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Abstract Deep neural networks have been well-known for their superb handling
of various machine learning and artificial intelligence tasks. However, due to their
over-parameterized black-box nature, it is often difficult to understand the pre-
diction results of deep models. In recent years, many interpretation tools have
been proposed to explain or reveal how deep models make decisions. In this pa-
per, we review this line of research and try to make a comprehensive survey.
Specifically, we first introduce and clarify two basic concepts—interpretations and
interpretability—that people usually get confused about. To address the research
efforts in interpretations, we elaborate the designs of a number of interpretation
algorithms, from different perspectives, by proposing a new taxonomy. Then, to
understand the interpretation results, we also survey the performance metrics for
evaluating interpretation algorithms. Further, we summarize the current works in
evaluating models’ interpretability using “trustworthy” interpretation algorithms.
Finally, we review and discuss the connections between deep models’ interpre-
tations and other factors, such as adversarial robustness and learning from in-
terpretations, and we introduce several open-source libraries for interpretation
algorithms and evaluation approaches.

1 Introduction

Deep learning models [98] have achieved remarkable performance in a variety of
tasks, from visual recognition, natural language processing, reinforcement learning
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Fig. 1: Scheme about interpretations, interpretation algorithms, trustworthiness,
model interpretability and the corresponding evaluations.

to recommendation systems, where deep models have produced results compara-
ble to and in some cases superior to human experts. Due to their nature of over-
parameterization (involving more than millions of parameters and stacked with
more than hundreds of layers), it is often difficult to understand the prediction re-
sults of deep models [47]. Explaining1 their behaviors remains challenging because
of their hierarchical non-linearity in a black-box fashion. The lack of interpretabil-
ity raises a severe issue about the trust of deep models in high-stakes prediction
applications, such as autonomous driving, healthcare, criminal justice, and finan-
cial services [29]. While many interpretation tools have been proposed to explain
or reveal the ways that deep models make decisions, nonetheless, either from a
scientific view or a social aspect, explaining the behaviors of deep models is still in
progress. In this paper, instead of focusing on the social impacts, regulations, and
laws related to deep model interpretations, we would like to focus on the research
field by clarifying the research objectives and reviewing the methods proposed.

Interpretation vs. Interpretability - In this work, we first clarify two concepts that
should be distinguished: interpretations and model interpretability. Interpretations
are also named as explanations or attributions that are calculated by interpretation

algorithms to explain or reveal the ways that deep models make decisions, such as
the indication of discriminative features used for model decisions [137], or the
importance of every training sample as the contribution for inference [91]. On
the other hand, the model interpretability refers to the intrinsic properties of
a deep model measuring in which degree the inference result of the deep model is

predictable or understandable to human beings [47]. In practice, one could apply the
interpretation algorithms of trustworthiness (introduced below) to further evaluate
the model interpretability through matching the interpretations, i.e., the results
from interpretation algorithms for a deep model, with the human-labeled results
if available, such as [24]. In this way, the comparison of interpretability becomes
possible among different models. More evaluation approaches are reviewed and
will be introduced later.

1 The subtle differences among interpretation, explanation, and attribution are not consid-
ered in this paper, and we use them interchangeably.
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Interpretation Algorithms and the Taxonomy As there are no formal nor well-agreed
definitions about the way to interpret a deep model, the interpretation algorithms
are usually designed with different principles, such as

– To highlight the important parts of input features on which the deep model
mainly relies, using gradients [155], perturbations [55], proxy explainable mod-
els [137] and other methods;

– To investigate the inside of deep models to understand the rationale of how
models make decisions by visualizing the intermediate features [191, 197], or
putting the counterfactual examples to investigate the changes [64];

– To analyze the training data by assessing their individual contributions [91],
estimating their learning difficulty [21] or detecting mislabeled samples [128].

This paper reviews the recent interpretation algorithms and proposes a novel tax-
onomy for categorizing the interpretation algorithms. In brief, the proposed tax-
onomy has three orthogonal dimensions – (1) representations of interpretations, e.g.,
the input feature importance or the training samples’ influences; (2) the type of the

targeting model that the algorithm can be used for, e.g., differentiable models, mod-
els containing specific architectures or other properties; and (3) relations between

interpretation algorithms and the deep model, e.g., the closed-form expression or the
composition of the model. Recent interpretation algorithms can all be categorized
to the proposed three-dimensional taxonomy, which will be presented in detail in
Section 3.

Evaluations on Trustworthiness of Interpretation Algorithms and Model Interpretability

There are two evaluations: one on the trustworthiness of interpretation algorithms,
another on the model interpretability.

From previous reviews and outlooks for the interpretations [29, 47, 81, 107,
144], we summarize the most important desiderata for the interpretation algo-
rithms, i.e., the trustworthiness. The “trustworthiness” here refers to that the
interpretation results are reliable/faithful to arbitrary deep models. That is to say:
The trustworthy interpretation algorithm produces the explanations that loyally
reveal the model’s behaviors, instead of giving results that are irrelevant or just
those desired by humans. Incorporating a trustworthy interpretation algorithm,
the evaluations on the model interpretability are then meaningful. In Fig. 1, we
illustrate the connections between these key concepts and further elaborate these
concepts in Section 2.

The trustworthiness of the interpretation algorithms could be assessed by de-
signed evaluation approaches for assuring the uses of interpretations, and the in-
terpretability of deep models could be evaluated and measured for identifying the
most interpretable ones. Both evaluations have challenges remaining, introduced
below.

– Quantifying the utility of trustworthiness of interpretation algorithms is chal-
lenging due to the lack of a proper definition of this quantity and well-defined
metrics. Though trustworthiness can be understood subjectively that the trust-
worthy algorithm produces loyal interpretations to the model, the optimal met-
ric is still under study. Simple metrics such as accuracy, precision, and recall,
are not applicable here.
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– The difficulty of evaluating the model interpretability mainly comes from the
lack of the ground truth. We could not casually annotate “true” interpretations
as annotating image labels because interpretation labels might not exist in
most cases, or it would be out of objectiveness. Furthermore, obtaining human
labeled ground truth for interpretation is labor/time-consuming, which is not
scalable over large datasets.

Even in this complex and difficult situation, several efficient and effective ap-
proaches have been proposed to evaluate the trustworthiness of interpretation
algorithms and model interpretability. The former is mainly based on perturba-
tion evaluations [70, 127, 143] or proxy models [9, 183], while the latter based
on expert ground truths [24] or cross-model explanations [104]. In Section 4, we
comprehensively review the evaluation approaches on both the trustworthiness of
interpretation algorithms and model interpretability.

Overview We describe the organization of this survey paper: We introduce the
key concepts, including the interpretation algorithm, interpretations, model inter-
pretability, and their relations in Section 2. We present the proposed taxonomy for
interpretation algorithms and introduce the algorithms accordingly in Section 3.
Evaluations on the trustworthiness of interpretation algorithms and the model
interpretability are introduced in Section 4. Section 5 discusses the connections
between interpretations and other research topics. Finally, we introduce several
open-source libraries for interpretations and related in Section 6.

2 Main Concepts: Interpretations and Interpretability

The fuzziness of main concepts interpretation and interpretability leads to a lot of
confusions and hinders the academic process. In this section, we make our efforts to
clarify these fuzzy research targets and introduce the definitions of interpretations,
interpretation algorithms and model interpretability, with involving the notion of
trustworthiness.

2.1 Interpretation Algorithms and Trustworthiness

We first introduce interpretation algorithms. A deep model needs interpretations
because the inference output of the model does not show the reasoning inside. An
interpretation algorithm is thus designed to produce interpretations to explain the
model’s decisions and gain insight into its internals of reasoning and rationale. As
mentioned previously, there are no formal nor well-agreed definitions about the
way to interpret a deep model. We, therefore, adopt a very loose definition about
the interpretation: All the outcomes produced by the interpretation algorithms that

help to understand the model are considered as interpretations.
Instead of directly discussing the interpretations, we introduce the categories

of the interpretation algorithms, as they give different information to help humans
to understand the deep models. For example, an algorithm obtaining the training
samples’ learning difficulties helps to inspect the model’s training process; An
algorithm computing the feature importance helps to realize the most important
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features that the model uses to make decisions; An algorithm investigating the
intermediate results of a neural network helps understand the model’s decision-
making process. We show a novel taxonomy to fully categorize the existing and
potential algorithms and review the corresponding algorithms in Section 3.

