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ABSTRACT

Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode

spatial patterns at different scales. In this study, deep learning models are compared with standard machine

learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and

thermodynamic fields from a convection-allowing numerical weather prediction model. The data for this

study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from

3 May to 3 June 2016. The machine learning models are trained to predict whether the simulated surface

hail size from the Thompson hail size diagnostic exceeds 25mm over the hour following storm detection. A

convolutional neural network is compared with logistic regressions using input variables derived from either

the spatial means of each field or principal component analysis. The convolutional neural network statistically

significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator

characteristic curve. Interpretation of the convolutional neural network through feature importance and

feature optimization reveals that the network synthesized information about the environment and storm

morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind

shear profile that favors wide updrafts. Different neurons in the network also record different storm modes,

and the magnitude of the output of those neurons is used to analyze the spatiotemporal distributions of

different storm modes in the NCAR ensemble.

1. Introduction

The size of a hailstone depends on the path of the

hail through a storm and how favorable the environ-

ment is for hail growth along that path (Foote 1984).

The path and growth conditions are influenced by both

the vertical thermodynamic profile of the environment

and the morphology of the storm in both the horizontal

and vertical directions. Diagnostic tools that most ef-

fectively encapsulate all of these factors should have

the most skill in discriminating between large and

small hail at the surface. Environmental information

derived only from the bulk thermodynamic profile has

shown some skill in predicting large hail. Edwards and

Thompson (1998) found no correlation between in-

tegrated radar or sounding indices and hail size. More

recently, Manzato (2012) identified instability indi-

ces calculated at the 850- to 500-hPa levels, such as

the lifted index and Showalter index, as having the

highest correlation with hail occurrence. Johnson and

Sugden (2014) and Pú�cik et al. (2015) both find deep-

layer wind shear to discriminate hail size better than

thermodynamic and low-level wind parameters. Ex-

panding from scalar indices to full vertical profiles, the

HAILCAST 1D hail growth model (Brimelow et al.

2002, 2006; Jewell and Brimelow 2009; Adams-Selin

and Ziegler 2016) produces hail size estimates by sim-

ulating hail embryos growing in a steady-state updraft

based on a full vertical wind and temperature pro-

file and adjusting the hail growth based on localized

variations in temperature and moisture. HAILCAST

has demonstrated skill in diagnosing hail size from

proximity soundings (Jewell and Brimelow 2009) and

convection-allowing model environments (Adams-Selin

et al. 2019). In this paper, we demonstrate that incor-

porating both vertical profile and spatial informa-

tion into a deep learning hail size diagnostic model can

provide both increased hail size analysis skill and insight

into important factors for hail growth.

The importance of storm morphology to hail growth

has been documented in observational and idealized

modeling studies. Multiple observational studies (e.g.,

Nelson 1983; Foote 1984) have found a strong connec-

tion between the width of a thunderstorm updraft and

the amount of hail growth. Idealized modeling studies

of supercells have identified how small changes in theCorresponding author: David John Gagne II, dgagne@ucar.edu
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moisture and wind profile can alter storm morphology

and hail growth. Grant and van den Heever (2014)

varied midlevel relative humidity in idealized supercell

simulations and found that the resulting changes in wind

flow and storm structure changed themechanisms of hail

growth and locations of maximum hail fall. Dennis and

Kumjian (2017) found that increasing wind shear in the

east–west direction elongates the updraft in that direc-

tion and promotes more hail growth by creating a larger

hail embryo source region and increasing residence

time in favorable regions of the updraft for hail growth.

However, increasing wind shear in the north–south di-

rection decreased hail growth by separating the embryo

source regions from the available hydrometeors. Given

the limited information about morphology found in

sounding studies, and the limited sample size of existing

observational and idealized modeling studies, combin-

ing the two sources of information with algorithms de-

signed to process large amounts of spatial data may lead

to greater understanding about what factors are most

important for the growth of large hail.

Many automated weather forecasting algorithms con-

tain methods for encoding spatial information, but these

methods typically encode more information about the

distribution of field values as opposed to structural fea-

tures. Spatial encoding is typically performed either

within the bounds of an object or within a neighbor-

hood surrounding a fixed point. Object-based encodings

offer the advantages of focusing on the relevant area of

a discrete object and the reduced memory and pro-

cessing loads from only calculating information about a

limited number of objects versus a large number of

grid points. Lakshmanan and Smith (2009) discuss the

variety of spatial and temporal statistics that can be

extracted from tracked storm objects, and Gagne et al.

(2017) and Lagerquist et al. (2017) demonstrated how

object-based machine learning methods produce skil-

led hail and severe wind forecasts, respectively. If the

interactions among multiple objects are relevant for

the prediction of a particular process, a spatiotemporal

relational network framework can encode relation-

ships, such as the distance and orientation between two

objects, as well as interactions, such as whether objects

overlap or if one object is contained within another

object (McGovern et al. 2014).

The performance of object-based encodings can be

limited by how the object is defined and by the way in-

formation is extracted from the object. The choice of

area and intensity thresholds in the object-finding al-

gorithm can have a large impact on the population of

objects and their characteristics due to some potential

objects being excluded or merged together, as Haberlie

and Ashley (2018) have demonstrated for automated

mesoscale convective system climatologies. Extracting

environment information only from within a region

defined by a radar reflectivity or other storm threshold

(e.g., Gagne et al. 2017; Lagerquist et al. 2017) risks

ignoring potentially valuable data from the inflow re-

gion of the storm. Expanding the area of interest to

encompass a fixed-size region around a storm may help

account for some of these issues.

Neighborhood spatial encodings apply a transforma-

tion to the values of a quantity over the area surrounding

a fixed point in order to produce a low-dimensional

representation of the region’s spatial structure. Prin-

cipal component analysis (PCA; Pearson 1901), also

known as empirical orthogonal functions in the at-

mospheric science community, has been commonly

used to identify regimes at both weather and climate

time scales. Clustering of PCs has been used to iden-

tify weather regimes in which separate statistical

models have been trained for weather prediction tasks

(e.g., Greybush et al. 2008). Self-organizing maps

(SOMs; Kohonen 1982) are a neural-network-based

clustering and dimensionality reduction technique

that has recently been used to identify near-storm

atmospheric profiles (Nowotarski and Jensen 2013)

and spatial configurations of the significant tornado

parameter (Anderson-Frey et al. 2017) favorable for

tornadoes. Unsupervised encoding methods can sum-

marize the main features of a dataset without requir-

ing labels, and both the components of PCA and SOMs

can be visualized for interpretation. However, the fea-

tures encoded by PCA and SOMs are not chosen to

maximize predictive skill, and the top PCs or SOMs

may not be the most important features for a given

problem. The PCA and SOM features may also be ar-

tifacts of the choice of encoding method or model hy-

perparameters. For example, most of the variance in a

time series of temperature may be explained by diurnal

or seasonal cycles, but those forcings have limited

utility for predicting large temperature changes pro-

duced by local weather phenomena, such as storms.

