generating many candidate clustering trees. The final tree 

is chosen as the one with the highest cluster quality score across all candidate trees. This 

single tree is returned as the output of the algorithm.

The initial greedy tree is constructed from a single root node. A split is made on a ran-

domly chosen feature by scanning over all potential thresholds for splitting observations 

into the lower and upper leaves. At each candidate split, we compute the global score for 

the potential assignment. We choose the split threshold that gives the highest score and 

update the node to add the split if this score improves upon the global score of the current 

assignment. We perform the same search for each leaf that gets added to the tree, continu-

ing until either the maximum tree depth is reached or no further improvement in our objec-

tive value is achieved through further splitting on a leaf.

Following the creation of the greedy tree, a local search procedure is performed to opti-

mize the clustering assignment. Tree nodes are visited in a randomly chosen order, and 

various modifications are considered. A branch node has two options; it can be deleted, 

in which case it is replaced with either its lower or upper subtree, or a new split can be 

made at the node using a different feature and threshold. A leaf node can be further split 

into two leaves. At each considered node, the algorithm finds the best possible change and 

updates the tree structure only if it improves the objective from its current value. All nodes 

get added back to the list of nodes to search once an improvement has been found. The 
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algorithm terminates when the objective value converges. The algorithm is explained fur-

ther in Algorithm 1.

The user can specify to optimize either the Silhouette Metric or Dunn Index described 

in Sect. 2.2. These metrics penalize low separation, which naturally limits the depth of the 

tree. In traditional tree-based algorithms such as CART or OCT, the loss function improves 

with successive tree splits. Thus, these methods require a pruning step or additional param-

eter, such as a complexity penalty of maximum depth, to control the tree size. ICOT does 

not require the explicit control of tree size due to this natural balance between separation 

and compactness in the cluster quality metrics. This eliminates the need for setting an 

explicit K parameter, which is typically required in both partitional and hierarchical clus-

tering methods. The tree continues to split until further splits no longer improve the quality 

of the overall assignment, and so the final number of leaves represents the optimal number 

of clusters.

The user can enforce further structure on the tree through setting the optional minimum 

bucket parameter, N
C
 . This controls the minimum number of observations that are required 

in each leaf and effectively in each cluster. Note that there is not a monotonic relationship 

between the magnitude of N
C
 and the number of leaves (clusters) generated by the algo-

rithm. Smaller minimum buckets may lead to smaller cluster counts due to the positive 

effect of isolated outlier clusters on the metrics; overfitting is difficult to quantify in an 

unsupervised learning setting because there is no ground truth to compare against, and thus 

the metrics do not naturally penalize single outliers. Thoughtful choice of the minimum 

bucket parameter allows ICOT to avoid creating clusters of single or small sets of outliers, 

which often lack meaning and generalizability in grouping tasks. Traditional methods, such 

as K-means, deal with outliers by increasing the K parameter and forcing the algorithm to 

provide with a higher number of clusters. N
C
 can significantly affect the clustering solu-

tion and should be cross-validated or experimented on in order to get accurate and intuitive 

results from ICOT. The maximum depth can be used to impose an upper bound on the 

number of clusters if desired, although this parameter does not address potential outlier 

issues.
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The ICOT algorithm is implemented in Julia (Bezanson et al. 2012) and is available to 

academic researchers under a free academic license.1

3.2  Mixed-variable handling

Both the Silhouette Metric and Dunn Index assess the quality of a given cluster assignment 

using the pairwise distance matrix of the observations. Distance is quantified differently for 

numerical and categorical variables and thus must be adjusted appropriately in the pres-

ence of mixed variable types. In the case of continuous features, the data are first normal-

ized to be in the [0, 1] range. The pairwise numerical distance matrix dN is computed using 

the Euclidean distance between each pair of normalized variables. In the case of categori-

cal features, distance is defined based on whether the observations take on different val-

ues. For example, if one observation takes on category A and another observation takes on 

category B on a given feature, the distance on this feature will be 1. The distance is zero if 

the observations take on the same value. For each pair of observations, these indicators are 

summed over all categories to define the categorical feature distance matrix dC.

When the feature space includes both numerical and categorical variables, special con-

sideration must be given to avoid over-weighting the categorical variables. In particular, 

categorical variables are often one-hot encoded (i.e. converted to binary 0/1 columns) to 

allow them to be treated as numerical in machine learning methods. This adjustment is 

insufficient in our case as it will result in placing too high of an importance on the categori-

cal distance.

We handle this issue by taking a linear combination of the two separate distance matri-

ces for numerical and categorical variables. We first compute separate distance matrices for 

the numerical and categorical features. We let SN denote the set of indices for the numerical 

features, and SC denote the categorical indices. The computations for dN and dC are explic-

itly defined in Eqs. 23 and 24.

We then compute the final distance matrix by taking a linear combination of these two 

matrices, given in Eq. 25.

By default, the two distances are weighted according to their proportion of all covariates, 

so � =

|
|S

N|
|

|
|S

N|
|+
|
|S

C|
|

 . The user can also specify an alternative � parameter. At � = 1 , the dis-

tance matrix only accounts for numerical covariates, whereas � = 0 only considers disa-

greements in categorical variables.

(23)dN
ij
=

√

∑

k∈SN

(xi
k
− x

j

k
)2

(24)
dC

ij
=

∑

k∈SC

�{xi
k
≠ x

j

k
}

(25)dij = �dN
ij
+ (1 − �)dC

ij

1 Please email icot@mit.edu to request an academic license for the ICOT package.
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3.3  Scaling methods

Our coordinate-descent procedure is more computationally intensive than the original 

OCT algorithm due to unique characteristics of clustering. In particular, we must compute 

a global clustering quality score at each split threshold evaluation, unlike classification 

tasks in which the loss change for a potential split can be assessed locally at the node. This 

global score assessment involves higher computational effort per split evaluation and thus 

motivates the development of more efficient search procedures. We introduce two scaling 

methods to take advantage of the geometric intuition behind cluster creation as well as 

existing clustering methods. We furthermore propose a subsampling approach to allow the 

algorithm to scale to much larger problems.

3.3.1  Restricted geometric search space

ICOT leverages the geometric structure of the feature space by restricting the set of candi-

date splits to those with sufficient separation. An exhaustive search of candidate splits on 

a given numerical feature requires n
k
− 1 threshold evaluations, where n

k
 is the number of 

observations in a given node. This is due to the fact that there are exactly n
k
− 1 different 

possible partitions of the data on the given feature at node k (less if multiple observations 

have the same value on this feature).

To improve the efficiency of our algorithm, we only consider a subset of these thresh-

olds. For any feature, we refer to a threshold’s gap as the separation between the observa-

tions directly below and above it. Since the quality of a clustering assignment is directly 

tied to the distance separating distinct clusters, the cluster quality will be superior when 

considering thresholds with large gaps. We take advantage of this intuition by skipping 

over thresholds with small gaps.

We control the extent of search space restriction through the parameter T. When consid-

ering a numerical feature split at node k, all threshold gaps for observations in the node are 

sorted ( n
k
− 1 values). Only thresholds above the Tth percentile of gap size are considered. 

Fig. 3  An example of the restricted geometric search function
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For example, if T = .9 and n
k
= 100 , only the thresholds with the 10 largest gaps are con-

sidered, reducing the number of computations per node by 90%.

Figure  3 provides an illustration of how the Restricted Geometric Search would be 

applied in a simple example. When T = 0.7 , ICOT will investigate only the top 30% of the 

gaps between observations. Thus only the larger, bold, gaps would be potential splits for a 

branch node that considers the covariate corresponding to the horizontal axis.

3.3.2  K-means warm start

We also employ warm starts to more efficiently identify high-quality clustering trees. We 

leverage the K-means algorithm to partition the data into clusters and use OCT to generate 

a tree that reasonably separates these clusters. This becomes the starting point of ICOT’s 

coordinate descent algorithm. The algorithm first runs K-means on the original data across 

various K parameters and selects the assignment that optimizes our chosen cluster quality 

criterion. The resulting assignments are used as class labels for the construction of a super-

vised classification tree using OCT. ICOT’s coordinate-descent procedure then begins from 

the resultant OCT tree rather than a greedy tree. Each leaf from the OCT tree becomes 

a separate cluster when initializing the ICOT algorithm, even though the predicted class 

labels may match between multiple leaves. Overall, the K-means warm start expedites tree 

initialization and improves the efficiency of the search procedure.