The interpretation can then lead to the discussion that the model is inter-
pretable or not. However, before that discussion, we should guarantee at the first
step that the interpretation algorithm is trustworthy and the interpretation can
be trusted. The notion of trustworthiness is proposed to cover the most impor-
tant desiderata from the previous review works [29, 107, 122], and can be defined
as follows:

– An interpretation algorithm is trustworthy if it properly reveals the underlying ra-

tionale of a model making decisions.

In this definition, the underlying rationale covers all categories of information that
help to understand the model, e.g., how the model makes decisions, or the reason-
ing behind the model making decisions. The word properly here targets the issue
that the intrinsic underlying rationale behind the model is usually given by an ex-
trinsic algorithm. Extrinsic algorithms may not be part of the targeting model to
be interpreted. That is to say, as an additional module to diagnose the model, the
interpretation algorithm is at risk of giving explanations that are independent of
the the model. A sanity check [3] was performed to inspect several gradient-based
interpretation algorithms by randomizing parts of parameters in the model and
showing the interpretation changes. However, a few algorithms always produce the
same interpretations, despite the significant changes of the parameters. Trustwor-
thiness is defined to recover the rationale of the model, whether the model makes
the correct decisions or not, instead of yielding information that is independent of
the model. Though the definition of trustworthiness is not mathematically rigor-
ous, the idea behind is clear. There are also several evaluations for assessing the
trustworthiness, which will be introduced in Section 4.1.

Trustworthiness of Different Interpretation Algorithms Due to the differences in rep-
resentation of explanation results and type of models to be interpreted, the amount
of information exposed by interpretation algorithms may be different. Trustworthi-
ness is only required for the explained information. It would be easy for achieving
the trustworthiness if one algorithm explains only a bit of information about the
deep model, but this would be rarely useful for any explanation. The trustworthi-
ness is thus an ad hoc requirement with respect to the interpretation algorithm,
and defined to guarantee the information provided by the interpretation algorithm
can be trusted.

Relation to Self-Interpretable Models To complete the discussions of trustworthy in-
terpretation algorithms, we note that many researchers are working on effective
self-interpretable models, to name a few, Capsule Models [73, 142], Neural Addi-
tive Models [5] and CALM [88]. We consider this is a particular case within our
discussion that the self-interpretable models contain both the model and the in-
trinsic interpretation algorithm. To be more accurate, the self-interpretable models
consist of an intrinsic interpretation algorithm. Moreover, if the model makes de-
cisions based on the intrinsic interpretations, then this interpretation component
is without doubt trustworthy.
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Fully-Interpretable Models We also discuss fully interpretable models here to get a
better understanding about the interpretations and the trustworthiness of interpre-
tation algorithms for black-box deep models. We informally give the definition that
a model is fully interpretable if the model is totally understandable by humans.
The following models are considered as fully interpretable without too much con-
troversy2: a set of limited number of rules; a depth-limited decision tree; a sparse
linear model.

Comparison to Fully and Self Interpretable Models To compare across fully inter-
pretable models, self-interpretable models and black-box deep models, we can see:
(1) fully interpretable models can be totally understood by showing themselves.
(2) Self interpretable ones can provide explanations with an amount of informa-
tion by an intrinsic interpretation algorithm. The interpretation algorithms for
both fully and self interpretation models are trustworthy. (3) For black-box deep
models, it is hard to provide such interpretations and much harder to guarantee
the the interpretation algorithms be trustworthy. Fortunately, the interpretations
may be different and do not provide the fully interpretable explanation results.
The trustworthiness only guarantees that the amount of information provided by
the interpretation algorithm is correct.

2.2 Model Interpretability

From industrial demands, the model interpretability is sometimes more important
than other metrics such as accuracy because of safety and social issues in domains
of autonomous driving, healthcare, criminal justice, financial services and many
others. Though no mathematical definition has been proposed, general agreement
about the expression proposed by [47] has been reached. We reclaim their definition
of model interpretability as follows.

– The model interpretability is the ability (of the model) to explain or to present in

understandable terms to a human.

According to other review works [29, 115], “the interpretability of a model is higher

if it is easier for a person to reason and trace back why a prediction was made by the

model. Comparatively, a model is more interpretable than another model if the prior’s

decisions are easier to understand than the decisions of the latter.”
From the definition of the model interpretability, the expression understandable

to a human is a subjective notion. It is human-centered [47, 94], making it compli-
cated to target this research problem of quantitatively measuring and comparing
the interpretability of various models. Till recently, there are not many metrics for
quantifying the model interpretability, and Section 4.2 will introduce the existing
evaluation approaches on the model interpretability.

We give an intuitive example to show that different models may have different
interpretability. Take image classification [43, 175] as the task, and a trustworthy
algorithm of analyzing the input-output relations as the interpretation algorithm.
We consider two models, and the produced interpretations locate different image

2 Without any limits, even a rule-based model may be too complex for a human to under-
stand the model [107, 141]. This is also the motivation of several works that pursue the sparsity
of explanation results [137].
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pixels. It is easier to understand if the interpretation aligns with the object parts
in the image, while it is harder to understand if the interpretation locates at the
background or another accompanied object in the image for recognizing the target
object. Although the trustworthy algorithm reveals the rationales of both models,
we prefer the former model because its way of making decisions is more direct to
human understandings.

2.3 Towards Interpretable Deep Learning

This section defined the trustworthiness of interpretation algorithms and the model
interpretability. We emphasize several points that usually confuse the field with
more explicit remarks.

Interpretation Algorithms, Interpretations and Model Interpretability The notions of
interpretation algorithms, interpretations, and model interpretability should be
distinguished. Only the interpretability among all these expressions is a property of
the model. Interpretation algorithms are designed to analyze the black-box model.
Algorithms must be trustworthy; otherwise, the interpretations do not reveal the
model’s internals. Their relations and differences are illustrated in Fig. 1.

Summary of Desiderata for Interpretations In this section, the proposed desider-
ata is the trustworthiness for interpretation algorithms. Researchers [29, 47, 81,
101, 107, 183] also proposed many other desiderata for interpretations, interpreta-
tion algorithms or interpretability, such as fairness, privacy, reliability, robustness,
causality, trust, fidelity, faithfulness, transferability, informativeness, transparency,
plausibility, satisfaction, accountability, etc. However, we note that (1) properties,
such as informativeness, plausibility, satisfaction, refer to whether the interpre-
tation is understandable to humans, and are different from the trustworthiness
in this paper that refers to algorithms; (2) properties, such as reliability, robust-
ness, trust, fidelity, faithfulness, transparency, are similar to trustworthiness or
can be comprised by the general definition of trustworthiness; (3) properties, such
as causality, transparency, depend on the underlying rationale in our context; (4)
properties, such as fairness, transferability, privacy, are the standards to constrain
the models; and (5) others (e.g., accountability and traceability) are more re-
lated to holistic evaluations of the systems. There is slight difference and specific
requirements in various scenarios, but the proposed trustworthiness is only for
interpretation algorithms.

Deep Models for High-Dimensional Data for Scientific Discovery Though the moti-
vation of interpretations and interpretability at the beginning is to help humans
understand the deep models, the interpretations sometimes lead to other valuable
and promising findings. Deep models may be more efficient than humans to cope
with high-dimensional data. From molecules [84, 133] to black holes [86], from
chemistry [62] to games [152], deep models could be used to solve many prob-
lems. However, without interpretations, the knowledge discovered by deep models
is still unknown for humans, or the scores obtained are not semantic and not
fully understood by humans. Interpretations in these cases could be helpful to find
new intelligent patterns and discover new scientific theories. For example, from a
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perspective of rationale processes, interpretations can help humans to understand
how a model infers; Or a feature analysis algorithm can help to identify the most
important features that the model uses; Or a tool of investigating the data can
help find the typical data samples or the most influential ones that explain how
the model makes decisions. These algorithms are all included in this paper and
will be discussed in the following section.