The spatial weights for each PC can be strongly influ-

enced by the shape of the domain, resulting in the same

‘‘Buell patterns’’ no matter what kind of input data

are used (Buell 1975, 1979; Richman and Lamb 1985;

Richman 1993).

Deep learning methods (LeCun et al. 2015) offer the

ability to encode spatial features at multiple scales

and levels of abstraction with the explicit goal of en-

coding the features that maximize predictive skill.

Machine learning models in the deep learning fam-

ily typically consist of neural networks with multi-

ple specialized or sparsely connected hidden layers,

as opposed to traditional artificial neural networks,
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which contain one or two densely connected hidden

layers. The specialized layers either encode spatial or

temporal structure in the data, or they transform the

input data to improve the model optimization process.

The encodings are learned through a numerical opti-

mization process rather than being developed through

empirics. This automated encoding process has en-

abled deep learning models to create high-level rep-

resentations of entities in a given dataset and to use

those representations to generate more accurate predic-

tions. Deep learning models have produced state-of-the-

art performance on image recognition tasks (Krizhevsky

et al. 2012). An open question is whether these deep

learning models can encode spatial weather features and

relate them to associated but unresolved severe weather

hazards.

The purpose of this research is to evaluate if deep

learning models can encode spatial weather data in a

way that improves skill and physical interpretability

of severe hail predictions over more traditional spatial

encoding methods. A supervised convolutional neural

network model is evaluated against unsupervised spa-

tial mean and PCA encodings to determine whether

the additional complexity of deep learning results in a

significant improvement in the ability of the model to

discriminate between storms that will produce simu-

lated severe hail and those that do not. The inputs to all

models are permuted to determine which inputs have

the most impact on model performance. The internal

encodings of each model are interrogated using feature

interpretation methods to reveal what storm structures

are associated with a high probability of severe hail.

2. Data and methods

a. Model output

Spatial storm information originates from the NCAR

convection-allowing numerical weather prediction

(NWP) model ensemble (Schwartz et al. 2015). The

NCAR ensemble consists of 10 WRF-ARW V3.6.1

(Skamarock and Klemp 2008) members run at 3-km

grid spacing over the contiguous United States ini-

tialized at 0000 UTC each day. The ensemble uses

the Thompson microphysics scheme (Thompson

et al. 2004, 2008; Thompson and Eidhammer 2014),

MYJ planetary boundary layer (PBL) scheme (Mellor

and Yamada 1982), Noah land surface model (Chen

and Dudhia 2001), and the RRTMG radiation scheme

(Mlawer et al. 1997). The forecast period of interest

lies between forecast hours 12 and 36 (1200 to 1200

UTC the following day), which corresponds to the

NOAA Storm Prediction Center Day 1 convective

outlook valid period. The ensemble ran daily from

April 2015 to December 2017, but on most days only

surface variables and severe weather diagnostics were

archived.

For the period from 3 May to 3 June 2016, instanta-

neous state variables describing weather conditions on

isobaric levels were also archived. The NCAR ensemble

model output variables and levels used as inputs to the

machine learning models are listed in Table 1. The 850-

and 700-hPa isobaric levels are used because they

describe conditions within the inflow region of the

storm, and the 500-hPa level is used because it cap-

tures conditions within the hail growth zone, which

typically ranges between 2108 and 2308C (Nelson

1983). We selected state variables instead of derived

storm diagnostics, such as CAPE and wind shear,

because most storm diagnostics are vertically inte-

grated quantities that can hide the subtle variations in

the storm environment important for discriminating

severe hazards.

To build a dataset of storms, we extract every strong

updraft from each NCAR ensemble member over the

period of interest. The enhanced watershed method

(Lakshmanan et al. 2009; Gagne et al. 2017) identifies

storm tracks in the hourly maximum upward verti-

cal velocity field that exceeded 10m s21 with a mini-

mum storm track area of 10 grid cells to exclude

updrafts only partially resolved horizontally. The

updraft speed field should identify most individual

storm cells in the model, including pulse thunder-

storms, cells embedded in a line, and supercells, all of

which can produce severe hail. Some small, weak, and

stationary storms may be ignored by these criteria. No

storm identification method will capture every storm

perfectly, but these criteria produce a large sample of

TABLE 1. List of the input fields for eachmachine learningmodel

and the mean and standard deviation (SD) of each field to three

significant figures.

Variable Pressure level Mean SD

Geopotential height 500 hPa 5790m 65.1m

Geopotential height 700 hPa 3110m 49.7m

Geopotential height 850 hPa 1480m 45.3m

Temperature 500 hPa 261K 2.58K

Temperature 700 hPa 279K 2.37K

Temperature 850 hPa 290K 2.91K

Dewpoint 500 hPa 254K 8.90K

Dewpoint 700 hPa 275K 4.15K

Dewpoint 850 hPa 286K 3.81K

Zonal wind 500 hPa 10.1m s21 7.44m s21

Zonal wind 700 hPa 6.14m s21 6.62m s21

Zonal wind 850 hPa 2.74m s21 7.05m s21

Meridional wind 500 hPa 8.25m s21 7.45m s21

Meridional wind 700 hPa 7.48m s21 6.39m s21

Meridional wind 850 hPa 6.70m s21 7.41m s21
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both hail- and non-hail-producing storms to evaluate.

A 96-km-wide square patch is extracted around the

centroid of each storm track in order to capture both

the storm and the immediate surrounding environ-

ment. All of the input variables (Table 1) are instan-

taneous fields extracted at the start time of the updraft

swath. Each input field value xi is transformed to bxi
based on the training data distribution mean ui and

standard deviation si such that the transformed dis-

tribution has mean zero and standard deviation one:

bx
i
5
x
i
2 u

i

s
i

. (1)

Each storm patch extracted from each NCAR ensemble

member at each forecast time is treated as an independent

sample, and all evaluation statistics are calculated on a

storm-by-storm basis. The independence assumption is not

strictly true because storms in similar environmentswill have

similar characteristics, but because the storms are extracted

from 12- to 36-h model integrations, the storms in each en-

semble member exhibit different storm initiation times and

locations, resulting in different convective evolutions.

