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Abstract

The identification of drug-target interactions
(DTIs) is a key task in drug discovery, where drugs
are chemical compounds and targets are proteins.
Traditional DTI prediction methods are either time
consuming (simulation-based methods) or heavily
dependent on domain expertise (similarity-based
and feature-based methods). In this work, we
propose an end-to-end neural network model that
predicts DTIs directly from low level representa-
tions. In addition to making predictions, our model
provides biological interpretation using two-way
attention mechanism. Instead of using simplified
settings where a dataset is evaluated as a whole, we
designed an evaluation dataset from BindingDB
following more realistic settings where predictions
of unobserved examples (proteins and drugs) have
to be made. We experimentally compared our
model with matrix factorization, similarity-based
methods, and a previous deep learning approach.
Overall, the results show that our model outper-
forms other approaches without requiring domain
knowledge and feature engineering. In a case
study, we illustrated the ability of our approach
to provide biological insights to interpret the
predictions.

1 Introduction

The identification of drug-target interactions (DTI) is a key
task in drug discovery, where drugs are chemical compounds
and targets are proteins. The high profits on patented new
drugs have motivated pharmaceutical labs to examine most
potential interactions. Since experimental assays take time
and are expensive, efficient computational methods for pre-
dicting and understanding potential DTIs are useful and ur-
gently demanded.

Two major computational approaches have been investi-
gated for DTI prediction: molecular docking and machine
learning. Molecular docking using three-dimensional (3D)
simulation is widely used for its reasonable accuracy and vi-
sual interpretability. However, it suffers from two significant
shortcomings: first, getting 3D structures of proteins itself is

a challenging task; second, large scale simulation can be time
consuming.

Meanwhile, machine learning approaches are very promis-
ing as they enable large scale testing of candidates in a rel-
atively short time. DTI prediction can be viewed as a bi-
nary classification problem, where the input is a pair of
a drug candidate and a protein and the output label indi-
cates whether there is an interaction between them. To the
best of our knowledge, three main approaches have been
investigated to represent DTI pairs: (1) chemical and bio-
logical descriptors such as molecule fingerprints or amino
acid sequence descriptors [Faulon et al., 2007]; (2) an ag-
gregation of expert designed similarity measures to derive
candidate pairs from known DTI pairs [Ding et al., 2013;
Yamanishi et al., 2010]; and (3) representations learned from
descriptors from (1), for example, using techniques such as
Restricted Boltzmann machine or Autoencoder [Wen et al.,
2017; Chan et al., 2016]. Although relatively effective, most
methods are usually black-boxes and less biologically inter-
pretable.

In this paper, we propose an interpretable end-to-end neu-
ral network model that predicts DTIs directly from low level
representations. Specifically, the inputs of the model are raw
amino acids sequences and chemical structures, and it pro-
duces structure-level interpretations in addition to the DTI
predictions. As shown in Figure 1, we use long short term
memory recurrent neural networks and graph-based convolu-
tional neural network to project proteins and drug structures
into dense vector spaces. A two-way attention mechanism
(shown as αpi and αdi) is used to calculate how the pair in-
teracts and thus enables interpretability. Finally, the attention-
based vector representations are used by a classifier, a simple
sigmoid function in this paper, to make a prediction. We have
also shown that our model is extensible to incorporate high-
level information such as Gene Ontology annotations.

In the experiments, we pay special attention to the method
of constructing testing examples. Our testing dataset is
constructed in a way that simulates the practical situations,
where, given a pair of drug and protein at testing time, the
drug, the protein, or both of them may have not been ob-
served at training time. Such experimental setting demands
great generalization ability. Compared with previous meth-
ods, our model yields superior results, while using less fea-
ture engineering and domain expertise, specifically in the dif-
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ficult cases that were not covered well by human-designed
features and where neither the drug nor the protein from a
testing pair is observed at training. At the end, we present a
case study to demonstrate the visualizable interpretation and
its usefulness during the drug discovery process.