3.3.3  Bootstrapping

We introduce bootstrapping on the number of input observations, N. Our goal is to make 

the algorithm amenable to solve problems of larger sample size. This procedure involves 

subsampling a reduced population of size N
r
 and solving smaller problems N

rep
 times. This 

allows the algorithm to scale linearly with respect to the number of repetitions. It can be 

easily parallelized as it contains multiple independent sub-problems. Each iteration sam-

ples N
r
 observations without replacement and runs ICOT, returning a tree model which is 

then evaluated on a validation population. Upon completion of all N
rep

 iterations, the algo-

rithm selects the best performing tree model on the validation criterion. Beyond improv-

ing the speed of the algorithm, bootstrapping provides a lot of flexibility to the user. The 

choice of N
r
 and N

rep
 may vary depending on the time constraints and the required quality 

of the final solution. We explore the latter in greater detail in Sects. 6.2.3–6.2.4.

3.3.4  Complexity analysis

We provide a brief analysis of the worst-case complexity for each iteration of the coordi-

nate-descent implementation of the algorithm. The argument is an extension of the com-

plexity analysis for Optimal Classification Trees (Dunn 2018). First, we consider the com-

plexity of calculating our cluster quality criteria.

An initial step for the computation of any score is the construction of a distance matrix 

that contains all the distances between each point i, j ∈ [N] , the training population. The 

matrix creation involves 
n(n−1)

2
 calculations, which has complexity O(n2).

Silhouette metric (SM) For each observation i, we must compute the average distance 

between i and the members of each cluster. If we have T nodes, and each cluster contains at 

most n points, this has complexity O(nT) . We need to find the distance to the next-closest 
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cluster for which i is not a member. As we iterate through each of the clusters, we track the 

closest distance found so far and update if it improves. We note that the number of clusters 

is O(T) and is upper bounded by the total number of nodes. This computation is repeated 

for all n observations. Thus, the complexity of computing the Silhouette Metric is

Dunn index (DI) For each cluster, we must find the largest distance between any two points 

within the cluster and the smallest distance between a point in the cluster and outside of 

the cluster. This involves sorting at worst all pre-computed pairwise distances of which 

there are 
n(n−1)

2
 , giving complexity O(Tn

2 log(n)) . As we iterate through the sorted values, 

we track the highest intra-cluster and lowest inter-cluster distances and update if we find a 

value that improves either metric. In total, this yields complexity

We now move on to the calculation of the algorithm’s complexity in each iteration. 

Once an initial tree is constructed, each inner iteration of ICOT’s local search consists of 

identifying the best potential split change at a given node. For each of the p features, there 

are at most n − 1 potential split thresholds (if all observations are in this node). At each of 

these thresholds, we must (1) find the assignment of all points to clusters (i.e. tree leaves), 

which has complexity O(nT) , where T is the total number of nodes in the tree and (2) cal-

culate the cluster quality criterion cp, either cpSM or cpDI . Thus, the inner iteration has 

complexity O(np(nT + cp)) . We must repeat this for each leaf, which adds a factor of T.

Ultimately, one iteration of ICOT when trained on the Silhouette Metric has worst-case 

complexity:

When optimizing the Dunn Index, ICOT’s complexity is:

Both of these results demonstrate that each iteration of ICOT is highly sensitive to scaling 

with respect to n, with a higher cost when training on the Dunn Index (by a factor of log(n) . 

Through the geometric search in Sect. 3.3.1, we are able to reduce the number of splits 

considered by a constant factor; with a threshold of 0.99, rather than considering np splits, 

we only consider 0.01 ∗ np splits. Additionally, the warm-starts explained in Sect.  3.3.2 

provide higher quality starting solutions which reduces the number of iterations required 

to reach convergence and thus reduces runtime. This is demonstrated empirically in Sect 6. 

Finally, the sub-sampling method introduced in Sect. 3.3.3 allows us to leverage ICOT for 

arbitrarily large problems; Sect.  6 also shows empirical evidence that the resultant trees 

still generalize well to the larger datasets despite only being trained on a subset.

cpSM = O(n(nT)) = O(n2T)

cpDI = O(Tn2 log(n)) = O(Tn2 log(n)).

O(npT(nT + n2T)) = O(n2pT2 + n3pT2) = O(n2pT2 + n3pT2)

O(npT(nT + n2T log(n))) = O(n2pT2 + n3pT2 log(n))
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4  Experiments based on synthetic datasets

In this section, we present results of ICOT across various synthetic datasets. We use these 

experiments to assess the quality of the algorithm’s solution on both validation criteria. 

Sect. 4.2 compares ICOT to other popular clustering alternatives in terms of their ability 

to recover high-quality clustering assignments when training on both the Silhouette Metric 

and Dunn Index. We also examine the tradeoff between the two metric scores when train-

ing on one and evaluating on the other.

4.1  Experimental setup

We evaluated ICOT on the Fundamental Clustering Problems Suite datasets (FCPS) 

(Ultsch 2005), a standard set of synthetic datasets for unsupervised learning evaluation. 

These datasets have ground truth cluster labels, which allow for an objective comparison 

of cluster quality. Our experiments only consider nine of the 10 FCPS datasets, as the tenth 

contains no true clusters and thus does not offer insight into clustering algorithms.

The ICOT experiments use the “fully scaled” version of the algorithm, with a K-means 

warm start and a geometric threshold of 0.99. We left the minimum bucket size at its 

default value (1 observation) and restricted the maximum depth of the tree to depth 3. We 

left the � parameter at its default value. We ran 100 random restarts of the algorithm in 

each experiment.

We consider six alternative clustering algorithms which span a range of methodological 

approaches and interpretations. The following methods are compared: 

1. Optimal Classification Trees Hybrid Method (OCT) A two-step K-means and OCT 

hybrid approach, in which K-means clusters serve as class labels for a supervised multi-

class classification problem. Each observation is assigned a label based on the predicted 

class of its leaf. OCT is implemented using the InterpretableAI package in Julia (Bert-

simas and Dunn 2017, 2019).

2. K-means++ We run K-means with a K-means++ initialization, which was introduced 

by Arthur and Vassilvitskii (2007) and has been shown to improve upon a standard 

K-means implementation. K-means++ has been incorporated in the ClusterR R 

package (Mouselimis 2019). We run the method with 100 random restarts and a maxi-

mum of 100 clustering iterations.

3. Hierarchical Clustering (Hclust) Hierarchical clustering is the most popular agglom-

erative clustering method. It combines individual points into clusters using a linkage 

measure until all points end up in a single cluster, returning a single dendogram that 

exhaustively links all individual points (Hastie et al. 2009). While this is a tree-based 

method, it does not have binary splits and cannot be explicitly represented as a function 

of the features. Hclust is implemented in R using average linkage.

4. Gaussian Mixture Models (GMM): GMM assigns observations to clusters characterized by 

Gaussian distributions. The algorithm uses expectation-maximization (EM) to find the 

parameters for each of K Gaussian distributions, each representing a cluster (Hastie et al. 

2009). This approach has a key advantage of accounting for cluster variance in assign-

ment, which is a deficiency of traditional methods such as K-means. For each observa-

tion, this method returns a soft-assignment, which gives a probability of belonging to 

each cluster. To make this assignment amenable to our quantitative comparison which 

requires an explicit assignment, we assign observations to their most likely cluster. GMM 
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is implemented in the ClusterR R package (Mouselimis 2019). We run the method 

with 20 EM and K-means iterations and confirmed that the results stabilize by this point. 

We compute observation distances using Euclidean distance.