Instead of using hail reports or radar-estimated hail

size, the diagnosed maximum diameter of the graupel-

hail species in the Thompson microphysics scheme

at the lowest model level within bounds of the storm

swath is used to determine whether a simulated storm

produced hail greater than 25mm in diameter. This

size is equivalent to the National Weather Service size

threshold for severe hail since 2010. Because we are

using simulated hail sizes as the target for the ML

models, we are effectively producing 1-h-ahead hail

size predictions within the world of the NWP model.

Using simulated hail sizes instead of hail reports or

radar-estimated hail sizes ensures the most direct

connection between simulated storm features and hail

at the surface by eliminating any spatial and temporal

displacement errors between a predicted storm and

the resulting hail swath. We have chosen to perform a

perfect model experiment instead of calibrating to-

ward observations because our primary goal is to in-

crease our understanding of the relationship between

storm and environmental features and severe hail,

rather than to increase forecast skill.

The Thompson microphysics hail representation

provides a reasonable balance between realism and

computational efficiency with its representation of

graupel and hail. To represent both graupel and hail

with a single microphysical species, the Thompson

scheme varies the intercept parameter No,g as a

function inversely proportional to the graupel mix-

ing ratio qg (Thompson et al. 2004, 2008). For large

qg, No,g is greatly reduced, which then increases the

number concentration of larger diameter graupel-

hail. The density of the graupel-hail species is held

constant at 400 kgm23, which is a more graupel-like

density. While sensitivity tests in Thompson et al.

(2008) showed that intercept parameter changes

outweigh the effect of density changes over a 12-h

storm simulation, the density of the hail species can

affect the fall speed and trajectory of hail within the

simulated storm (Morrison and Milbrandt 2011).

The Thompson hail size diagnostic is a microphysics-

agnostic method for estimating a reasonable maximum

hail size directly from the particle size distribution

(PSD) of a hail or graupel species. The gamma or

exponential distribution used to represent the PSD

extends to infinite sizes, but the number concentra-

tion does decay to the point where the probability of

seeing a hailstone above a certain size is infinitesi-

mal. The Thompson hail size diagnostic thus inte-

grates backward across a range of logarithmically

spaced diameters until it reaches a number concen-

tration that ensures that a hailstone of that diameter

would be detected. The diagnostic concentration

threshold in the NCAR Ensemble during the 2016

Spring Experiment was 0.0001 particlesm23, which

roughly corresponds to expecting to find a hailstone of

that size within the area of two American football

fields. The current diagnostic concentration thresh-

old in WRF version 4.0.3 is 0.0005 particlesm23. This

concentration threshold can also be replaced with

a maximum percentile threshold. To validate that

the Thompson hail size diagnostic and microphysics

scheme approximate real-world hail behavior, we

examine both the distribution of hail sizes and how

well the diagnostic predicts severe hail when severe

hail is reported in the vicinity of a simulated storm

(Fig. 1). The hail reports are collected by the NOAA/

National Weather Service in the Storm Data pub-

lication and are distributed online by the Storm

Prediction Center (Storm Prediction Center 2019).

Because the hail diagnostic uses logarithmic-spaced

bins instead of linear, a direct histogram of the hail

size values would produce a distorted hail size dis-

tribution. Instead, we resample the hail sizes within

each bin from a uniform distribution, such that each

bin contains the same number of hail events but

with a continuous range of values. The distribution

of predicted hail sizes (Fig. 1) shows a peak in fre-

quency around 12.5 mm with an exponential de-

crease with diameter. The storm-maximum hail sizes

exhibit a fatter tail and two separate regimes of de-

creasing frequency due to the parameterized relation-

ship between graupel-hail mixing ratio and the intercept
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parameter. The small, positive Heidke skill score

(Wilks 2011) at different search radii from each storm

to the hail reports shows that the NWP model can

create storms that produce severe hail in areas where

severe hail was reported, but the scheme also produces

many false alarms based on the small Success Ratio, or

ratio of true positive events to all positive predictions

(Roebber 2009).

b. Machine learning models

We evaluate a series of machine learning models

with spatial encodings of increasing complexity. Be-

cause we are more interested in evaluating the qual-

ity of the spatial encoding than that of the machine

learning model, we use the same algorithm, a logis-

tic regression, to transform our spatial encodings

into hail probabilities. A logistic regression is a lin-

ear regression model with a logistic, or sigmoid {[1 1

exp(2x)]21}, nonlinear transformation applied to the

output, so that the output values range between zero

and one. Because of this transformation, logistic re-

gressions are often used to estimate the probability of

an event with binary outcomes. The ‘‘logistic mean’’

baseline model feeds the spatial mean of each in-

put variable into a logistic regression. In the second

model, ‘‘logistic PCA,’’ PCA transforms each input

variable field independently to create a vector repre-

sentation where each component is orthogonal, and

the components are ordered by the percentage of

variance explained in the original data. The top five

principal components from each variable feed into a

logistic regression. PCA applied to spatial fields can

detect spatial gradients of varying frequencies and

directions based on which patterns explain the largest

proportion of variance in the data.

Both of the logistic regression models are trained

using the scikit-learn (v. 0.19; Pedregosa et al. 2011)

machine learning library. Lasso, or L1 norm, regu-

larization (Tibshirani 1996) of the logistic regression

model weights performs feature selection as part of

the model optimization process by penalizing the

absolute values of the regression weights to the point

where less relevant input weights are set to 0. For both

models, the magnitudes of the regularization weights

vary during the grid search by powers of 10 from 0.1 to

0.001 to determine the most skilled set of inputs. The

Lasso regularization magnitude and number of prin-

cipal components (3 or 5) are selected through a grid

search evaluation on a validation set consisting of

storms from a subset of the ensemble members not

included in the training set.

The deep learning model used in this study is a

convolutional neural network (ConvNets; LeCun et al.

1990), which learns to encode features in multivariate

spatial or temporal data with a series of convolutional

layers in order to identify features at a particular spatial

scale. Dimension reduction layers condense infor-

mation spatially and help make the model invariant

to slight differences in the locations of certain features.

The ConvNets is built using the Keras high-level deep

learning library (Chollet et al. 2015) with the Tensor-

flow low-level backend (Abadi et al. 2016).