3 Interpretation Algorithms: Taxonomy, Algorithm Designs, and

Miscellaneous

This section introduces the interpretation algorithms in recent years, with a pro-
posed taxonomy of three dimensions. For each algorithm, we give a brief introduc-
tion and follow the taxonomy for the categorization. A discussion is also provided
for future works at the end of this section.

3.1 Taxonomy

We categorize the existing interpretation algorithms according to three orthogonal
dimensions: representations of interpretations, targeting model’s types for inter-
pretations, and the relation between interpretation algorithms and models. We list
the options in each dimension for a better comparison.

For different applications and interpretation requirements, the representations
of interpretation are various:

– Feature (Importance). These algorithms aim at estimating the feature
importance/contribution with respect to the final objective. This includes
the analyses on the dimensions of input raw data and extracted features,
e.g., images, texts, audios etc.; and intermediate features inside models,
e.g., the activations of neural networks; or latent features in GANs.

– Model Response. Algorithms here generally propose to generate or find
new examples and see the model’s responses, so as to investigate the model
behaviors on certain patterns, prototypes, or discriminative features by
which the model makes decisions.

– Model Rationale Process. Though deep models are complex, they can be
substituted by interpretable models, to gain insights on the rational process
inside. Algorithms here interpret the deep model by indicating the path that
the model makes decisions.

– Dataset. Instead of interpreting deep models, algorithms here propose to
explain the data samples in the training set by showing how they affect the
optimization phase of deep models.

Interpretation algorithms cope with different types of models:

– Model-agnostic. Algorithms are included here that completely consider
the models as black boxes and do not investigate the inside of models.

– Differentiable model. This subset of algorithms contains only algorithms
that address the interpretations of differentiable models, especially neural
networks. Note that model-agnostic algorithms also cover this subset.
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Fig. 2: Illustration of relations between the interpretation algorithm and the model.
Four relations are illustrated: Closed-form, composition, dependence and proxy.

– Specific model. This family of algorithms can only be applied to certain
types of models, e.g., convolutional neural networks (CNNs), generative
adversarial networks (GANs), Graph Neural Networks (GNNs). This is a
narrower family than the previous one.

The third dimension for categorizing interpretation algorithms is the relation
between the interpretation algorithm and the model:

– Closed-form. These algorithms derive a closed-form formula from the tar-
get model and output interpretable terms.

– Composition: Algorithms here can be considered as components of (inter-
pretable) models, usually obtained during training.

– Dependence: These algorithms build new operations upon the target model
after training and output interpretable terms.

– Proxy. Unlike dependence, algorithms here obtain, via learning or deriva-
tion, a proxy model for explaining the behavior of models.

For a better illustration, four of relations between interpretation algorithms and
deep models are shown in Fig. 2.

We have introduced the proposed taxonomy of three dimensions: Representa-
tion, Model Type and the Relation. In the following subsection, we will present
most of the recent interpretation algorithms. We also give a categorization of all
these algorithms with respect to the proposed taxonomy in Table 1.

3.2 Interpretation Algorithms

LIME and Model-Agnostic Algorithms LIME [137] presents a locally faithful ex-
planation by fitting a set of perturbed samples near the target sample using a
potentially interpretable model, such as linear models and decision trees. We de-
fine a model g ∈ G, where G is a class of interpretable models. The domain of g is
{0, 1}d

′
and its complexity measure is Ω(g). Let f : Rd → R be the model being

explained and πx(z) be the proximity measure between a perturbed sample z and



10

x. Finally, let L(f, g, πx) be a measure of the unfaithfulness of g in approximating
f in the locality defined by πx. LIME produces explanations by the following:

ξ(x) = arg min
g∈G

L(f, g, πx) +Ω(g). (1)

The obtained explanation ξ(x) interprets the target sample x, with linear weights
when g is a linear model. LIME is model-agnostic, meaning that the obtained proxy
model is suitable for any model. Similarly, several model-agnostic algorithms, such
as Anchors [138], SHAP [110], RISE [127], MAPLE [130], target interpreting fea-
tures and provide feature importance or contributions to the final decision.

Global Interpretation Algorithms Feature importance analysis is a common tool for
explaining the model outputs with respect to inputs. The aforementioned ap-
proaches can be categorized into feature importance analysis, while their interpre-
tations are for individual examples, giving unique results for each different exam-
ple. Different from these “local” interpretations, “global” interpretations provide
feature importance in an overall vision of the model. Global interpretations for deep
models are usually based on local ones, and an aggregation of local interpretations
is performed to obtain the global feature importance, while the difference resides
in the aggregation approach, e.g. LIME-SP [137], NormLIME [6] and GALE [166].

Input Gradients Based Algorithms The input gradient attributes the important fea-
tures in the input domain. However, for deep non-linear models with numerous
layers stacked, the gradients would be vanished or saturated during the back-
propagation and thus contain noises.

SmoothGrad [155] proposed to remove the noises by averaging the gradients
of a number of noised inputs. We take visual tasks as an example: Given input
image x, neural networks compute a class activation function Sc for class c ∈
C. A sensitivity map can be constructed by calculating the gradient of Mc with
respect to input x: Mc(x) = ∂Sc(x)/∂x. However, the saliency maps are often noisy
because of sharp fluctuations of the derivative. To smooth the gradients, multiple
Gaussian noises are added to the input image, and the saliency maps are averaged.
SmoothGrad is defined as follows:

M̂c(x) =
1

n

n∑
1

Mc(x+N (0, σ2)). (2)

Integrated Gradient (IG) [160] aggregates the gradients along with the inputs
that lie on the straight line between the baseline and input. Let F be a neural
network, x be the input, and x′ be the baseline input, which can be a black image
for computer vision models and a vector of zeros for word embedding in text
models. The integrated gradients along the ith dimension is

IGi(x) = (xi − x′i)×
∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα. (3)

An axiom called completeness is satisfied, which states that the attributions add
up to the difference between the output of F at input x and baseline x′.

Other input gradients based algorithms include DeepLIFT [150], VarGrad [3],
GradSHAP [110], and FullGrad [156].
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Layer-wise Relevance Propagation Layer-wise relevance propagation (LRP) [16] is
also an input feature attribution algorithm. Instead of using proxy models, pertur-
bations or gradients, LRP recursively computes a Relevance score for each neuron
of layers, so as to understand the contribution of a single pixel of an image x to
the prediction function f(x) in an image classification task.

f(x) = · · · =
V (l+1)∑
d=1

R
(l+1)
d =

V (l)∑
d=1

R
(l)
d = · · · =

V (1)∑
d=1

R
(1)
d , (4)

where R
(l)
d is the Relevance score of the d-th neuron at the l-th layer, V (l) indicates

the dimension of l-th layer, and V (1) is the number of pixels in the input image.
Iterating Eq. (4) from the last layer, which is the classifier output f(x) to the in-
put layer x consisting of image pixels, then yields the contribution of pixels to the
prediction results. Based on the idea of back-propagating Relevance scores, LRP
can be extended to other neural networks, even with special and complex nonlin-
ear operations [27, 118]. To adapt LRP to specific tasks, many variants have been
proposed, such as Contrastive LRP [67] which produces pixel-wise explanations
of instance objects, Softmax-Gradient LRP [79] which gives explanations focus-
ing on discriminating possible objects in the images, and Relative Attributing
Propagation (RAP) [123] which focuses on both positive and negative features.
Furthermore, extended LRPs [34, 169] can be helpful to interpret Transformer
models [45, 48, 159].