5. Density-based Spatial Clustering of Applications with Noise (DBSCAN) DBSCAN is 

a popular method that constructs clusters based on the highest density regions of a 

dataset (Ester et al. 1996). DBSCAN does not return a complete assignment; outliers 

in low-density areas are left out of any clusters. While this exclusion approach makes 

the method robust to outliers, it complicates quantitative evaluation. To allow for a fair 

comparison on the internal validation metrics, we assign each outlier point to the most 

common cluster of its five nearest neighbors. If all neighbors are also unassigned, we 

assign the point to its own cluster. This method is implemented in the DBSCAN pack-

age in R (Hahsler et al. 2019), with additional post-processing to complete the outlier 

assignment.

6. Predictive Clustering Trees (PCT): Predictive clustering trees build recursive binary 

decision trees for clustering tasks (Blockeel et al. 2000). The methodology is imple-

mented in Java through the Clus package. We adopt the default “VarianceReduction” 

splitting heuristic.

We are unable to present synthetic comparisons to other recent work in interpretable clus-

tering, such as CUBT, as there are no available implementations of the algorithms. We 

present results of ICOT against the CUBT experiments presented by Fraiman et al. (2013) 

in Sect. 5.3.

We run all of the comparison methods on normalized data. ICOT normalizes the dis-

tance matrix within the algorithm, and we input a normalized dataset into the other com-

parison method functions. For each of the comparison methods, we tune key parameters to 

optimize the Silhouette Metric (or Dunn Index). In K-means++, Hclust, and GMM, we 

tune the number of clusters K ∈ [2, 10] . DBSCAN does not have an explicit K parameter, but 

the � parameter informs the neighborhood size when constructing clusters; larger � values 

generally translate to larger clusters (and lower K). We tune � ∈ [0.1, 0.11, 0.12… , 1.0] . 

Table 1  Comparison of methods across the FCPS datasets, when trained and evaluated on the Silhouette 

Metric

The asterisks indicate the best score across all algorithms for each criterion

Data (N,P) ICOT OCT K-means++ Hclust GMM DBSCAN PCT Truth

Atom (800.2) 0.503 0.433 0.611* 0.593 0.565 0.540 0.516 0.311

Chainlink (1000.2) 0.396 0.28 0.479 0.496* 0.409 0.357 0.312 0.158

EngyTime (4096.2) 0.573* 0.4 0.439 0.379 0.433 0.450 0.377 0.398

Hepta (212.3) 0.453 0.332 0.702* 0.702* 0.608 0.702* 0.368 0.702*

Lsun (400.2) 0.549 0.534 0.569* 0.554 0.537 0.439 0.564 0.439

Target (770.2) 0.629* 0.409 0.593 0.619 0.578 0.533 0.516 0.295

Tetra (400.3) 0.504* 0.266 0.504* 0.504* 0.504* 0.504* 0.307 0.504*

TwoDiamonds (800.2) 0.486* 0.486* 0.486* 0.485 0.412 0.266 0.486* 0.486*

WingNut (1070.2) 0.422 0.393 0.426* 0.418 0.407 0.384 0.422 0.384

Count best/tie 4 1 6 3 1 2 1 3

Average score 0.502 0.393 0.534 0.528 0.495 0.464 0.430 0.409

SD score 0.074 0.089 0.091 0.101 0.081 0.126 0.095 0.153
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Finally, PCT matches our methodology most closely and does not require an explicit clus-

ter number (K) or density threshold ( � ); for this algorithm, we simply tune the maximum 

depth from 1 to 3. In all cases, we select the parameter value that yields the best internal 

validation score on the metric of interest.

In the following experiments, all results are averaged over five experiments per algo-

rithm and parameter combination. All experiments were conducted on two CPUs of type 

2 socket Intel E5-2690 v4 2.6 GHz/35M Cache; 16GB of NUMA enabled memory were 

used per CPU.

4.2  Solution quality

In these experiments, we look to assess various clustering methods in terms of their recov-

ery of high-quality solutions, as measured by both the Silhouette Metric and the Dunn 

Index. We additionally investigate the performance of the “true” cluster labels on both of 

these criteria.

Tables 1 and 2 show the results of these methods along with the true FCPS labels, eval-

uated with both the Silhouette Metric and Dunn Index. The runtimes for all methods are 

included in the “Appendix”.

ICOT dominates the two-step supervised learning method in all cases for both metrics, 

offering an average Silhouette Metric improvement of 27.8% and Dunn Index improvement 

of 352.7% over OCT. This demonstrates the advantage of building clusters directly through 

a tree-based approach rather than using a hybrid supervised learning method that applies a 

tree to cluster labels a posteriori.

Table 2  Comparison of methods across the FCPS datasets, when trained and evaluated on the Dunn Index

The asterisks indicate the best score across all algorithms for each criterion

Data (N,P) ICOT OCT K-means++ Hclust GMM DBSCAN PCT Truth

Atom (800,2) 0.137 0.035 0.052 0.097 0.048 0.371* 0.064 0.371*

Chainlink (1000,2) 0.028 0.013 0.038 0.037 0.016 0.265* 0.018 0.265*

EngyTime (4096,2) 0.064* 0.002 0.005 0.014 0.004 0.029 0.002 0.000

Hepta (212,3) 0.357 0.162 1.080* 1.080* 0.482 1.080* 0.293 1.080*

Lsun (400,2) 0.077 0.027 0.056 0.071 0.117* 0.117* 0.026 0.117*

Target (770,2) 0.550* 0.011 0.029 0.550* 0.113 0.117 0.013 0.253

Tetra (400,3) 0.200* 0.044 0.200* 0.200* 0.200* 0.200* 0.046 0.200*

TwoDiamonds (800,2) 0.044 0.022 0.031 0.049* 0.021 0.030 0.022 0.022

WingNut (1070,2) 0.063* 0.020 0.026 0.036 0.016 0.063* 0.063* 0.063*

Count best/tie 4 0 2 4 2 6 1 6

Average score 0.169 0.037 0.169 0.237 0.113 0.253 0.061 0.264

StdD score 0.176 0.048 0.347 0.358 0.153 0.330 0.090 0.330

Table 3  Comparison of internal 

validation scores by choice of 

training criterion in the ICOT 

algorithm

Training criterion Silhouette metric Dunn index

Silhouette metric 0.475 0.149

Dunn index 0.416 0.177
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ICOT matches or outperforms the best alternative clustering method in 4/9 cases with 

both the Silhouette Metric and with the Dunn Index. ICOT ties or beats K-means++ in 

7/9 cases on the Dunn Index and 4/9 on the Silhouette Metric, attesting to its competitive-

ness against the most widely-used clustering technique. We also note that when measured 

against our most interpretable alternative, PCT, ICOT ties or wins in all cases on the Dunn 

Index and 7/9 on the Silhouette Metric.

When considering performance by the ranked wins/ties of each method, K-means++ 

is the best method for the Silhouette Metric and DBSCAN is the best method for the Dunn 

Index. No method dominates ICOT in the win/tie ranking; namely, there is no method that 

performs better on both the Silhouette Metric and Dunn Index. When looking at the aver-

age score across all nine datasets, Hclust is the only method to dominate ICOT on both 

training metrics. However, we note that Hclust also has a significantly higher standard 

deviation on both metrics, indicating a lack of consistency in solution recovery quality.

Our method is weakest when the underlying clusters are non-separable with parallel 

splits, since ICOT places hard constraints on an observation’s cluster membership based 

on splits in feature values. In these cases, such as with the Hepta dataset, ICOT is unable to 

recover the true structure. The flexibility offered by alternative methods is advantageous in 

these cases. Overall, our results demonstrate that despite the highly constrained setting that 

we impose on the solution structure, we are still able to perform competitively with far less 

constrained (and less interpretable) methods.

Cluster quality evaluation is highly dependent on the chosen metric; the ground truth 

assignment is only the “best” method in 3/9 cases with the Silhouette Metric and 6/9 cases 

with the Dunn Index. ICOT identifies strictly “better” clusters than the ground truth in 6/9 

cases for the Silhouette Metric and 3/9 cases for the Dunn Index, as measured by their 

scores on the respective metrics. This phenomenon raises the broader question of how to 

assess cluster quality, as recovering known labels in synthetic data does not necessarily 

translate to meaningful cluster assignments.