A convolutional layer consists of a set of optimized

feature maps, which are small patches of weights ap-

plied in a sliding window pattern over the spatial ex-

tent of the input grid. The output of each feature map

is the sum of the product of the weights and the input

values. Following the convolution operation, an acti-

vation function, or nonlinear transformation, is ap-

plied to the resulting field. ConvNets often use some

variant of the rectified linear unit [ReLU; max(0, x)]

activation function because it preserves the magnitude

of positive signals as they travel forward and backward

through the network (LeCun et al. 2015). Convolution

filters are applied across all inputs simultaneously,

which allows them to identify correlated patterns

FIG. 1. (top) The distribution of themaximum (red) and all storm

grid cell (purple) surface hail diameters in mm from the Thompson

hail size diagnostic for each storm in the NCAR ensemble. (bot-

tom) The probability of detection, success ratio, and Heidke skill

score of the Thompson hail size diagnostic as a function of the

maximum search radius for hail reports near a simulated storm

from the NCAR ensemble.
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across multiple input variables or the results of

previous convolutions. Figure 2 displays an exam-

ple of how storm data are transformed and rescaled

within a ConvNet. Simulated radar reflectivity is

used in this figure for illustrative purposes but is not

included as an input in the main machine learning

model evaluation. The first set of convolutional

filters broadly identifies areas of high and low simu-

lated radar reflectivity. The second set of filters

highlights a more diverse set of features, including

the core of the storm, areas with strong intensity

gradients, and low radar reflectivity areas.

Spatial dimension reduction is performed either

through a pooling layer, in which the mean or maxi-

mum of a 2 3 2 gridcell region of the input is calcu-

lated, or through the use of strided convolutions,

in which the convolution window is shifted by two

grid cells instead of one and results in an output half

the length and width of the input. The effect of the

spatial dimensionality reduction is seen in the second

and third layers of the original network (Fig. 2), in

which each pixel covers a larger portion of the origi-

nal storm. Convolutional layers deeper in the network

operate on combinations of previous convolutional

features and effectively cover a larger portion of the

input space. Following the series of convolution and

dimension reduction layers, the resulting feature cube

is flattened into a feature vector. This vector is then

input into a densely connected output layer with a

sigmoid activation function. This layer assigns an in-

dependent weight to each element of the flat feature

vector, sums them together, and rescales the output

to create a probability. This final dense layer performs

the same operations as a logistic regression. In Fig. 2,

the strongest positive weights match up with the re-

flectivity core and the gradient between the storm

edge and the core, which is where the updraft and

hail growth region are typically located. The network

produced a 98% chance of severe hail for this exam-

ple, which correctly verified.

Given its large number of weights, how does a

convolutional neural network minimize the chances

of overfitting to noise in the data and failing to gen-

eralize? First, the convolutional layers impose a

strong prior assumption on the model about the spa-

tial structure of the data (Goodfellow et al. 2016). The

convolution filters effectively share the same weights

across all parts of the image and focus on a local

area at any given moment. This reduces the effective

number of weights that are fit and updates the weights

multiple times per input sample. Dropout regulari-

zation (Srivastava et al. 2014), which gives each

input a fixed probability of being set to zero on a pass

through the network, promotes independence among

FIG. 2. Diagram of an example convolutional neural network for estimating the probability of hail from simulated radar reflectivity at

4 km above ground level. Each set of maps show the intensity of neuron activations for each convolutional filter in that layer after mean

pooling has been performed on the data. Redder colors indicate a largermagnitude of activation. The original reflectivity image is overlaid

on each filter activation map as a set of blue contours. The final set of maps shows the last filter activation multiplied by the matching

weight in the dense output layer.
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the different weights in the model. Ridge, or L2 norm,

regularization adds a penalty term to the error func-

tion that prefers solutions with small magnitude weights,

which enables regression models to find reasonable so-

lutions even with multiple correlated inputs at the ex-

pense of slightly higher training set error (Goodfellow

et al. 2016). Batch normalization (Ioffe and Szegedy

2015) centers and rescales the internal values of a neural

network in order to optimize the network to a certain

error level faster and enable higher learning rates to

be used.

The ConvNet configuration used in this study is shown

in Fig. 3. The network consists of three strided con-

volutional layers with square 5 gridcell filters that com-

bine the task of convolution and spatial dimensionality

reduction. The number of convolutional filters is dou-

bled in each successive layer. We train and validate

separate ConvNets with a range of hyperparameters,

or model settings that are fixed during training, in order

to find a model configuration that should generalize

well to unseen testing data. The initial number of filters

is varied between 16 and 32. Dropout rates of 0.1 and 0.3

are validated. ReLU and Leaky ReLU activation func-

tions are tested. Ridge (L2 norm) regularization is ap-

plied to each convolutional filter with a regularization

coefficient of either 0.01 or 0.001. The Stochastic Gra-

dient Descent and Adam (Kingma and Ba 2015) opti-

mizers are both tested with learning rates of 0.001 and

0.0001. All networks are trained for 15 epochs with a

batch size of 128 examples. While these hyperparameter

settings do test some of the network architecture sensi-

tivities, they are by no means comprehensive, and ad-

ditional parameter search and architecture tuning could

yield better results than what is shown.

The weights of a neural network are iteratively opti-

mized through the process of stochastic gradient de-

scent via back propagation. A batch, or random sample,

of training data is drawn without replacement and sent

forward through the network to generate predictions.

The prediction error, or loss L(x, y), is calculated, and

then the partial derivative of the error with respect

to each weight, or the gradient =wi
, is determined. The

expansion of the gradient for a particular weight in-

cludes the gradients for all other weights between that

neuron and the output layer. Next, the gradient calcu-

lation has to be propagated backward through the net-

work until gradients are found for all weights, hence the

term back propagation. Once the gradients are calcu-

lated, each weight wi is updated by stepping in the di-

rection opposite the gradient by a proportional factor

called the learning rate (a) such that

w
i
5w

i
2a=

wi
L(x, y). (2)

FIG. 3. Schematic of the convolutional neural network used for

severe hail prediction. Each red block consists of a convolutional

filter, a nonlinear activation function, and any regularizing trans-

forms performed after the activation. The architecture components

and settings shown produce the highest validation scores in the

repeated hyperparameter searches.
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The prediction error function used for this study is the

Brier Score, which is equivalent to the mean squared

error for probabilistic forecasts. The gradient, or deriv-

ative, of the Brier Score is the difference between the

forecast probability and whether the event occurred.