CAM and Variants Given a CNN and an image classification task, classification
activation map (CAM) [197] can be derived from the operations at the last layers
of the CNN model and show the important regions that affect model decisions.
Specifically, for a given category c, we expect the unit corresponding to a pattern
of the category in the receptive field be activated in the feature map. The weights
in the classifier indicate the importance of each feature map in classifying category
c. Therefore, a weighted sum of visual patterns illustrates the important regions
of a category. Let fk(x, y) denote the activation of unit k in the last convolutional
layer at spatial location (x, y), Fk =

∑
x,y fk(x, y) be the global average pooling for

unit k, and wck be the weight corresponding to class c for unit k so that
∑
k w

c
kFk

is the input to softmax for class c. Then the activation map for class c is:

Mc(x, y) =
∑
k

wckfk(x, y). (5)

GradCAM [145] further looks at the gradients flowing into the convolutional
layer to give weight to activation maps. Let yc be the score for class c before the
softmax, Ak be feature map activations of the unit k in a convolutional layer,
the neuron importance weight αck is the global-average-pooled gradient of yc with
respect to Ak:

αck =
1

Z

∑
i

∑
j

∂yc

∂Aki,j
. (6)

The localization map is a weighted combination of activation maps:

LcGrad−CAM = ReLU(
∑
k

αckA
k). (7)
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ScoreCAM [174] also uses gradient information but assigns importance to each
activation map by the notion of Increase of Confidence. Given an image model Y =
f(X) that takes in image X and outputs logits Y. The k-th channel of convolutional
layer l is denoted Akl . With baseline image Xb and category c, the contribution Akl
towards Y is:

C(Akl ) = fc(X ◦Hk
l )− fc(Xb), (8)

where Hk
l = s(Up(Akl )). Up(·) is the operation that upsamples Akl into the input

size and s normalizes each element into [0, 1]. ScoreCAM is defined as:

LcScore−CAM = ReLU(
∑
k

αckA
k
l ), (9)

where αck = C(Akl ).

More CAM variants have been recently proposed, e.g., GradCAM++ [32],
CBAM [178], Respond-CAM [196], and Ablation-CAM [44].

Perturbation-Based Algorithms To investigate important features in the input, a
straightforward way is to measure the effect of perturbations applied to the in-
put [54, 55]. This idea is quite simple: The random perturbations on the features
would lead to different changes in the model’s predictions, where larger changes
would be observed for more important features. Note that perturbation can be
also used for evaluating the trustworthiness of interpretation algorithms when we
are not aware of interpretation ground truth [143, 172].

Counterfactual Examples Using counterfactual examples to explain the model be-
haviors is also an important direction for understanding the black boxes. Generally,
the counterfactual examples have changes in the input that are as small as possi-
ble, but would completely change the decision made by the model. The changes in
input would be a clue for explaining the model’s behavior. Most counterfactual-
example approaches, such as FIDO [31], DiCE [121], and several others [64, 97],
to generating counterfactual examples are based on the optimization with sparsity
constraints or towards the smallest changes in input. Using counterfactual exam-
ples to explain the model behaviors can also be included in causal inference [126],
which is considered as a new perspective for model interpretability [120, 179].
Detailed reviews on counterfactual explanations can be found in [12, 167, 173].

Adversarial Examples Adversarial examples are very related to counterfactual ones
with similar optimization methods, while adversarial examples are used to reveal
the vulnerability of the deep model and often attack the AI systems. Adversarial
examples in vision tasks, are usually the imperceptible changes in the images which
mislead the model’s decision. Note that analyses on the adversarial examples [58,
77] show the connections to the understanding of the deep learning process and
robustness of the trained deep model.
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TCAV Given a set of examples representing a concept of human interest (such
as an object, a pattern, a color etc.), TCAV [87] seeks a vector in the space of
activations at some layer to represent this concept. Precisely, by defining a con-
cept activation vector (or CAV) as the normal to a hyperplane, TCVA separates
examples according to the existence of this concept in the activations: Given one
example in a particular class, along the direction of a CAV, the directional deriva-
tive of this example contributes a score if it is positive, and the ratio of examples
that have positive directional derivatives over all examples in this class is defined
as the TCAV score. CAV finds examples of a semantic concept learned by the
intermediate layers of a deep model, contributing to the predictions while TCAV
quantitatively measures the contributions of this concept.

Prototype To explain the classification models, finding the typical exemplar for
each category is also effective and direct. Humans can understand better that
the model identifies the featured prototype to make decisions. Chen et al. [35]
proposed ProtoPNet, which explains the deep model by finding prototypical parts
of predicted objects and gathering evidence from the prototypes to make final
decisions. Another method named ABELE [69] generates exemplar and counter-
exemplar images, labeled with the class identical to, and different from, the class
of the image to explain, with a saliency map, highlighting the importance of the
areas of the image contributing to its classification.

As a technique for generating prototypes, activation maximization generally
computes the prototypes through an optimization process:

max
x

log p(yc|x)− λ‖x‖2, (10)

where p(yc|x) is the probability given by a deep model with x as input, and the
second term is the constraint for generating the prototype. However, the con-
straint can be replaced by many other choices [49, 113, 124, 153]. A tutorial for
this direction is cited [119]. More works related to prototypes or exemplars for
interpretations can be found in [23, 26, 103, 116].

Proxy Models for Rationale Process The reasoning process or the underlying ratio-
nale of deep models is complex due to the non-linearity and enormous computa-
tions. It is difficult for humans to know the exact steps of the rationale process
with semantics inside the black boxes. However, this rationale process can be prox-
ied by graph models [190] or decision trees [192], which provide a decision-making
path that is more interpretable to humans. Moreover, deep neural networks can be
combined with decision forest models [92] or distilled into a soft decision tree [57].
A model-agnostic approach for interpreting rationale process named BETA [96]
allows to learn (with optimality guarantees) a small number of compact decision
sets, each of which explains the behavior of the black box model in specific, well-
defined regions of feature space.

Forgetting Events Forgetting events are defined by [164] for analyzing the training
examples using training dynamics. Given a dataset D = (xi, yi)i, after t steps of
SGD, example xi undergoes a forgetting event if it is misclassified at step t + 1
after having been correctly classified at step t. Forgetting events signify samples’
interactions with decision boundaries, and the samples play a part equivalent to
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support vectors in the support vector machine paradigm. Unforgettable examples
are samples learnt at step t∗ <∞ and never misclassified for all k ≥ t∗. They are
easily recognizable samples that contain obvious class attributes. Whereas exam-
ples with the most forgetting events are ambiguous without clear characteristics
of a certain class, and some are noisy samples.

Dataset Cartography Dataset cartography [161] looks into two measures for each
sample during the training process - the model’s confidence in the true class and
the variability of confidence across epochs. Therefore, training examples can be
categorized as easy-to-learn, hard-to-learn, or ambiguous based on their position
in the two-dimensional map. Consider training dataset D = (x, y∗)i

N
i=1 where xi is

the i-th sample and y∗i is the true label. After training for E epochs, the confidence
is defined as the mean probability of true label across epochs:

µ̂i =
1

E

E∑
e=1

pθ(e)(y
∗
i |xi), (11)

where pθ(e) is the probability with parameters θ(e) at the end of the eth epoch.
The variability is the standard deviation of pθ(e)(y

∗
i |xi):

σ̂i =

√∑E
e=1(pθ(e)(y

∗
i |xi)− µ̂i)2

E
, (12)

AUM Another method for analysing the training dynamics is proposed to compute
the area under the margin (AUM) [128]:

AUM(x, y) =
1

T

T∑
t=1

(z
(t)
y (x)−max

i 6=y
z
(t)
i (x)), (13)

where z
(t)
i (x) is the logit, computed by the model, of i-th class at t-th epoch during

training with respect to the example x.

Influence Functions Influence functions [91] identify the training samples most re-
sponsible for a model prediction by upweighting a sample by some small value
and analyze its effect on the parameters and the loss of the target sample. Given
input space X and output space Y , we have training data z1, . . . , zn, where zi =
(xi, yi) ∈ X × Y . Let L(z, θ) be the loss where θ ∈ Θ are the parameters. The
optimal θ̂ is given by θ̂ = argminθ∈Θ

1
n

∑n
i=1 L(zi, θ). The influence of upweighting

training point z on the loss at the test point ztest is:

Iup,loss(z, ztest) = −∇θL(ztest, θ̂)
TH

θ̂
−1∇θL(z, θ̂), (14)

whereH
θ̂

= 1
n

∑n
i=1∇

2
θL(zi, θ̂). Based on influence functions, several techniques [38,

90] have been proposed with improvement.