4.2.1  Sensitivity to training criterion choice

Table 3 shows the ICOT scores on the FCPS datasets as measured by each validation cri-

terion, broken down by training loss function. The values refer to the average score across 

all nine datasets. As expected, both metrics have their best performance when they are used 

as the training criterion to optimize for ICOT. The choice to train on the Silhouette Metric 

results in a 12.4% loss in Dunn Index score as compared to when training on the Dunn 

Index. Similarly, training originally on the Dunn Index results in a loss of 15.8% in the 

Silhouette Metric. This quantifies the sensitivity to the choice of training criterion. Both 

metrics incur a cost in terms of performance loss on other internal validation criteria, with 

a slightly lower loss on the Dunn Index.

5  Experiments based on real‑world datasets

In this section, we present results for two real-world examples. We address two important 

questions often encountered in practice and demonstrate the value of clustering in their 

analysis; interpretability and performance on internal validation criteria. We illustrate 

models produced by ICOT, OCT, K -means++, Hclust, GMM, DBSCAN, PCT, and the 

CUBT algorithm. We also consider the impact of tuning key user-defined parameters on 
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the ICOT model. Section 5.2 outlines a patient similarity case study utilizing data from the 

well-known Framingham Heart Study (FHS). In these models we consider results across 

several minimum bucket sizes which offer different levels of granularity in the final out-

put. We also experiment with various � parameters, allowing us to control the weight of 

numerical vs. categorical features in the distance matrix. Section 5.3 focuses on grouping 

economic profiles of European countries during the Cold War using only tree-based unsu-

pervised learning techniques.

5.1  Experimental setup

We adopted a similar experimental setup to the one described in Sect.  4.1 for the syn-

thetic experiments. In particular, the ICOT experiments use the “fully scaled” version of 

the algorithm, with a K-means warm start and a geometric threshold of 0.99. We ran 100 

random restarts of the algorithm in each experiment. The � and minimum bucket param-

eters are varied as part of the experiments. We ran all of the experiments on normalized 

data, which is particularly relevant in this setting where features vary greatly in magnitude.

We consider the same six alternative clustering algorithms: OCT, K-means++, 

Hclust, GMM, DBSCAN, and PCT. The latter four methods cannot integrate both categori-

cal and numerical features, so we updated the feature space to one-hot encode the categori-

cal variables as binary features. We used the same fixed algorithm parameters for all meth-

ods as outlined in Sect. 4.1. We tuned the K parameter over the range of 2 to 10 clusters for 

all methods other than DBSCAN. We tuned � ∈ [1, 5] for DBSCAN. All experiments were 

conducted on two CPUs of type 2 socket Intel E5-2690 v4 2.6 GHz/35M Cache; 16 GB of 

NUMA enabled memory were used per CPU.

5.2  Patient similarity for the Framingham Heart Study

Patient similarity is the concept of identifying groups of individuals with comparable 

health profiles from their electronic medical records, often with the goal of assessing treat-

ment receptivity and outcomes. The goal is to cluster patients in compact groups without 

any particular outcome of interest and to study the health progression for those individuals 

over time. Clustering methods have been particularly popular in this application as they do 

not require an independent covariate in model creation.

We provide an illustration of our method using data from the Offspring Cohort from the 

FHS, a large-scale longitudinal clinical study. It started in 1948 with the goal of observing 

a large population of health adults over time to better understand cardiovascular disease 

risk factors. Over 80 variables were collected for 5209 people over the course of more than 

40 years. The FHS is arguably one of the most influential longitudinal studies in the field 

of cardiovascular and cerebrovascular research. This data has now been used in more than 

2400 studies and is considered one of the top 10 cardiology advances of the twentieth cen-

tury alongside the electrocardiogram and open-heart surgery (Daniel Levy 2006).

Our dataset consists of 1,200 observations from distinct participants of the Offspring 

Cohort and 11 covariates (age, gender, presence of diabetes, levels of HDL, BMI status, 

Blood Pressure (BP) status, blood glucose levels, hematocrit levels, history of myocardial 

infarction, history of stroke, and current smoking habits) (Daniel Levy 2006; Feinleib et al. 

1975). We explore how the ICOT model is impacted as we vary the � parameter and the 

minimum bucket parameter, N
C
 (Sects. 5.2.1, 5.2.2). Subsequently, we compare the results 
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of ICOT with other clustering methods in terms of interpretability and quantitative perfor-

mance on the validation criteria (Sects. 5.2.3–5.2.4).

5.2.1  The effect of the ̨  parameter

In this set of experiments, we focus on the impact of the � parameter on the creation of the 

ICOT model. The FHS dataset contains mixed numerical and categorical attributes and 

Fig. 4  ICOT tree for minimum bucket = 50 and � = 0.3

Fig. 5  ICOT tree for minimum bucket = 50 and � = 0.6
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thus the determination of this parameter clearly affects the feature selection process dur-

ing tree construction as well as the final number of clusters. We fix the minimum bucket 

parameter, N
C
= 50 , requiring at least 50 patients in each cluster to ensure that groups are 

not skewed by outliers in the data.

Figure 4 shows the model output when � = 0.3 . The number of observations in each 

group is indicated by the numbers in the leaves. When the distance matrix places 70% 

weight on categorical features, the algorithm partitions the feature space based only on 

those. As a result, only BP status and gender appear as splits in the tree. ICOT identifies 

eight groups of patients: (1) 100 women with Elevated BP; (2) 175 men with Elevated BP; 

(3) 96 women with Hypertensive Status I; (4) 163 women with Hypertensive Status II; 

(5) 163 men with Hypertensive Status I; (6) 172 men with Hypertensive Status II; (7) 135 

women with normal BP; (8) 196 men with normal BP.

Fig. 6  ICOT tree for minimum bucket = 50 and � = 0.9

Fig. 7  ICOT tree for minimum bucket = 100 and � = 0.6
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When � = 0.6 the output model contains variables from both types of data, balancing 

better the numerical and categorical feature space. Due to the distance metric re-weighting, 

the new model is now able to incorporate both numerical and categorical features, yield-

ing intuitive groups of participants by cardiovascular risk. Figure 5 illustrates the final tree 

with five split nodes and six clusters. Given these parameters, ICOT distinguishes between 

female and male participants in the presence or absence of diabetes. Moreover, it highlights 

the importance of smoking solely for the diabetic subgroup.

Finally, when � = 0.9 , ICOT only distinguishes the FHS population based on numeric 

features such as smoking and diabetes. These results highlight the importance of the algo-

rithm tuning process when leveraging data with mixed features. In the absence of a ground 

truth, the decision maker is called to select the most appropriate model depending on the 

application or a potential downstream predictive task. The ability to directly parametrize 

the distance matrix provides the user with higher flexibility and clarity during the model 

development process. We discuss the implications of categorical features in the quantita-

tive performance evaluation in Sect. 5.2.4.

5.2.2  The effect of the minimum bucket parameter

In these experiments, we set � = 0.6 to balance the distance between numerical and cat-

egorical features and we vary the minimum number of observations required to form a 

distinct cluster. Figures 5, 7, and 8 show the models produced by the algorithm for different 

values of the minimum bucket, N
C
 , when training on the Silhouette Metric. Note that vary-

ing this constraint directly affects the end model, changing the structure of the final tree. 

Even though our empirical results may suggest that there is a monotonic relation between 

the size of the minimum bucket and the number of clusters identified, this assumption is 

not necessarily a general rule.

Comparing between Figs. 5 and 7, we see that the output is stable given the minimum 

bucket restrictions. Both models share the same features in the splits. In the latter model, 

splits that already had at least 100 members in both leaves (the leftmost two clusters) 

remained intact and new ones were created in order to closely match the tree with N
C
= 50 . 

When we increase the minimum sample size to 200 participants, the resulting model only 

separates the population by gender.

Notice that across all the experiments presented, three variables appear to bear the 

highest importance in the clustering task: smoking habits, diabetic status, and gender. 