Stochastic gradient descent is performed using an opti-

mization function with a specified learning rate, which

controls the magnitude of the update at each step.

We assess the quality of the probabilistic forecasts

from each machine learning model using standard

probabilistic verification metrics. Many preprocess-

ing factors, including the choice of hyperparameters

and the training and test set composition affect

the skill of each model. To control for some of these

issues, a hyperparameter grid search, training, and

testing procedure is conducted 30 times for each

model type. A hyperparameter grid search is an ex-

haustive evaluation of every combination of dis-

crete hyperparameter values that is commonly used

for machine learning model tuning. During each

search, the training and test storm data are split based

on the NCAR Ensemble run initialization date with

storms from 70% of the run dates used for training

and storms from 30% of the run dates used for testing.

For the hyperparameter grid search, storm patches

from seven of the ten members are kept for training

and storm patches from the remaining three members

are held out for validation. Because this is a perfect

model experiment and the storm extraction begins

only after the model has run for at least 12 h, the en-

semble members should be independent enough to

minimize sharing of information across the training

and validation examples. After the grid search has

completed, the machine learning model is trained on

the set of hyperparameters that produce the highest

Brier skill score. The training for this machine learn-

ing model uses storms from all NCAR Ensemble

members. This final model is then tested on storms

from the ensemble runs on the held out test dates.

This whole procedure repeats 30 times with different

training and test run dates selected to determine

the sensitivity of the hyperparameter settings to the

training and test set composition. The test set scores

aggregate across all 30 iterations. Permutation tests

determine the statistical significance of the scores, and

bootstrap resampling of the statistics from each iter-

ation generates 95% confidence intervals on each

verification diagram.

3. Hail model evaluation results

The primary evaluation statistics are the Brier skill

score (BSS) and the area under the receiver operating

characteristic (ROC) curve (AUC) (Mason 1982). The

BSS can be decomposed into two terms and a scaling

factor (Murphy 1973), as shown in Eq. (3):
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The first term in the numerator is the resolution, which is

mean squared difference between the severe hail rela-

tive frequency of forecasts with a certain probability ok

and the observed climatological frequency of the event

o. The second term of the numerator is the reliabil-

ity, which is the mean squared difference between the

forecast probability pk and the severe hail relative fre-

quency. The scaling factor in the denominator is the

uncertainty, which is only a function of the severe hail

relative frequency of the event in the test set. Because

each testing sample will have a slightly different severe

hail relative frequency of severe hail, the reliability and

resolution terms are scaled by the uncertainty, so that

the terms can be aggregated properly. The three ma-

chine learning hail models are compared in Table 2. The

ConvNet has the highest BSS with a statistically signif-

icant improvement (a , 0.01 based on a permutation

test) over the second most skilled model, the logistic

PCA. In terms of BSS components, the ConvNet has the

worst reliability but the best resolution. Since the dif-

ferences in reliability are relatively small, the increase in

resolution provided by the more sophisticated encod-

ings is very helpful for this problem.

The components of the BSS are visualized with the

attributes diagram, which plots the severe hail relative

frequency of an event against the forecast probabil-

ity (Fig. 4). A dashed horizontal line indicates the

climatological probability of the event, and gray-

shaded areas highlight where the BSS resolution ex-

ceeds the BSS reliability, contributing to a positive

BSS. An inset plot shows the frequency of each fore-

cast probability, providing a measure of sharpness.

In the attributes diagram (Fig. 4), all of the models

except for the logistic mean have observed relative

TABLE 2. Evaluation scores for the different machine learning

models. Every score except BSS reliability is positively oriented

such that larger values mean better performance. The scores below

are the means of the individual scores of 30 models trained and

tested on different samples of training and testing ensemble

run dates. Bold numbers indicate the best value for each metric.

Model BSS BSS reliability BSS resolution AUC

Logistic mean 0.12 0.017 0.13 0.75

Logistic PCA 0.29 0.008 0.30 0.85

ConvNet 0.36 0.019 0.37 0.88
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frequencies that are close to the diagonal. The logis-

tic mean model exhibits large deviations from the

diagonal at high probability thresholds. The ConvNet

displays a slight underforecasting bias at 20% proba-

bility and then an overforecasting bias at 80%. How-

ever, the ConvNet also has more forecasts with

greater than 80% and less than 10% probability than

any of the other models, which contributes to its high

BSS resolution score. The logistic PCA models show

very little deviation from the reliability diagonal.

The probabilistic hail forecasts are also evaluated

with ROC curves and the related performance diagram.

The ROC curve (Mason 1982) evaluates probabilis-

tic forecasts by converting them into a series of binary

deterministic forecasts and calculating the probability

of detection (POD), the ratio of hits to the total number

of positive events and probability of correct negative

(POCN), the ratio of true negative events to the total

number of negative events, at each probability thresh-

old. The curves display how much varying the proba-

bility threshold affects the trade-off betweenminimizing

misses and false alarms. The area under the ROC curve

(AUC) is a measure of total prediction skill in which

AUC scores greater than 0.5 have more skill than a

random prediction and a score of 1 results in perfectly

discriminating between positive and negative events.

The conv.net has the highest AUC followed by the

logistic PCA, and logistic mean with statistically sig-

nificant separations among the differentmodels (Table 2).

The ROC curves for each model (Fig. 5) indicate that

the ConvNet and logistic PCA consistently perform

better across probability thresholds. Each point on

the curve indicates an increase in probability by 10%

from upper left to lower right. The models with higher

AUC also have more probability thresholds with POD

above 0.5, so these models can discriminate events

with a low amount of false alarms even at higher

probability thresholds.

Performance diagrams (Roebber 2009) perform a

similar function to the ROC curve but replace POCN

with the success ratio, which is the ratio of hits to the

total number of positive forecasts. A performance di-

agram for the hail model evaluation is shown in Fig. 6.

The performance diagram ignores the number of true

negative events, so it is easier to differentiate fore-

casts that perform well on rare events. The perfor-

mance diagram also displays critical success index

(curved filled contours), a measure of accuracy, and

frequency bias, a measure of the ratio of false alarms to

misses, on the same diagram. There is more separation

between the ConvNet and logistic PCA models.

FIG. 4. Attributes diagram comparing the binned forecast

probabilities of each spatial machine learning model with their

observed relative frequencies. Ideally the curve for each model

should fall along the dashed diagonal line. The shaded areas

around each curve indicate the 95% bootstrap confidence inter-

val for the severe hail relative frequency. The gray shaded area

indicates the region where points on the curves contribute posi-

tively to the Brier skill score. The inset panel displays the fre-

quency of all binned forecast probabilities for each model.