Contributions of Long-Tailed Training Examples Instead of identifying mislabeled
samples, easy/difficult-to-learn samples from the training set, more theoretical
works on detecting the long-tail examples and outliers [28, 52, 53]. Most of them in-
vestigate the connections between the memorization capacity of deep models [187]
and the learning process, in order to know the contributions of training examples,
including long-tailed ones and outliers.
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Interpretations on GNNs Graph Neural Networks (GNNs) are a powerful tool for
learning tasks on structured graph data. Like other deep learning models, GNNs
show the black-box fashion and are required to explain their prediction results and
rationale processes. Without requiring modification of the underlying GNN ar-
chitecture, GNNExplainer [184] leverages the recursive neighborhood-aggregation
scheme to identify important graph pathways as well as highlight relevant node
feature information that is passed along edges of the pathways. Recently, more
researches focus on the interpretations of GNN models, such as GraphLIME [76],
CoGE [51], Counterfactual explanations on GNNs [18] and others [20, 111, 132].

Interpretations on GANs Generative adversarial networks (GANs) are a popular
generative model based on two adversarial networks, where one generates syn-
thesized examples, and another tries to classify generated examples from natural
examples. Interpretations on GANs mainly search for semantically meaningful
directions. Compared with labeled semantics, Bau et al. [25] proposed GAN dis-
section to find semantic neurons in generative models and modify the semantics
in the generated images. Instead of relying on labels, Voynov et al. [171] found
semantically meaningful directions in an unsupervised way from the intermediate
layers of generative models. Similarly, Shen et al. [149] proposed a closed-form
factorization method for identifying semantic neurons. Note that there are other
methods for explaining the generative models [131, 170, 180].

Information Flow In some deep learning models there are multiplicative scalar
weights that control information flow in some parts of a network. The most com-
mon examples are attention [17] and gating:

catt =
∑
i

αatti hi, cgate = αgateh (15)

The attention weights αatt (
∑
i α

att
i = 1) and the gate values αgate (αgate ∈ [0, 1])

are usually interpretable because their values represent the strength of the corre-
sponding information pathways. Attention and gating are frequently used in NLP
models, and there have been plenty of works aiming to understand the model
through these weights, such as Rollout [2], Seq2Seq-Vis [157] and others [61, 158],
or to investigate the reliability of using them as explanations [82, 148, 177]. As
well, these ideas have also been used in Vision Transformers [48] for explaining
image classification models [34, 185] or bi-modal transformer models [33].

Self-Generated Explanations Using text generation techniques, a model can explic-
itly generate human-readable explanations for its own decision. A joint output-
explanation model is trained to produce an prediction and simultaneously gener-
ate an explanation for the reason of that prediction [14, 93, 109]. This requires
some kind of supervision available to train the explanation part of the model.

Inductive Biases Towards Interpretation Modules Different from post-hoc explana-
tions after the optimization process, some works focus on designing inductive bi-
ases during training to encourage the model to be more interpretable. By simple
abstraction, the objective function for this purpose can be written as

Loss = L(f(x), y) + αR, (16)
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Table 1: Categorization of interpretation algorithms with respect to the proposed
taxonomy. Algorithms are listed following the order of presentation in Section 3.2.
Note that, each row may contain several algorithms which they may target at
explaining different types of models or have different relations to the models. Here
the publications in each category of algorithms can be found in the corresponding
paragraphs, and are not repeated for a compact table presentation.

Algorithms Representation Model Type Relation

LIME and Variants Feature Model-Agnostic Proxy

Global Interpretation Feature Model-Agnostic Proxy

Input-Gradient Based Feature Differentiable Dependence

LRP and Variants Feature Differentiable Dependence

CAM and Variants Feature
Specific (CNNs)
or Differentiable

Closed-Form
or Dependence

Perturbation-Based Feature Model-Agnostic Dependence

Counterfactual Examples Response
Model-Agnostic
or Differentiable

Dependence

Adversarial Examples Response
Model-Agnostic
or Differentiable

Dependence

TACV Feature Differentiable Proxy

Prototype-Based Response
Model-Agnostic
or Differentiable

Proxy

Proxy Models for
Rationale Process

Rationale Specific (CNNs) Proxy

Training Dynamics Based Dataset Model-Agnostic Dependence

Influence Functions
and Variants

Dataset Differentiable
Closed-Form

or Dependence

Contributions of
Training Examples

Dataset Differentiable Dependence

Interpretations on GNNs Feature Specific (GNNs) Dependence

Interpretations on GANs Feature Specific (GANs) Dependence

Information Flow Feature
Specific

(Transformers)
Dependence

Self-Generated Explanations Feature Specific (NLP) Composition

Self-Interpretable Models Rationale
Specific

(Self-Interpretable)
Composition

where f(x) represents the deep model output with x as input, y is the ground truth,
L is the loss function, specifically the cross entropy for standard supervised classi-
fication problem, and R is the objective function for biasing towards interpretable
models. Various approaches [46, 114, 140, 191] have been proposed to improve the
interpretability during training. More encouragingly, Sabour et al. [142] designed
a self-interpretable deep model where each neuron outputs semantic features.

3.3 Categorization and Discussion

We have introduced a large number of typical interpretation algorithms and cat-
egorized them according to the proposed taxonomy, so as to provide a clear il-
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Table 2: List of interpretation algorithm publications. Algorithms are listed fol-
lowing the order of presentation in Section 3.2.

Methods Publications (Non-Exhaustive)

LIME and Variants
LIME [137], Anchors [138], SHAP [110],
RISE [127], MAPLE [130]

Global Interpretation LIME-SP [137], NormLIME [6], GALE [166]

Input-Gradient Based
SmoothGrad [155], IG [160], DeepLIFT [150],
VarGrad [3], GradSHAP [110], FullGrad [156]

LRP and Variants
LRP [16, 27, 118], Contrastive LRP [67],
Softmax-Gradient LRP [79], RAP [123],
Chefer et al. [34]

CAM and Variants
CAM [197], GradCAM [145], ScoreCAM [174],
GradCAM++ [32], CBAM [178],
Respond-CAM [196], Ablation-CAM [44]

Perturbation-Based Fong et al. [54, 55], Samek et al. [143], Vu et al. [172],

Counterfactual Examples FIDO [31], DiCE [121], Goyal et al. [64], Laugel et al. [97]

Adversarial Examples Geirhos et al. [58], Ilyas et al. [77]

TACV TACV [87]

Prototype-Based ProtoPNet [35], ABELE [69]

Proxy Models for
Rationale Process

Zhang et al. [190, 192], BETA [96]

Training Dynamics Based
Forgetting Events [164], Datasets Cartography [161],

AUM [128]

Influence Functions
and Variants

Influence Functions [91], Group Influences [90],
HYDRA [38]

Contributions of
Training Examples

Carlini et al. [28], Feldman et al. [52, 53]

Interpretations on GNNs GNN Explainer [184], GraphLIME [76], CoGE [51]

Interpretations on GANs
GAN Dissection [25], Voynov et al. [170, 171],
Shen et al. [149]

Information Flow
Rollout [2], Seq2Seq-Vis [157],
Chefer et al. [33, 34], TAM [185]

Self-Generated Explanations Atanasova et al. [14], Kumar et al. [93], Liu et al. [109]

Self-Interpretable Models Capsule [73, 142], Neural Additive Models [5], CALM [88]

lustration in this research field. We hope the taxonomy can shed light on future
improvements/extensions on explaining (deep) learning models. We show the cate-
gorization of all these algorithms with respect to the proposed taxonomy in Table 1,
and gathering interpretation algorithms according to the categorization in Table 2
for a quick glimpse.