The results appeared to be stable in the feature selection process, confirming the intui-

tion behind the effect of both the minimum bucket and � . ICOT’s interpretable structure 

allowed us to specify the key differentiating characteristics between the participants and 

contextualize them in the medical setting.

Fig. 8  ICOT tree for minimum 

bucket = 200 and � = 0.6
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5.2.3  Results on interpretability

In this section, we compare the interpretability of partitions from different clustering 

algorithms. For tree based approaches, such as the two step OCT method and PCT, we 

present the final model. For the rest of the algorithms, we outline the centroids of each 

cluster. Since these methods also do not allow us to directly control the minimum num-

ber of observations per cluster, we present the results of each algorithm for the number 

of clusters that maximizes the Silhouette Metric. Here, we present detailed results for the 

K-means++. The reader can find the corresponding information for the other methods in 

the “Appendix”.

Figures  4, 5, 6, 7 and 8 demonstrate different ICOT models when we vary the algo-

rithm’s hyperparameters. Note that the trees provide meaningful categorizations that clini-

cians frequently use and think about in stratifying patient risk. Elevated BP measurements, 

Table 4  The centroid mean, standard deviation values, and number of observations for all identified clusters 

from the K-means++ algorithm on the one-hot encoded dataset

Variable names Cluster 1 Cluster 2 Cluster 3

Mean SD Mean SD Mean SD

Gender: female 0.367 0.485 0.376 0.485 0.487 0.5

Gender: male 0.633 0.485 0.624 0.485 0.513 0.5

Diabetes 0.922 0.269 0.054 0.227 0.142 0.35

Smoking 0.2 0.402 0.249 0.433 0.226 0.419

Age 64 7.114 61.102 9.976 65.335 9.156

HDL 39.497 12.679 46.681 14.592 46.547 14.663

Blood glucose levels 198.901 39.916 98.792 10.908 103.898 15.428

Myocardial infarction 0.333 0.519 0.337 0.632 0.239 0.518

Hematocrit levels 44.929 3.163 43.942 3.866 43.409 3.634

Blood pressure status: elevated 0.211 0.41 0.358 0.48 0 0

Blood pressure status: hypertensive crisis 0.044 0.207 0 0 0.066 0.249

Blood pressure status: hypertensive status 1 0.256 0.439 0.239 0.427 0.165 0.372

Blood pressure status: hypertensive status 2 0.356 0.481 0 0 0.769 0.422

Blood pressure status: normal 0.133 0.342 0.404 0.491 0 0

BMI category: normal 0.1 0.302 0.263 0.44 0.246 0.431

BMI category: obese 0.489 0.503 0.296 0.457 0.305 0.461

BMI category: overweight 0.411 0.495 0.44 0.497 0.447 0.498

BMI category: underweight 0 0 0.001 0.037 0.003 0.05

Number of observations 90 716 395

Fig. 9  Two-step OCT tree, 

optimized with respect to the 

Silhouette Metric
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gender, smoking are all commonly used categories that determine future health trajectories, 

such as the risk of cardiovascular events or potential interventions for managing chronic 

diseases (i.e., blood pressure). The role of these variables has been widely recognized in 

medical literature (Kannel 1996; Wolf et al. 1988; Offner et al. 1999; Everhart and Wright 

1995).

Table 4 shows the covariate values of the cluster centroids created by the K-means++ 

algorithm. Notice that there is no clear distinction of features that characterize each cluster. 

For the categorical ones, the centroid value depends on the relative frequency of the classes 

in the particular covariate and not only on its predominance in the cluster. For example, the 

fact that the Smoking value for Centroid 1 is equal to 0.2 does not provide deep insights in 

the smoking habits of the participants in that group. There is a similar proportion of smok-

ers in this cluster compared to Clusters 2 and 3. It is difficult to provide intuitive labels for 

the groups with clinical implications by only studying Table 4. Furthermore, analyzing the 

centroid means and standard deviations to gain intuition into the distinctive attributes and 

spread of each cluster becomes increasingly harder as the number of features increases. 

Relative ranking of the centroid values could be used in the FHS case, where p = 18 (after 

one-hot encoding) and the number of clusters is small. In a high dimensional dataset, delv-

ing into such a table would be practically impossible.

Figure 9 shows the result of the hybrid OCT tree. The model contains just one split, 

resulting in two clusters providing limited insights regarding the data. In this setting, 

changing the minimum bucket did not affect the final solution. Figure 10 shows the final 

PCT tree. This method proposes a deeper tree involving four features: Gender, Diabetes 

Fig. 10  PCT Tree for FHS patients

Table 5  The validation criteria results for ICOT, K-means++, Hclust, GMM, DBSCAN, PCT and the two-

step hybrid OCT method when trained on each metric

Metric ICOT OCT K-means++ Hclust GMM DBSCAN PCT

Silhouette metric 0.296 0.131 0.264 0.270 0.224 0.511 0.249

Dunn index 0.561 0.256 0.150 0.469 0.503 0.448 0.503
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status, BMI, and Systolic Blood Pressure. It suggests that diabetes status is a differentia-

tor only in obese patients (BMI above 30). It also suggests that the relevant Systolic Blood 

Pressure threshold is higher for “less healthy” patients, namely those who are diabetic or 

have higher BMI.

5.2.4  Results on quantitative performance

Although interpretability is our primary objective in cluster development, we also want 

to ensure that our resultant groupings are reasonable from the perspective of the internal 

validation criteria which provide a quantitative evaluation. Table 5 shows the metric scores 

obtained for both the Silhouette Metric and the Dunn Index. For each method, we use the 

Silhouette Metric to cross-validate and find the optimal number of clusters. We then report 

the score on both metrics for the entire population.

Fig. 11  Visualization of the ICOT tree for the European Jobs dataset

Table 6  European country 

clusters from the ICOT algorithm
Cluster 1 Cluster 2 Cluster 3

Bulgaria Austria Belgium Greece

Czechoslovakia Denmark Finland Turkey

E. Germany France Ireland Yugoslavia

Hungary Italy Luxembourg

Poland Netherlands Norway

Romania Portugal Spain

USSR Sweden Switzerland

United Kingdom W. Germany
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ICOT dominates all competing algorithms in the Dunn Index (0.509) and has the second 

to best performance in the Silhouette Metric (0.296) after DBSCAN (0.511). In particular, 

we note that it has an advantage over PCT in both metrics, consistent with our findings in 

Fig. 12  CUBT tree with four clusters

Fig. 13  CUBT tree with five clusters

Table 7  European country 

clusters from the CUBT 

algorithm, with K = 4

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Turkey Greece Bulgaria Austria Belgium

Poland Hungary Czechoslovakia Denmark

Romania Ireland E. Germany Finland

Yugoslavia Portugal France Italy

Spain Luxembourg Netherlands

USSR Norway Sweden

Switzerland United Kingdom

W. Germany
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the synthetic experiments. Overall these results suggest that ICOT’s advantage in interpret-

ability does not come at the expense of identifying well-separated and compact clusters. 

The gains over OCT also attest to the value of ICOT’s ability to train directly on the cluster 

quality criterion over simply applying a two-step method where K-means clusters are used 

as class labels for a supervised problem.

5.3  Economic profiles of European countries

In this section we consider European countries by their employment statistics during the 

Cold War to develop groupings of similar economic profiles. We present this example to 

offer a comparison to the CUBT algorithm (Fraiman et al. 2013) as this is the primary real-

world experiment offered in their work.

Our dataset (Krim and Hamza 2015) provides the breakdown of where citizens were 

employed in 1979 across major industry sectors: agriculture (Agr), mining (Min), manu-

facturing (Man), power supplies services (PS), construction (Con), service industries (SI), 

finance (Fin), social and personal services (SPS), and transportation and communication 

(TC). Thus our feature space includes nine covariates ( p = 9 ) observed for 26 distinct 

European countries ( n = 26).