FIG. 5. ROC curve comparing different spatial machine learning

methods. The ROC curve for a given model shows how POD and

POCN vary by splitting probability forecasts into binary forecasts

over series of increasing thresholds. The points from low proba-

bility thresholds appear in the top-left corner, and the points from

high probability thresholds appear in the bottom-right corner. The

shaded areas indicate the 95% bootstrap confidence interval for

each model’s ROC curve. The dashed line indicates where per-

formance is no better than random.
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The training times for each machine learning model

are shown in Table 3. The mean single model training

time is calculated by dividing the mean search time by

the number of parameter combinations and multiplying

by the number of processes running simultaneously (8).

The ConvNet trains faster than the logistic PCA model

because the ConvNet was relatively small and can take

full advantage of GPU parallelism and optimizations.

The logistic PCA model requires performing 15 PCA

decomposition and transformation procedures followed

by an iterative fitting of a logistic regression, which

are performed serially on one CPU. A parallel imple-

mentation of the PCA process could lead to much faster

logistic PCA fitting times.

The repeated hyperparameter searches for each ma-

chine learning model reveals settings that are robust

across variations in the training data. For both logis-

tic mean and logistic PCA, a low inverse Lasso penalty

of 0.1 produces the lowest validation errors and leads

to most or all of the variables being selected. The lo-

gistic PCA models with 5 principal components per

variable consistently outperform those with 3. For

ConvNets, ReLUactivations produce better results than

LeakyReLU activations. Dropout rates of 30%perform

best for ConvNets on this problem. Increasing the

number convolutional filters results in better perfor-

mance most of the time.

4. Machine learning model interpretation

Users of machine learning models may not trust their

output if they do not understand the model’s decision-

making process. Key questions for interpreting ma-

chine learning models include: which model inputs

have the largest impact on the predictions and what

features are encoded within a model’s latent space?

The first question can be addressed through model-

agnostic interpretation methods, which treat the mo-

del as a black box and only operate on the inputs and

outputs. Model-agnostic interpretation methods allow

for apples-to-apples comparisons of model structures and

can highlight how each model’s assumptions and set-

tings change the resulting model behavior. Permuta-

tion feature importance (Breiman 2001) ranks input

variables based on how randomizing their values af-

fects prediction error. First the model error on a set of

examples is calculated. Then the values of each vari-

able are permuted, or shuffled, among the examples.

Then, the error is recalculated on the permuted data.

A larger change in error is associated with higher

importance.

Variable importance scores are shown in Fig. 7. The

ConvNet and logistic mean models feature similar

rankings with high importance for geopotential height

and temperature. The variables extracted at 850 hPa

tend to rank higher than variables from other pressure

levels. The large drop in scores seen for all variables

may be due to the shuffling of input fields affecting

the values of five variables instead of one. The ranking

of the absolute values of logistic PCA regression co-

efficients reveals a similar pattern to the logistic mean

with geopotential height and temperature variables

having the highest weights. The logistic PCA rankings

differ from the other models potentially because per-

muting any of the input fields varies five of the inputs to

FIG. 6. Performance curve comparing different spatial machine

learning methods. The curves show the probability of detection

and success ratio as the forecast probability threshold increases

(low probability thresholds are at the top left of the diagram and

high probability thresholds are at the bottom right). The shaded

areas indicate the 95% bootstrap confidence interval for each

model’s curve. The filled contours show regions of increasing

critical success index. The dashed lines are contours of equal fre-

quency bias. Points with frequency bias greater than one havemore

false alarms than misses, and points with frequency bias less than

one have more misses than false alarms.

TABLE 3. Summary of computational time for training each

machine learning model. Deep learning models were trained on

eight NVIDIA K40 graphical processing units (GPUs), and the

logistic mean and logistic PCA models were trained on 8 Intel

Xeon E5–2670 processors. Times are in minutes.

Model name

Parameter

combinations

Mean search

time

Mean single

model training

time

Logistic PCA 6 16 21.33

ConvNet 64 30 3.75

Logistic mean 3 0.6 1.59
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the logistic regression, resulting in a major loss in skill.

Although variable importance reveals which variables

have the largest impact on predictive skill, it does not

inform us about why each variable is important.

To provide more insight into why each variable is im-

portant, we utilize feature visualization by optimization,

or backward optimization (Olah et al. 2017) on each

machine learning model. The goal of feature visualiza-

tion by optimization is to find the set of input values

that maximize the activation of a particular neuron or set

of neurons within a trained neural network. A logistic

regression can be modeled as a one-layer neural network

with no hidden layers, so the same process can be applied

to the logistic mean and logistic PCAmodels as well. The

results of this process should provide insight into what

features each model has encoded. First, a neural network

is trained. Then, the user picks a neuron or node to ac-

tivate and creates a loss function that calculates the

squared difference between the current output value (ai)

and the desired output value (ad):

E5 (a
i
2 a

d
)2� (4)

Next, the user selects an initial input example to send

through the network and be updated. This initial in-

put can consist of all zeros, small random values, or

a sample from the training set. The input example

propagates forward through the network to the se-

lected neuron, and the resulting activation is com-

pared with the desired activation through the loss

function. The gradient of each component of the in-

put with respect to the activated neuron is calculated

through back propagation. Because the gradient at the

input is often very small, the gradient values are di-

vided by the standard deviation of the gradient values.

The input values are updated by subtracting the gra-

dient multiplied by a learning rate from each input

value [Eq. (2)]. Finally, the process is repeated until

the neuron activation for a given input matches the

desired activation. The resulting input field should

contain relevant features for activating the selected

FIG. 7. Variable importance scores in terms of the decrease in AUC and BSS for each of the hail forecast models.

The whiskers indicate the 2.5 and 97.5 percentiles of the distribution of importance scores from the 30 optimized

machine learning models from each resampling of the training data.
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neuron. The gradient values from a single iteration of

this process can also be used to create saliency maps

that identify where in the input space a particular

neuron is focusing its attention (Simoyan et al. 2014).

The strided convolution architecture used in the

ConvNets creates a checkerboard pattern in the fea-

ture optimization fields because of uneven propaga-

tion of the gradient (Odena et al. 2016). To remove

the checkerboard pattern while preserving the spa-

tial structures in the feature optimization output, a

Gaussian filter is applied to each field and the smooth

field is scaled by the standard deviation so that the in-

put values range from 23 to 3. Using average pooling

layers instead of strided convolutions or max pooling

for spatial dimensionality reduction also reduces the

checkerboard artifacts.