Table 1 shows that there are many methods of the Feature representation and
only a few Rational ones; many Proxy and Dependence relations but a few
Closed-Form. We argue that both of these observations were due to the challeng-
ing analyses of complex deep neural networks. The rationale and the closed-form
of deep models are still hard to understand or even approximate. From the cat-
egorization, we also would like to point out the blanks that may indicate some
unexplored directions for future perspectives. For example, no Model-Agnostic

algorithms have the Composition relation with models. While the input-output
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sensitivity analysis methods are currently developed, improving the input-output
interpretations can be a good perspective. Moreover, we should note that the
adversarial attacks do not only aim at trained models [30], but the interpreta-
tions [8, 56, 71]. We leave the further investigations for future work.

3.4 Interpretations on Specific Application Domains

We do not explicitly categorize the interpretation algorithms according to their ap-
plication domains because (1) the algorithm used in one specific domain may also
be applicable on a broader scope with little modifications, especially for model-
agnostic algorithms; and (2) for model-specific algorithms, the categorization on
the model type generally overlaps with the one on the application domain. For com-
pleteness, we discuss recent works of deep model interpretations in the following
domains: reinforcement learning, recommendation systems, and medical domains.
These applications are slightly different from image classification or sentiment
analyses and may require interpretations in a unique form, but most algorithms
introduced previously can be used directly.

3.4.1 Deep Reinforcement Learning (DRL) Related Domains

Reinforcement learning (RL) [85] is an area of machine learning concerned with
how intelligent agents ought to take actions in an environment in order to max-
imize the notion of cumulative reward. Deep learning methods have recently en-
abled RL to decision-making problems that were previously intractable, such as
playing games [117, 151, 168] and training robots [10, 99, 100]. DRL is also ap-
plicable and shows potentials of application in healthcare, finance and business
management [13, 105], where human security and property safety issues should be
considered, leading to the demands of explainable RL [134].

According to recent surveys [13, 105], DRL methods are generally based on
DNNs to approximate value functions or find policies. Most methods directly
learn the objectives from raw inputs, especially for visual tasks where the im-
ages are used as inputs for estimating the value functions. For those methods,
input features related interpretation algorithms, such as LIME and SmoothGrad,
have already been explored for explaining DRL methods [15, 65, 80, 135]. However,
as we discussed before, interpretation algorithms may expose different amount of
information of the deep models, and in some real-world situations, different inter-
pretation algorithms are required. For critical problems concerning human security
and property safety, showing the input-output relations of deep models is some-
times not persuadable for consumers. The rationale inside the deep model may be
required and has not been much investigated yet in this field.

3.4.2 Recommendation Systems

The recommendation system [139] is a subclass of the information retrieval domain
that seeks to predict the “rating” or “preference” a user would give to an item.
With the growing information available on the Internet, it becomes more and
more difficult to find the items of interest by users themselves. For many web
applications, the recommendation systems are an essential method for providing
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a better user experience [193]. Based on all kinds of information provided by users
explicitly or implicitly, the recommendation system filters and sorts a list of items
of interest in a personalization way.

There are three reasons for explainable recommendation systems. The first one
is to gain users’ trust in the recommendation system. Explanations help to improve
the transparency, persuasiveness and user satisfaction of the recommendation sys-
tem. The second is to facilitate engineers to debug the recommendation algorithm.
Explanations provide analyses how the deep model works, and it would be easy
to locate the bugs with explanations. The first two arguments are borrowed from
previous reviews [193, 195]. The third is to prevent the privacy and social issues.
The recommendations may be computed based on features that have privacy or
ethical issues. We would not like to have a recommendation system that may lead
to these issues. Explanations can thus be used to expose and prevent this problem.

Classic recommendation methods, including collaborate filtering [19, 72], are
interpretable, while the usages of black-box deep models [39, 40, 63] increases the
opacity of recommendation systems. Recent works on explainable recommendation
systems can be categorized following our proposed taxonomy, and most of them
focus on designing interpretable modules [36, 102, 147, 162]. We refer interested
readers to the survey on explainable recommendation systems [195]3.

3.4.3 Deep Learning Applications to Medical Applications

Deep learning methods have been recently applied on medical domains, especially
on medical imaging analyses [108], such as the classification of Alzheimer’s [83],
lung cancer detection [75], tuberculosis diagnosis [136], retinal disease detection [146],
etc. Though researchers show the potentials of using deep learning methods in
helping the diagnostics, the applications in the real-world situations of healthcare,
clinics, hospitals and rehabilitation are very critical, because a single failure would
cause irreparable damages. Explanations for deep learning based methods are more
urged in this field than in other fields, to gain the trust of physicians, regulators
as well as the patients [154].

Interpretation algorithms proposed in this specific domain have been sur-
veyed [154, 163]. Most of them are aligned with the general ones as reviewed
in this work, because the network architectures are the same and the tasks are
similar. The difference mainly resides in the data distribution and the domain
expert knowledge. Interpretation algorithms are technically applicable and their
trustworthiness can be evaluated in medical domains. In spite of the advances,
however, currently deep learning based methods have not achieved a significant
deployment in the clinics still due to the lack of interpretability [154]. This indi-
cates that the new interpretation tools are still required in this domain.

4 Trustworthiness Evaluations of Interpretation Algorithms and Model

Interpretability Evaluations

Previous section focuses on the interpretation algorithms and interpretation re-
sults. This section summarizes the current works in evaluating the trustworthiness

3 We also note that whether the usage of deep models improves the recommendation system
is an open discussion [42], but this is out of the scope of this survey.
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of interpretation algorithms, and the deep models’ interpretability. To empha-
size, the model interpretability is measured based on trustworthy interpretation
algorithms. Before introducing model interpretability evaluation, we present the
evaluation methods for assuring the trustworthiness of interpretation algorithms
in Section 4.1. Then, given a trustworthy interpretation algorithm, in Section 4.2
we present a few evaluation methods for the interpretability of deep models.

4.1 Trustworthiness Evaluations of Interpretation Algorithm

Perturbation-based Evaluations The perturbation-based evaluation of interpretation
algorithms follows the intuition that flipping the most salient pixels first should
lead to high performance decay. Perturbation-based examples can therefore be used
for the trustworthiness evaluations of interpretation algorithms [41, 70, 143, 172].
The main metric MoRF, Most Relevant First, (or LeRF, Least Relevant First,
respectively), calculates the area under the curve (AUC), where the curve is of the
probabilities predicted by the model after removing most relevant features (or least
relevant features respectively). MoRF would drop very quickly at beginning and
LeRF would retain at a high value until the end, if the explanation is trustworthy.
They are usually used together and both have the same objective of evaluating
the trustworthiness of the explanation.

In a different view [55, 74] that “without re-training, it is unclear whether the

degradation in model performance comes from the distribution shift or because the fea-

tures that were removed are truly informative”. So Hooker et al. [74] proposed to
remove the most important features, extracted by the interpretation algorithms,
and then retrain the model, to measure the degradation of model performance
and evaluate the trustworthiness of interpretation algorithms. We believe that the
prohibitive computation cost added by the retraining step is meaningful for ex-
plaining the learning process (how the features/pixels were learned by a specific
architecture of models), but contributes less to explain one trained model in a
post-hoc way.

Evaluations by Randomizing Parameters There is no need for retraining in some
cases, and we can identify untrustworthy interpretation algorithms by simply ran-
domizing parameters. Adebayo et al. [3] found that even with random weights at
the top layers of the network, a number of saliency map based approaches were still
able to locate the important regions of the input images, and proved that these
methods do not depend on the models. Adebayo et al. [4] summarized the uses of
interpretation algorithms for model debugging, i.e., to detect spurious correlation
artifacts (data contamination), diagnose mislabeled training examples (data con-
tamination), differentiate between a (partially) re-initialized model and a trained
one (model contamination), and detect out-of-distribution inputs (test-time con-
tamination).

BAM Yang et al. [181] proposed a framework, named Benchmarking Attribution
Methods (BAM), for benchmarking interpretation algorithms through a manually
created dataset where objects are randomly pasted into images, and a set of models
trained on that dataset. BAM carefully generates a semi-natural dataset, where
objects are copied into images of scenes, so each image has an object label and
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a scene label. Then with models trained on this dataset and test examples, a
target interpretation algorithm is evaluated by this framework, giving relative
importance rankings for input features, which can be validated by ground truth
from the generated dataset. The intuition behind BAM is that relative importance
has a ground truth ranking, which can be controlled by the crafted dataset and
used for comparing with the one given by interpretation methods, and then BAM
can quantitatively evaluate the trustworthiness of the algorithm.