5.3.1  Results on interpretability: ICOT

We trained a clustering tree using the Silhouette Metric, the default � parameter, and a 

minimum bucket size of 3 to prevent individual outlier countries from dominating the tree 

in a single split. The final tree is shown in Fig. 11, and the resulting groupings are shown 

in Table 6.

ICOT’s chosen partition is highly intuitive given the economic and political climate of 

the Cold War. With the exception of Yugoslavia, all Eastern Bloc countries are placed in 

Cluster 1 due to their particularly low percentage of workers in the financial sector. This 

Table 8  European country clusters from the CUBT algorithm, with K = 5

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Greece Bulgaria Austria Belgium Netherlands Denmark

Poland Czechoslovakia E. Germany Finland Norway

Romania Hungary France Italy

Turkey Ireland Luxembourg Sweden

Yugoslavia Portugal Switzerland United Kingdom

Spain W. Germany

USSR

Table 9  Comparison of ICOT 

(trained on the Silhouette Metric) 

and the CUBT algorithm on the 

internal validation criterion

Metric ICOT CUBT ( K = 4) CUBT ( K = 5)

Silhouette Metric 0.344 0.140 0.044

Dunn Index 0.346 0.262 0.259
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split reflects the broader political setting for those countries that were under a Commu-

nist regime. Greece, Turkey and Yugoslavia are grouped together due to their notably high 

agricultural sector employment. They are also located in the same geographical region and 

thus their economy similarity is justified. The rest of the countries form Cluster 2, which is 

composed of all the Western European countries.

5.3.2  Results on interpretability: CUBT

Fraiman et  al. (2013) provide two alternative clustering partitions using their proposed 

CUBT algorithm, one with four clusters and the other with five clusters. The resultant tree 

for K = 4 is shown in Fig.  12 with the groupings listed in Table  7. The corresponding 

results for K = 5 are shown in Fig.  13 and Table 8, respectively. Due to inconsistencies 

between the trees and country groups listed in the paper (Fraiman et al. 2013), we report 

results based on the tree models presented. It is possible to select a minimum bucket size 

in the CUBT algorithm, but the authors chose to omit it in these experiments, resulting in 

isolated clusters with single outlier countries. While this provides insight on its own, we 

chose to enforce a sufficiently large leaf size to make our results more generalizable and 

insightful for the full set of European countries. 

The tree with four clusters splits only on agriculture sector employment through a series 

of recursive splits, providing less insight into the differentiating characteristics of the coun-

tries. The tree with five clusters splits on high agriculture employment first to separate 

out the first two clusters, but then further differentiates the low agriculture countries on 

both manufacturing and service industry employment. The bulk of the countries fall into 

the third cluster, which is characterized by a manufacturing-heavy workforce. Note that 

CUBT allows for cluster re-joining in the algorithm, which results in multiple leaves being 

assigned to the same cluster (indicated by a single color). Overall, while the CUBT algo-

rithm provides high interpretability as with ICOT, a qualitative analysis of the resulting 

clusters suggests that there is a slight loss in meaningful cluster separation.

5.3.3  Results on the validation criteria

The quantitative performance of these models on our two key internal validation criteria 

are shown in Table 9. ICOT obtains significantly better clusters as quantified by both the 

Dunn Index and Silhouette Metric. We note that ICOT has an advantage in the Silhouette 

Metric due to the fact that it was trained to optimize this criterion, whereas the CUBT 

results were trained via a different method. However, the Dunn Index provides a neutral 

evaluation criterion and shows a preference towards ICOT’s results as well.

6  Scaling experiments

In this section, we present results regarding the effect of scaling techniques on ICOT with 

respect to both the quality of the final solutions as well as the degree to which the algo-

rithm is able to scale. In Sect. 6.1, we discuss the impact of algorithm heuristics, such as 

the K-means warm start and the geometric threshold, using the FCPS suite. We use real-

world data from Hubway for testing the scalability and quantitative performance of boot-

strapping in Sect. 6.2.
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6.1  Scaling via algorithm heuristics

In this section, we evaluate the impact of implementing the scaling methods described in 

Sect. 3.3. We first Sect. 6.1.2 examines the runtime reductions that we obtain as we vary 

the scaling parameters. We then  consider how the heuristics affect solution recovery in 

Sect. 6.1.3.

6.1.1  Experimental setup

We evaluated the impact of our scaling methods on algorithm speed through a comparison 

of the average runtime across eight datasets in the FCPS suite with various parameters. 

The ninth dataset (EngyTime) was omitted as the experiment size was intractable on the 

unscaled method. We ran experiments over restricted geometric search thresholds of T = 0 

(scan all thresholds), T = 0.9 and T = 0.99 . We also repeated the experiments with and 

without the K-means warm start. The parameter pair ( T = 0 , no warm start) represents the 

original “baseline” method, and the pair ( T = 0.99 , K-means warm start) represents the 

Fig. 14  Average runtimes across FCPS datasets with varied scaling parameters for the geometric search 

threshold (T) and choice to use a warm start

Table 10  Comparison of cluster quality scores with the original versus fully scaled ICOT versions

Dataset Silhouette metric Dunn index

Baseline Fully scaled % Change Baseline Fully scaled % Change

Atom 0.521 0.503 −3.45% 0.137 0.137 0.00%

Chainlink 0.391 0.396 1.28% 0.032 0.028 −12.62%

Hepta 0.455 0.453 −0.44% 0.357 0.357 0.00%

Lsun 0.567 0.549 −3.17% 0.117 0.077 −34.10%

Target 0.629 0.629 0.00% 0.362 0.550 51.93%

Tetra 0.504 0.504 0.00% 0.200 0.200 0.00%

TwoDiamonds 0.486 0.486 0.00% 0.044 0.044 0.00%

WingNut 0.406 0.422 3.94% 0.063 0.063 0.00%

Average Score 0.495 0.493 -0.23% 0.164 0.182 0.65%
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fully scaled method. We ran each dataset and parameter combination across five seeds and 

present the averaged results.

All experiments were conducted on two CPUs of type 2 socket Intel E5-2690 v4 

2.6 GHz/35M Cache; 16 GB of NUMA enabled memory were used per CPU.

6.1.2  Scaling runtimes

The runtimes for the Silhouette Metric and Dunn Index are shown in Fig. 14. The geomet-

ric search alone reduces the runtime by 77.6% (60.6%) at the T = 0.99 threshold for the 

Silhouette Metric (Dunn Index). When combining the geometric search ( T = .99 ) with the 

K-means warm start, our fully scaled method offers a 96.0% (95.7%) reduction in algo-

rithm runtime for Silhouette (Dunn). We observe that the baseline method actually has a 

slight runtime advantage over the K-means warm start when there is no restriction on the 

search space ( T = 0 ). The apparent shorter runtime with the baseline method at T = 0 can 

be explained by the possibility of getting caught in a locally optimal solution with a naive 

start, which can lead the algorithm to terminate faster.

Due to the speedups from these two scaling techniques, ICOT is able to scale to handle 

datasets with a number of observations (N) in the thousands and the number of covariates 

(p) in the hundreds. The scaled algorithm solves within several hours for problems of this 

magnitude.

6.1.3  High quality solution recovery

The scores of the baseline model and our fully scaled version are shown in Table 10. The 

scaled method yields an average loss of − 0.28% over the baseline when trained on the Sil-

houette Metric, and gives an average improvement of 0.64% with the Dunn Index. Of the 

eight datasets considered using the Silhouette Metric (Dunn Index), three (five) have iden-

tical cluster recovery in both the original and fully scaled experiments; three (two) have 

a slight loss when using scaling heuristics, and two (one) actually improve with the scal-

ing methods. These results suggest that the scaled ICOT algorithm still yields high quality 

results.

The differences in the score between the baseline and scaled versions are largely 

attributable to the warm start rather than the choice of geometric threshold. The score 

improves in the scaled version when the baseline algorithm was caught in a local opti-

mum, but the K-means warm start enabled it to avoid this. This score improvement offered 

by the K-means warm starts further supports the use of this heuristic beyond runtime 

improvements.