When applied to the output, the feature visualization

by optimization process should reveal what input fea-

tures lead each machine learning model to predict a

high probability of hail. The strongest input anomalies

in the logistic mean model (Fig. 8) come from the 850-

and 500-hPa geopotential heights, which show positive

and negative anomalies, respectively. The temperature

fields show decreasing positive anomalies with de-

creasing pressure. Dewpoint and winds have consistent

small anomalies, which is consistent with the small

permutation feature importance assigned to them.

Feature visualization applied to the logistic PCA

model (Fig. 9) illuminates more details consistent with

the logistic mean visualization but providing more spa-

tial context. The primary features are the same positive

and negative geopotential height anomalies at 850 and

500 hPa along with a north–south temperature gradi-

ent in each field. Positive dewpoint anomalies appear

at each level. The winds at 850 hPa show a weakly

confluent pattern, the winds at 700 hPa have a slight

rotation signature, and the winds at 500 hPa are from

the south within the area of the height anomaly but are

from the west outside of it.

The results of the input feature visualization on the

output layer of a ConvNet are shown in Fig. 10. Many

of the trained ConvNets produce an isolated storm

similar to the top panel of Fig. 10. The input fields in-

clude many features associated with severe thunder-

storms, including confluent warm moist air at low levels,

directional wind shear with height, and strong lapse rates

based on the change in temperature and height anomalies

between 850 and 500hPa. The ConvNet visualization

generally matches the same patterns as the logistic PCA,

FIG. 8. Magnitudes of the fields backward optimized by the lo-

gistic mean model to maximize the probability of severe hail. All

values are scaled in terms of normalized anomalies from the

training data mean value of each input variable.

FIG. 9. A selection of input thermodynamic fields backward optimized by logistic PCA to maximize the probability of severe hail. The

filled contours indicate geopotential height (red is positive and blue is negative), the orange–red contours indicate temperature, the purple

contours show dewpoint, and the arrows display the wind vectors. All contours are scaled in terms of normalized anomalies from the

training data mean value of each input variable.

2838 MONTHLY WEATHER REV IEW VOLUME 147

Unauthenticated | Downloaded 08/28/22 12:43 AM UTC



but the anomalies are all overlaid with each other, the

winds are stronger near the center of the storm, and

the wind field at 500hPa is out of the west-southwest near

the storm center and curves around north of the storm.

The lapse rate information may be why the ConvNet and

logistic mean models both featured high variable impor-

tance for the temperature and geopotential height vari-

ables. The rotational pattern seen in the 500-hPa wind

field may be a precursor to the emergence of a rear

flank downdraft, which has been shown to help large

hail reach the surface by forcing cooler, drier air to

the surface, which reduces hail melting (Rasmussen

and Heymsfield 1987) and has been associated with the

occurrence of large hail in hybrid supercell storms (Nelson

1987). The 500-hPawest–eastwind vector orientation does

match with the positive sensitivity to the wind shear di-

rection found in Dennis and Kumjian (2017).

A few of the optimized hailstorms include two

storms with wind fields linked at 500 hPa, as shown in

the bottom panel of Fig. 10. This pattern may be as-

sociated with graupel and hail generated in one storm

seeding the updraft of the downwind storm and encour-

aging the growth of large hail, which is a previously

documented pattern of large hail formation (Heymsfield

et al. 1980). The process should be resolvable in a

convection-allowing model with Thompson microphys-

ics because it relies on advection of graupel–hail mass,

and an increase in graupel–hail mass should result in a

sharp decrease in the intercept parameter and thus very

large hail increasing in number concentration.

The input optimized features associated with acti-

vating individual neurons in the last convolutional

layer provide information about the breadth of storm

structures that the network associates with severe

hail. Convolutional neurons were ranked based on

how well their output values discriminate among hail

and nonhail storms based on the area under the

ROC curve. Figure 11 displays the optimized inputs

FIG. 10. A selection of input thermodynamic fields optimized by ConvNets to maximize the probability of severe hail. The filled

contours indicate geopotential height (red is positive and blue is negative), the orange–red contours indicate temperature, the purple

contours show dewpoint, and the arrows display the wind vectors. All contours are scaled in terms of normalized anomalies from the

training data mean value of each input variable.
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for three of the top discriminating neurons in the

last convolutional layer. Each convolutional filter

captures a different storm morphology. The first

two filters are positively associated with large hail

and resemble a supercell-like storm and a bow-echo-

or bowing-line-like storm. Both of these feature

the vertical geopotential height gradient in the main

storm area. The bowing line also appears to have a

strong rear flank downdraft with drier air at 700 hPa

and cooler air at the surface. The third filter re-

sembles a pulse-like storm and is negatively corre-

lated with severe hail occurrence. The most notable

differences between this storm and the others is

the reversed geopotential height anomaly, negative

temperature and moisture anomalies at the surface,

and a lack of a clockwise hodograph or confluent

winds at 850 and 700 hPa.

Once neurons have been associated with a particular

storm morphology or other higher-level concept, those

neurons can be used to filter a dataset into subsets for

further analysis. The distributions of storms that acti-

vate the different filters in Fig. 11 are plotted in space

(Fig. 12) and time (Fig. 13). The supercell storms are

concentrated in the southern High Plains of the United

States and tend to occur primarily in the late afternoon,

which is expected for isolated supercell storms. The bow

echo storms occur farther east and farther north with a

temporal peak in the early evening but slightly later than

FIG. 11. Input fields that maximize the activation of neurons in the final convolution layer that strongly discriminate between severe and

nonsevere hail based on AUC. The contours follow the same patterns as Figs. 9 and 10.
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the supercells. Unlike the other storm types, the pulse-

like storms are found primarily in the lower Mississippi

River valley, along the East Coast and the coasts of

the Great Lakes, and peak in temporal frequency just

after noon central standard time. The timing and lo-

cation of these storms is consistent with a sea-breeze

initiation mechanism (Byers and Rodebush 1948).