Trojaning Model trojaning attacks [37, 68] indicate visual dataset contamination,
where a subset of images are modified by giving a specific trigger (e.g., a yellow
square is attached to the right bottom of the image) to the desired target. This
attack poisons the trained model that the trigger is the only feature for classify-
ing the desired target. Benefit from trojaning attacks, Lin et al. [106] proposed
to verify the interpretation algorithm on the trojaned models. The qualified algo-
rithm should highlight pixels around the trigger in contaminated images instead
of object parts. Using the triggers as ground truth, Lin et al. [106] evaluated the
trustworthiness of interpretation algorithms.

Infidelity and Sensitivity The desired properties relating to trustworthiness have
been discussed in [9, 183]. We reclaim the two definitions of (in)fidelity and sensi-
tivity, which objectively and quantitatively measure the trustworthiness of inter-
pretation algorithms. Given a black-box function f , an interpretation algorithm Φ,
a random variable I ∈ Rd with probability measure µI , which represents meaning-
ful perturbations of interest, and a given input neighborhood radius r, the infidelity
and sensitivity of Φ of the target interpretation algorithm as:

INFD(Φ,f ,x) = EI∼µI
(ITΦ(f ,x)− (f(x)− f(x− I))2), (17)

SENSMAX = max
‖y−x‖≤r

‖Φ(f ,y)− Φ(f ,x)‖, (18)

where I represents significant perturbations around x, and can be specified in
various ways.

ExpO Fidelity and Stability Plumb et al. [129] proposed two metrics for measuring
the desired properties of explanations and using them as regularization terms,
to improve the explainability of trained models. These two metrics can also be
used as trustworthiness metrics for LIME and its variants, as they are able to
evaluate the related fidelity and stability of proxy models. We use ExpO-Fidelity
and ExpO-Stability to refer the two metrics in this paragraph, where ExpO is
short for Explanation-based Optimization, in order to avoid the confusion to the
Infidelity and Sensitivity [183]. The formulas of ExpO-Fidelity and ExpO-Stability
are

F (f , g, Nx) = Ex′∼Nx
[(g(x′)− f(x′))2], (19)

F (f , e, Nx) = Ex′∼Nx
[||e(x,f)− e(x′,f)||22]‖, (20)

where g is the proxy model obtained by LIME or its variants, and e(x,f) represents
the post-hoc local explanation result given a local data point x to explain and the
model f .
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(a) Image (b)
Human Label

(c) LIME (d) GradCAM (e) SmoothGrad

(f) Image (g)
Human Label

(h) LIME (i) GradCAM (j) SmoothGrad

Fig. 3: Visualizations of semantic segmentation ground truth and interpretations
from three popular algorithms, i.e. LIME, GradCAM and SmoothGrad, where the
interpretation results are shown in different levels of granularity, i.e. superpixel,
low-resolution, and pixel, respectively. We use the three algorithms to interpret
images from CUB-200-2011 [175], where the semantic segmentations are available.

Sensitivity to Hyperparameters Besides evaluations on the trustworthiness to the
model, Bansal et al. [22] proposed to measure the sensitivity to hyperparameters.
“It is important to carefully evaluate the pros and cons of interpretability methods with

no hyperparameters and those that have.” In fact, the insensitivity to hyperparame-
ters is also an important metric to trustworthiness.

4.2 Model Interpretability Evaluation

In some situations, different deep models exhibit different abilities to expose un-
derstandable terms to humans. Even the same network architecture, training on
different datasets may have different interpretability scores [24]. Given the same
trustworthy interpretation algorithm and any two models, model interpretability
evaluation methods are used to measure and compare the interpretability between
models. In this subsection, we introduce four model interpretability evaluation
methods, i.e., Network Dissection [24], Pointing Game [189], Consensus [104] and
the one through OOD Samples [59, 60].

The basic idea for evaluating the model interpretability for Network Dissec-
tion [24], Pointing Game [189] and Consensus [104] is to measure the overlap be-
tween semantic items (e.g., segmentation ground truth by humans, or cross-model
ensemble of explanations) and interpretation results, as shown in Fig. 3.

Network Dissection Network Dissection [24], based on CAM [197], relies on a
densely-labeled dataset where each image is labeled across colors, materials, tex-
tures, scenes, objects and object parts. Given a CNN model, Network Dissection
recovers the intermediate-layer feature maps used by the model for the classifica-
tion, and then measures the mean intersection over union (mIoU) of each neuron
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between the activated locations with the labeled visual concepts. A neuron is se-
mantic if its mIoU is larger than a threshold. Then the number of semantic neurons
and the ratio are considered as the score for model interpretability.

Pointing Game The Pointing Game [189] measures the model interpretability via
the localization accuracy. This accuracy is equally the true positive rate between
the computed explanation and the annotated object of interest. It is similar to
Network Dissection in the way that the pixel-wise or box-wise labels for visual
concepts are required and the same intersection between explanations and anno-
tations is measured.

Consensus Consensus approach [104] incorporates an ensemble of deep models as
a committee. Consensus first computes interpretations using a trustworthy inter-
pretation algorithm (e.g., LIME [137], SmoothGrad [155]) for every model in the
committee, then obtains the consensus of interpretation from the entire commit-
tee through voting. Further, Consensus evaluates the interpretability of a model
through matching its interpretation result (of LIME or SmoothGrad) to the con-
sensus, and ranks the matching scores together with other deep models in the
committee, so as to pursue the absolute and relative interpretability evaluation
results. Consensus uses LIME and SmoothGrad to validate its effectiveness, while
Consensus is also compatible with other algorithms that interpret other targets,
such as the rationale process, as long as the voting approach is suitable for the
interpretation algorithm.

Through OOD Samples BAM [181] and Trojaning attacks [37, 68] create datasets
that are different from natural distributions, and train the models on such datasets.
Models trained on such datasets are used to verify the trustworthiness of inter-
pretation algorithms because they should suffer from the attacks on the datasets.
In another way, one can use the such ideas of out-of-distribution (OOD) samples
to directly evaluate the deep models where the OOD samples were not seen dur-
ing training. [59, 60] generated different OOD datasets and tested with classic
deep models and human observers to record the errors that they made on these
datasets. With sophisticated designs of datasets and experiments, they found that
the consistency between humans and deep models is closing. These evaluations
show the interpretability of deep models in a general way, to present that the
visual recognition of models is partially consistent with humans’. This could be
easily extended to the comparison within models.

4.3 Human-Centered/User-Study Evaluations

User studies involving humans are a commonly used method for evaluating the
trustworthiness of interpretation algorithms and model interpretability. We com-
bine these two directions and introduce them here, as the designed user-study
experiments may be capable of performing the two evaluations simultaneously.

An approach to evaluate the algorithm of counterfactual examples [11] was
proposed, where a user-study experiment was used to validate their approaches.
This user-study experiment aims at verifying whether humans can predict the
deep model’s decision. Specifically, several (clean and counterfactual) samples with



24

Table 3: List of evaluation methods. There are two categories of evaluations as
introduced in this work: Trustworthiness Evaluations of Interpretation Algorithm
(T.E.I.A) and Model Interpretability Evaluation (M.I.E), with respect to Sec-
tion 4.1 and Section 4.2. Additional notes are added as a description for the spe-
ciality of the evaluation method.