6.2  Scaling via bootstrapping

In Sect. 6.2.1, we introduce the Hubway dataset, a real-world collection of user ride data 

from a Boston-based bike sharing program. Section 6.2.2 outlines the experimental setup, 

providing details on the parameters of the method. Sections  6.2.3 and 6.2.4 explore the 

effect of the bootstrapping methodology on the quality of the final solution and the algo-

rithm runtime respectively.
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6.2.1  The Hubway dataset

In this setting, our goal is to identify similar groups of registered users of the Hubway 

bike-sharing program (Bertsimas et al. 2016). This Boston-based company allows citizens 

to rent bicycles from any of their 140 stations and ride to any other station in the city. The 

platform has emerged as a popular form of transportation for daily commuters and leisure 

riders alike. Our dataset includes 194,301 observations from Hubway trips taken from June 

2012 through September 2012. The dataset contains nine mixed numerical and categorical 

attributes, including the duration of the trip, the age and the gender of the rider, the time 

period of the ride and whether it took place during the week or the weekend.

This experiment illustrates an application of clustering for market segmentation. This 

is a strategy that divides a broad target market into smaller groups of similar customers. It 

can then be used to tailor marketing strategies to individual groups through means such as 

promotions or differentiated pricing. Unsupervised learning is often employed for this task 

since it naturally identifies similar groups within a given dataset.

Fig. 15  Results regarding the impact of bootstrapping on the runtime (Log of Minutes) as the number of 

repetitions ( N
rep

 ), sub-sample size ( N
r
 ), and sample size (N) change. Both methods were trained on the Sil-

houette Metric. The error bars express the standard deviation of the metric
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6.2.2  Experimental setup

In these experiments, we aim to quantify the benefit of using bootstrapping as a wrapper 

function over the ICOT algorithm. We explore the effect of three key parameters that might 

affect both the quality and runtime of the solutions. 

1. Sample Size (N): The number of observations included in the training set. Since the Hub-

way dataset contains 194,301 data points, we sub-sample randomly without replacement 

to create a sample of size N. We follow the same process to create a different testing set 

that is used for the evaluation of the validation criterion. We restrict N to numbers that 

can be efficiently solved by ICOT, N ∈ [2500, 5000, 10000] , to allow us to compare to 

the algorithm’s solutions on the full input data.

2. Size of reduced data ( N
r
 ): The number of observations included in each iteration of the 

bootstrap algorithm. Each sub-sample is randomly created from the training set without 

replacement, but the iteration samples are constructed independently. Thus, different 

iterations can contain the same observation. We let Nrep ∈ [250, 500].

3. Number of repetitions ( N
rep

 ): The number of iterations of the bootstrap-

ping method. We test the quality and runtime of the final model by letting 

Nrep ∈ [25, 50, 75, 100, 200, 500, 1000].

All results presented for ICOT use a version of the algorithm that includes the K-means 

warm start and a geometric threshold of 0.99. The minimum bucket size is set to one and 

the maximum depth of the tree to depth four. We assigned to the � parameter its default 

value. Similarly to the FCPS experiments, we ran 100 random restarts of the algorithm 

in each round. Results summarize the outcomes of five randomized repetitions of each 

experiment.

In the following experiments, all results are averaged over 50 experiments per algorithm 

and parameter combination. All experiments were conducted on two CPUs of type 2 socket 

Intel E5-2690 v4 2.6 GHz/35M Cache; 30GB of NUMA enabled memory were used per 

CPU.

6.2.3  Scaling performance

The purpose of introducing bootstrapping into the ICOT framework is to extend its applica-

tion to problems of larger size that the fully scaled version was not able to efficiently man-

age. Bootstrapping provides a lot of flexibility to the user and thus can be easily adapted to 

the speed requirements of a specific case study. In this section, our aim is to demonstrate 

how choices regarding the parameters affect the overall running time and compare the 

outcomes with and without bootstrapping. Figure 15 provides an overview of the results 

when the algorithm was trained on the Silhouette Metric. The corresponding results for 

the Dunn Index are summarized in the “Appendix”. We report the log(time) to render the 

y-scale more comprehensible to the reader, especially for higher instances of N. The aver-

age runtime scales linearly with respect to N
rep

 and exponentially to N
r
 . As we include 

additional repetitions, the method sequentially runs more iterations of the same “reduced” 

experiment. However, as we increase the N
r
 , the runtime scales at the same rate as the 

original ICOT method. When Nrep > 500 , bootstrapping starts improving on the original 

algorithm only for instances of N > 2500 . Nevertheless, in cases of larger sample size 

( N = 10, 000 ), bootstrapping can achieve the same solution quality (N
r
= 250, Nrep = 500) 
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in 27.65 minutes instead of 554.693. When N = 5, 000 , the discrepancy is not as high but 

still considerable, 13.095 and 96.529 minutes respectively.

These results indicate the value of adding bootstrapping into the ICOT framework, as it 

solves in reasonable time problems of much larger size that otherwise would have been out 

of the algorithm’s scope.

6.2.4  High quality solution recovery

The bootstrapping approach constructs trees on a sub-group of the overall population and 

thus does not access the full input data. We sought to ensure that the speed-up in runt-

ime would not come at a high toll with respect to solution quality. Thus, we performed a 

direct comparison of the two methods over the validation criteria for different ranges of 

the parameters described above. Figure 16 provides a results summary for the Silhouette 

Metric. A similar graph for the Dunn Index can be found in the “Appendix”. The shaded 

region around ICOT indicates the standard deviation of the metric. Similarly, the error bars 

Fig. 16  Results regarding the impact of bootstrapping on the Silhouette Metric as the number of repetitions 

( N
rep

 ), sub-sample size ( N
r
 ), and sample size (N) change. The error bars express the standard deviation of 

the metric
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illustrate the same measure for each combination of the tuning parameters. As expected, 

larger sample sizes are positively correlated with the validation score. The graphs show 

that increasing the number of repetitions can significantly improve the quality of the solu-

tion. We notice that for Nrep > 500 , bootstrapping can achieve equivalent performance to 

ICOT, with minor losses in some cases. The effect of the N
r
 parameter is less evident, 

though, as the results indicate minor discrepancies between N
r
= 250 and N

r
= 500 . In 

conclusion, these experiments provide evidence that bootstrapping does not result in a high 

toll on the quality of suggested feature partitions.

7  Discussion

ICOT builds trees that provide explicit separations of the data on the original feature set, 

creating interpretable models with real-world applicability to a wide range of settings. 

From healthcare to revenue management to macroeconomics, our algorithm can signifi-

cantly benefit practitioners that may find value in unsupervised learning techniques in their 

work.

Our empirical results on the FCPS dataset offer insight into ICOT’s performance against 

existing methods, including traditional approaches such as K-means, density-based, and 

hierarchical algorithms. We also report results with respect to other interpretable methods, 

including the Predictive Clustering Trees framework and the hybrid two-step supervised 

approach. Overall, our proposed method is superior to the majority of the algorithms for 

both validation criteria. Specifically, in Sect. 4, we show that when assessing clusters with 

the Silhouette Metric, ICOT is the second best method after K-means++ while on the 

Dunn Index ICOT is only outperformed by DBSCAN. Essentially, our experiments demon-

strate that our newly proposed framework is able to achieve comparable performance to the 

state-of-the-art clustering algorithms while enabling the explicit characterization of cluster 

membership. We thus accept a slight decrease in the validation criteria for the gain in inter-

pretability, which is critical in many settings.

We also observe significant improvements in ICOT over other interpretable approaches. 

The relatively poor performance of the two-step OCT approach validates the utility of a 

method that simultaneously builds clusters and identifies a tree-based structure rather than 

simply employing existing tree-based methods on clustered data a posteriori. Additionally, 

ICOT offers a considerable advantage over PCT and CUBT, suggesting that our algorith-

mic approach improves upon on existing interpretable clustering work and offers a novel 

contribution to the space.