The bottom panels of Figs. 12 and 13 show the spatial

and temporal distributions of the storms that both

activate each filter and produce severe hail. 62% of

the supercell filter storms produce severe hail, but

only 34% of the bow echo storms and 2% of the pulse

storms produce severe hail. The combined areas covered

by the different hailstorm modes closely match the ex-

tent of the hail climatologies in Cintineo et al. (2012) and

Allen and Tippett (2015). The conditional spatial dis-

tribution of the supercells is largely unchanged. Severe

hailstorms in May in the northern plains, Midwest, and

the Carolinas tend to originate from bow echo storm

types. The hail-producing pulse storms occur in regions

around either Arkansas or Florida with none of the

storms near the Great Lakes producing any severe hail.

FIG. 12. (top) Spatial kernel density estimates of the distributions of storms that activate one

of the specified neurons from Fig. 11 with a magnitude of at least 0.5. The lighter red, blue, and

orange contours indicate a higher spatial frequency of storms. The contour values are the

number of storms per year at a given location. (bottom) The same spatial distribution by storm

mode but only for the storms that produced severe hail.
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The prevalence of bow echo and pulse storms in the

Southeast inMay could partially explain why severe hail

is less common there. Diurnally, the bow echo hail-

storms tend to occur more frequently in the 1800 to

midnight central standard time range than the full

population of bow echo storms and less frequently

between 0300 and 0900.

5. Discussion

The verification and interpretation results in this

paper have shown that the more sophisticated spatial

encoding process of the convolutional neural network

provides increased skill over models using unsuper-

vised feature dimensionality reduction and encodes

multiple physical features that have been historically

associated with severe hailstorms. These performance

gains have been accomplished with relatively small

convolutional neural networks compared with those

being used in the domain of object recognition in

images. Deeper networks have a larger representa-

tional capacity, but they also require more data and

longer training periods for optimization. Because they

require less training time and less data, smaller net-

works can be tuned to optimal parameter settings

more quickly and generally have fewer parameters

that require tuning. Also, compared with generic im-

ages, most gridded weather fields are often more

constrained and less noisy. Many weather predic-

tion problems can be framed in a way that requires

the network to predict a small number of classes or

quantities, compared with thousands of classes that are

often found in image recognition datasets. Therefore,

we recommend that atmospheric scientists interested

in deep learning start by experimenting with smaller

convolutional neural networks and only add more

layers if skill is less than adequate for the problem.

The neural network feature visualization process

in Fig. 11 and the spatiotemporal analysis of activa-

tions in Figs. 12 and 13 demonstrate the potential for

deep learning interpretation to enable morphological

analysis of complex spatial datasets without feature

engineering or hand-labeling. Researchers could train

their convolutional neural networks on storm data

and identify which filters in the final convolutional

layer best match the storm morphologies of interest.

Climatological analysis of environmental parame-

ters by storm morphology could provide greater in-

sights to meteorologists about which storm modes

are more likely with particular combinations of larger-

scale environmental conditions. If the morphological

feature identification is applied to real-time convec-

tion-allowing ensemble predictions, then forecasters

could receive a probabilistic assessment of the timing

and location of different storm modes and adjust their

hazard assessments based on when supercells are ex-

pected to transition to a linear storm mode. The same

deep learning and interpretation in this paper could

also be applied to storms in gridded radar reflectivity

mosaics to understand what radar features are linked

with hail or tornado reports. This same interpretation

approach could also be applied to a wide range of

other weather and climate phenomena at different

scales to perform similar kinds of analyses.

Although the logistic PCA model performed well in

this evaluation, it did not provide any physical insights

into the hail forecasting problem. The top components

for each variable closely resembled the Buell (1979)

patterns, likely due to varying locations and orienta-

tions of the storm in each patch. Further preprocess-

ing of the data and recentering patches on the storm

of interest rather than the track could potentially

provide more of the signal in the PCs, but it would

be difficult to capture the sophisticated multivari-

ate patterns identified by the ConvNet. Interaction

terms among the PCs could also be calculated to

identify relationships among variables, but that would

greatly expand the number of inputs that the logistic

regression would have to optimize. Rotated principal

FIG. 13. Kernel density estimates of the diurnal distribution of

the storms that activate each convolutional filter neuron from

Fig. 11. Times are UTC 2 6 h.
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components (Richman 1986) could provide more in-

terpretability at the expense of the loss of orthogo-

nality among components and may be investigated in

future studies.

The results of this study have some limitations that

should be considered when interpreting the results.

First, the verification scores for this study should not be

compared directly with other hail prediction evalua-

tions (e.g., Gagne et al. 2017) based on observed data

because the simulated storms within CAMs are of-

ten displaced in space, time, and intensity from the

observed hailstorms, so the verification scores will

generally be less skilled than the perfect model re-

sults shown here. Second, deep neural networks have

many possible configurations and parameter settings,

so better or worse results may be achieved under

the ConvNet framework with other types of layers

and other settings not explored in the limited grid

search performed here. Third, different results and

interpretations may be possible if the storm patches are

centered on the storm at the beginning of the hour in-

stead of on the center of the updraft track over the

course of the hour. All methods may perform slightly

better if the storm is centered, but given the variety of

storm modes captured in this dataset and the already

high skill scores, this change may not have a large im-

pact on the results.

6. Conclusions

Deep learning models for encoding spatial weather

data for analysis of severe hailstorms have been com-

pared with traditional statistical approaches to deter-

mine the level of skill added by the deep learning

encodings. Convolutional neural networks provide a

statistically significant increase in multiple measures

of prediction skill and result in sharper probabilis-

tic predictions compared with logistic PCA. Through

interpretation of the inputs that activate the hidden

and output layers of the convolutional neural net-

works and logistic regressions, we discover that the

machine learning models identify storm structures

associated with severe hail in previous observational

and modeling studies, including strong lapse rates,

directional wind shear with a large west–east compo-

nent, and seeding of graupel and hail from a weaker

upstream storm. With these interpretation tech-

niques, we can extract physical insights from machine

learning models and compare the insights between

models as well as with our conceptual understanding

of the phenomenon. We also find that the neurons in

convolutional neural networks can encode different

storm morphologies, which enabled us to analyze our

simulated hailstormdataset and determine that supercell-

like storms produce severe hail twice as frequently as

bowing-line-like storms. In general, convolutional neu-

ral networks can serve as high-level feature detectors and

enable semantic analysis of complex weather and climate

datasets.

The machine learning and analysis software used

in this paper can be accessed in the deepsky library

available at https://github.com/djgagne/deepsky. Pro-

cessed storm patch data, saved machine learning models,

and other analysis data are available online (https://

rda.ucar.edu/datasets/ds898.0/; Gagne 2019).
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