Method Name Category Additional Notes

Perturbation T.E.I.A AUC scores of MoRF, LeRF

Randoming Parameters T.E.I.A Filtering Irrelavant Algorithms

BAM T.E.I.A Based on a semi-natural dataset

Trojaning T.E.I.A Based on a semi-natural dataset

Infidelity and Sensitivity T.E.I.A -

Expo Fidelity and Stability T.E.I.A Available only for LIME and variants

Sensitivity to Hyperparameters T.E.I.A -

Network Dissection M.I.E Based on a densely labeled dataset

Pointing Game M.I.E Requires pixel-wise or box-wise labels

Consensus M.I.E Based on cross-model explanations

Through OOD Samples M.I.E Based on OOD datasets

models’ predictions are presented to users, and then a new sample is shown to ask
the user if the model can make the correct decisions or not. Another approach based
on decision trees and sets, designs descriptive and multiple-choice questions to test
the user’s understanding of the decision boundaries of the classes in the data, in
order to evaluate the interpretability of their proposed Bayesian Decision Lists.
[56] designed the user-study experiments following the idea that interpretability is
the user’s ability to predict the model’s changes in response to changes in input.
More user studies can be found in [66, 78, 94].

4.4 Concluding Remarks

We summarize the evaluation methods in Table 3. We have to note that assessing
the trustworthiness of interpretation algorithms is challenging. While a small num-
ber of algorithms benefit from intrinsic properties of deep models, e.g., closed-form
interpretations, the trustworthiness of most algorithms remains to be evaluated.
Despite filtering approaches (such as randomizing the weights [3]) to picking out ir-
relevant interpretation algorithms, reasonable and practical evaluation approaches
for directly assessing the trustworthiness are also reviewed. Given a trustworthy
algorithm, the interpretability can be evaluated between models, to compare the
degree of being understandable. If the algorithm is not trustworthy, it does not
make sense to compare the interpretability of models using unreliable interpre-
tation results. A few model interpretability evaluation methods are introduced,
while more model interpretability evaluations should be explored in the future.
We also note that subjective human-centered user studies are one important eval-
uation tool that can be used for evaluating both interpretation algorithms and
model interpretability, thanks to the flexibility of designing arbitrary experiments
for various objectives.
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5 Impact beyond Interpretations

Deep models have many unknown phenomenon and properties, e.g., adversarial
attacks, memorization capacity, generalization ability etc. (Lack of) interpretation
and (low) interpretability are one of them. Interestingly, besides the original mo-
tivations for explaining black-box deep models, interpretations related terms have
been connected to existing findings about deep models. In this section, we present
two fields that are widely known to be related to interpretations.

5.1 Interpretability, Adversarial Attacks and Robustness

Recent studies on adversarial examples have found positive connections between
model interpretability and adversarial robustness. Two teams [140, 165] first ob-
served that compared to standard models, adversarially trained models show more
interpretable input gradients. Etmann et al. [50] theoretically proved that the in-
crease in adversarial robustness improves the alignment between input and its
respective input gradient, using the case of a linear binary classifier. Zhang et
al. [194] further analyzed how adversarially trained models achieve robustness
from an interpretation perspective, showing that adversarially robust models rely
on fewer texture features and are more shape-biased, which is regarded as coincide
more with the human interpretation. Essentially, the connection between adver-
sarial examples and gradient-based interpretations may come from their common
dependence on the input gradient.

For future works, these observations could (1) motivate new understandings
about how deep models work and (2) explore the connections between interpreta-
tion related terms and other properties of deep models.

5.2 Learning from Interpretations

As containing rich information about the location of discriminative features, in-
terpretation results can also be utilized to guide training strategies such as data
augmentations and regularization approaches, especially for vision tasks. For ex-
ample, Kim et al. [89] proposed to improve Mixup [188] by leveraging the saliency
map [153]. Specifically, they aimed to seek an optimal transport that maximizes
the exposed saliency. Zagoruyko et al. [186] imposed the regularizer to encourage
the alignment of saliency maps between the teacher and student networks for effec-
tive knowledge distillation. Wickramanayake et al. [176] also used interpretations
to generate efficient augmented data samples to train the model, for improving
the interpretability and the model performance. Interpretations sometimes can be
used as weak labels in specific tasks. For example, Lai et al. [95] introduced a
saliency-guided learning approach for weakly supervised object detection. Many
weakly object localization and weakly semantic segmentation methods [7, 89, 182]
start from an interpretation, and obtain promising results.

From these works, we believe that the interpretability and model performance
are not two contradictory measures and that they can be improved simultaneously.
Future works could further focus on this direction.
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6 Open-Source Libraries for Deep Learning Interpretation

To simplify future researches and practical usages, we introduce several open-
source libraries that implement popular interpretation algorithms based on main-
stream deep learning frameworks, such as TF-Explainer4 based on Tensorflow [1],
Captum5 based on PyTorch [125] and InterpretDL6 based on PaddlePaddle [112].
Note that TF-explainer and Captum mainly include algorithms that target at fea-
tures with gradient-based techniques. Some other popular libraries focus on ma-
chine learning and have not involved deep models, such as interpretml7, AIX3608

etc., and the library LIT9 that is for NLP models.

7 Discussions and Conclusions

In this paper, we review the recent research on interpretation algorithms, model
interpretability, and the connections to other deep learning factors.

First of all, to address the research efforts in interpretations, we clarify the
main concepts of interpretation algorithms and model interpretability that were
usually confused, and connect them by introducing the notion of trustworthiness
of interpretation algorithms.

Second, we propose a new taxonomy and elaborate the design of several recent
interpretation algorithms, from different perspectives according to the proposed
taxonomy. Our work reviews the recent advances in interpretation algorithms, and
provides a clear categorization, to help future researches to better compare new
algorithms with the most related works, or progress in unexplored directions.

Third, we survey the performance metrics for evaluating the trustworthiness
of interpretation algorithms, to guarantee the appropriate usages of the interpre-
tation results. These metrics can be used to quantitatively compare between the
interpretation algorithms. The proposition of new algorithms can be supported
by comparing these metrics with related works, instead of by providing tenuous
descriptions and qualitative visualizations.

Further, we summarize the current work in evaluating models’ interpretabil-
ity given trustworthy interpretation algorithms. Based on these evaluations, more
relations between interpretability and other metrics could be found for deep mod-
els, possibly leading to further understandings about the deep learning. However,
there are not many evaluation methods for measuring the interpretability, though
the existing ones are largely aligned for popular network architectures. Designing
new methods of evaluating models’ interpretability could be one of the important
research directions.

Finally, we review and discuss the connections between deep models’ inter-
pretations and other factors, such as adversarial robustness and learning from
interpretations. New understandings how deep models could be observed and an-
alyzed. Note that many interpretation algorithms and evaluation approaches are

4 https://github.com/sicara/tf-explain
5 https://github.com/pytorch/captum
6 https://github.com/PaddlePaddle/InterpretDL
7 https://github.com/interpretml/interpret
8 https://github.com/Trusted-AI/AIX360
9 https://github.com/PAIR-code/lit

https://github.com/sicara/tf-explain
https://github.com/pytorch/captum
https://github.com/PaddlePaddle/InterpretDL
https://github.com/interpretml/interpret
https://github.com/Trusted-AI/AIX360
https://github.com/PAIR-code/lit
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open-sourced and there are some useful libraries to simplify the practical usages
and future researches.
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holmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1787–1796. PMLR, 2018.

66. Nina Grgic-Hlaca, Elissa M. Redmiles, Krishna P. Gummadi, and Adrian Weller. Human
perceptions of fairness in algorithmic decision making: A case study of criminal risk pre-
diction. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G.
Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference on World Wide
Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 903–912. ACM, 2018.

67. Jindong Gu, Yinchong Yang, and Volker Tresp. Understanding individual decisions of
cnns via contrastive backpropagation. In C. V. Jawahar, Hongdong Li, Greg Mori, and
Konrad Schindler, editors, Computer Vision - ACCV 2018 - 14th Asian Conference on
Computer Vision, Perth, Australia, December 2-6, 2018, Revised Selected Papers, Part
III, volume 11363 of Lecture Notes in Computer Science, pages 119–134. Springer, 2018.

68. Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identifying vulnera-
bilities in the machine learning model supply chain. CoRR, abs/1708.06733, 2017.

69. Riccardo Guidotti, Anna Monreale, Stan Matwin, and Dino Pedreschi. Black box ex-
planation by learning image exemplars in the latent feature space. In Ulf Brefeld, Élisa
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