Most clustering methods, including ICOT, identified data partitions with higher cluster 

quality scores than the true FCPS data labels, highlighting the subjectivity of what con-

stitutes good clusters. We leave the choice of cluster quality metric to the user, since both 

criterion have their respective merits and perform well in different data contexts. In gen-

eral, the Dunn Index excels on well-separated datasets but is not robust to outliers. In con-

trast, the Silhouette Metric is often better at accounting for mixed densities and identifying 

meaningful separation in less structured data settings.

The additional scaling experiments on the FCPS dataset demonstrate substantial runt-

ime reductions offered by both the restricted geometric search space and K-means warm 

start. Overall these empirical results suggest that the scaling methods are successful at 

significantly decreasing runtime while maintaining high-quality cluster identification. 

The geometric search heuristic is particularly useful for problems with a high number of 
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observations as it lowers the computational load per node evaluation by a factor of T. We 

note that despite the efficiency gains offered by our scaling methods, our current imple-

mentation of ICOT does not scale beyond 1000s of observations and 100s of covariates. 

However, using the Hubway dataset we were able to demonstrate that the ICOT algorithm 

coupled with bootstrapping is able to scale to even hundreds of thousands of observations 

at a reasonable time without a considerable toll on the solution quality. This functionality 

broadens the method’s applicability to even high-dimensional settings; for example, boot-

strapping might be particularly useful when clustering a large company’s customer transac-

tion records (n in the millions). This is a case where we would recommend the subsampling 

approach. A similar technique could be applied for cases where the number of features is 

very high (p in the 10000s), such as when using genomic profiles for patients. Additionally, 

variables could be preprocessed to restrict to the most significant subset, either using tra-

ditional statistical tests or the variable importance ranking provided in the K-means algo-

rithm output.

Therefore, we believe that ICOT is the best performing alternative for interpretable clus-

tering although computationally more intensive. PCTs are more efficient but in many cases 

lead to lower quality solutions. Our method has an edge over K-means++ and DBSCAN 

due to the transparency it offers, although these alternatives sometimes show a slight edge 

on the Silhouette Metric and the Dunn Index. ICOT is most appropriate in applications 

where the user values both interpretation of the cluster labels and high performance on 

clustering metrics, and the efficiency of the algorithm is not a bottleneck. These condi-

tions are generally true in the exploratory analysis contexts where clustering is most often 

applied.

Our work’s handling of numerical and categorical features offers a contribution beyond 

the realm of clustering. The issue of mixed-type attributes is considered among special-

ists as one of the most important challenges in machine learning (Piatetsky-Shapiro et al. 

2006; Yang and Wu 2006). The overwhelming majority of state-of-the-art clustering algo-

rithms are restricted to numerical objects, like vectors or metric objects, which does not 

correspond to datasets usually found in practice. This problem extends more broadly to 

algorithms that rely on distance computations, such as k-Nearest Neighbors. In contrast, 

our solution gives a comprehensive answer to this problem by introducing a novel distance 

metric for the algorithm.

We note that the algorithm’s single-variable splits are unable to represent all possible 

cluster shapes and could potentially cut through clusters. This structure allows us to main-

tain the direct interpretation of a tree leaf representing a single cluster. In many applica-

tions, a simple interpretation of the tree partition is highly valued, which was a key motiva-

tion behind this method’s development. In order to capture more complex structures, one 

could consider the possibility of “rejoining” leaves, namely allowing multiple leaves to 

be considered as a single cluster. Rejoining can occur between two adjacent leaves com-

ing from a single parent node through the local search’s consideration of split deletions. 

However, we do not consider the possibility of joining other leaves. While ICOT does 

not natively support this, it could easily be incorporated as a post-processing step. After 

obtaining the final ICOT tree, one can consider the effect of merging different node combi-

nations on the chosen metric.
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We finally observe that despite the tree structure of our algorithm output, our model 

does not obey a hierarchical structure. Namely, truncating the tree to a lower depth does not 

necessarily represent the optimal clustering solution at this depth. Our coordinate-descent 

algorithm allows for nodes to be re-optimized with knowledge of deeper nodes. In contrast, 

a hierarchical interpretation only holds in cases where the tree grows greedily since the 

shallow truncated tree cannot be affected by deeper levels.

The application of ICOT to real-world datasets reveals the significant benefit on both 

interpretability and performance in the unsupervised learning field. The combination of the 

OCT mechanism, the employment of established internal validation criteria as well as the 

systematic handling of mixed numerical and categorical attributes allow ICOT to provide 

complete partitions of the feature space with actionable insights to practitioners. Moreo-

ver, the flexibility of the method to user specific constraints with respect to the minimum 

bucket size, the maximum depth of the tree and the � parameter render the algorithm par-

ticularly amenable to a wide range of applications from various fields.

8  Conclusion

In this paper, we have introduced a new methodology of cluster construction that addresses 

the issue of cluster interpretability. We propose a novel unsupervised learning tree-based 

algorithm that yields high-quality solutions via an optimization approach. Through com-

putational experiments with benchmark and real-world datasets, we show that ICOT offers 

significant gains in interpretability over state-of-the-art clustering methods while achieving 

comparable or even better performance as measured by well-established internal validation 

criteria. This makes ICOT an ideal tool for exploratory data analysis as it reveals natural 

separations of the data with intuitive reasoning.
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Appendix

Synthetic experiments

See Tables 11 and 12.
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Table 11  Comparison of runtimes (in minutes) across the FCPS datasets, when trained and evaluated on the 

Silhouette Metric

The datasets are ordered by ascending problem size

Data (N,P) ICOT OCT K-means++ Hclust GMM DBSCAN PCT

Hepta (212,3) 0.196 0.001 0.041 0.009 0.003 0.022 0.061

Lsun (400,2) 0.358 0.002 0.049 0.015 0.003 0.034 0.079

Tetra (400,3) 0.399 0.002 0.053 0.019 0.004 0.035 0.064

Target (770,2) 1.240 0.002 0.068 0.031 0.004 0.053 0.081

TwoDiamonds (800,2) 0.394 0.002 0.072 0.036 0.004 0.052 0.079

Atom (800,2) 2.200 0.006 0.073 0.036 0.004 0.058 0.097

Chainlink (1000,2) 4.580 0.003 0.084 0.045 0.004 0.062 0.096

WingNut (1070,2) 1.430 0.003 0.090 0.047 0.004 0.065 0.096

EngyTime (4096,2) 64.700 0.021 0.326 0.252 0.016 0.240 0.448

Average Runtime 8.389 0.005 0.095 0.054 0.005 0.069 0.123

Std. Dev. Runtime 21.162 0.006 0.088 0.075 0.004 0.066 0.123

Table 12  Comparison of runtimes (in minutes) across the FCPS datasets, when trained and evaluated on the 

Dunn Index

The datasets are ordered by ascending problem size

Data (N,P) ICOT OCT K-means++ Hclust GMM DBSCAN PCT

Hepta (212,3) 0.264 0.001 0.043 0.009 0.003 0.026 0.062

Lsun (400,2) 1.840 0.002 0.050 0.016 0.003 0.034 0.063

Tetra (400,3) 0.644 0.002 0.049 0.018 0.003 0.035 0.065

Target (770,2) 2.030 0.002 0.069 0.031 0.004 0.056 0.085

TwoDiamonds (800,2) 0.595 0.003 0.069 0.039 0.004 0.051 0.084

Atom (800,2) 4.410 0.006 0.078 0.039 0.004 0.079 0.096

Chainlink (1000,2) 8.980 0.003 0.087 0.047 0.005 0.069 0.104

WingNut (1070,2) 4.430 0.003 0.086 0.046 0.005 0.062 0.105

EngyTime (4096,2) 1234.0 0.021 0.351 0.271 0.030 0.268 1.125

Average Runtime 139.688 0.005 0.098 0.057 0.007 0.076 0.199

Std. Dev. Runtime 410.376 0.006 0.096 0.081 0.009 0.074 0.348
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Scaling experiments

See Fig. 17, 18.

Fig. 17  Results regarding the impact of bootstrapping on the Dunn Index as the number of repetitions 

( N
rep

 ), sub-sample size ( N
r
 ), and sample size (N) change in the Hubway Dataset. The error bars express the 

standard deviation of the metric
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