2 Related Work

Predicting drug-target binding has been an interesting topic
to the pharmaceutical industry and researchers. Molecular
docking [Luo et al., 2016; Trott and Olson, 2010] is widely
used to predict the binding mode and score given the 3D
structure inputs of a drug molecule and a target. In order to
make the binding prediction, the docking program looks for
the optimal binding position of the drug molecule inside the
binding pocket of the target and estimates the binding score
according to predefined force fields. Though molecular dock-
ing is a popular tool for high throughput screening, it takes
time for large scale predictions and it is limited by the avail-
ability of the 3D structures of the protein targets.

Machine learning methods have been implemented to pre-
dict DTIs. [Ding et al., 2013] reviewed similarity-based ma-
chine learning methods based on sequence, protein-protein
interaction (PPI) network and Gene Ontology (GO) seman-
tic information. Their machine learning approaches include
nearest neighbor, bipartite local models, pairwise kernel
method, kernelized Bayesian matrix factorization, network-
based inference and so on. [Faulon et al., 2007] developed
support vector machine (SVM) models to predict DTIs and
catalytic effect based on chemical structures and enzymatic
reactions. [Yamanishi et al., 2010] integrated chemical, ge-
nomic and pharmacological data together to predict drug-
target binding via similarity-based methods.

With the increasing popularity of deep learning, re-
searchers are adopting deep neural models to predict DTIs.
[Wen et al., 2017] developed a Deep Belief Networks (DBN)
model consisting of stacked Restricted Boltzmann machines
(RBM). For a DTI pair, the inputs are Extended Connectivity
Fingerprints of the drug and sequence composition descrip-
tors of the protein. First the DBN is pre-trained in an unsu-
pervised manner using only the training feature vectors, and
then it is fine tuned with both feature vectors and labels from
the training dataset. Instead of using RBM and DBN, [Chan
et al., 2016; Wang et al., 2018] used stacked Autoencoder for
representation learning and SVM or rotation forest for classi-
fication.

Although aforementioned (deep) machine learning meth-
ods have proved to be able to make relatively effective pre-
dictions, the lack of interpretability limits their practicality
from biological perspectives. Recently, differentiable repre-
sentation learning methods that can be directly applied on
low-level representations enable the potential of interpretable
DTI predictions. For example, [Altae-Tran et al., 2017;
Duvenaud et al., 2015] explored using graph convolutional
network to model chemical structures, and while it is intu-
itive to apply recurrent neural network (RNN) on protein se-
quences [Pollastri et al., 2002], [Schwaller et al., 2017] also
used RNN to model SMILES strings, which are sequential
encoding of chemical structures.

To the best of our knowledge, this paper presents the first
end-to-end deep machine learning work that produces inter-
pretable DTI predictions directly from low level represen-
tations. By learning directly from molecular structures and
protein sequences, our approach saves the effort of designing
biochemical descriptors or similarity measures, both of which
can be expensive processes of feature engineering.

3 Model

3.1 Problem Formulation

On the one hand, a protein sequence consists of a list of amino
acids p = (a1, . . . , an), where ai is one of the 23 types of
amino acids (20 standard, 2 additional, and 1 for unknown).
Additionally, each protein has a set of gene ontology (GO)
annotations [Ashburner et al., 2000] GOp = {g1, . . . , gm}
that provides high level information (e.g., protein function).

On the other hand, a drug is represented by a
SMILES [Weininger, 1988] sequence, which essentially en-
codes a chemical structure graph d = {V,E}, where V is
a set of atoms and E is a set of chemical bonds that bind
two atoms as undirected edges. We use RDKit1 to transform
SMILES string to chemical structure graph.

The goal of DTI prediction is to learn a model that takes
a pair (p, d) as input and outputs y ∈ {0, 1}, where y = 1
indicates an interaction between p and d.

3.2 Recurrent Neural Network

In the situation where proteins are represented by amino acid
sequences and drugs are represented by SMILES strings, we
use recurrent neural network (RNN) to project sequential in-
put to dense vector representations. Specifically, because,
in reality, protein sequences fold in 3 dimensional space
and because SMILES strings are contextual by design, both
of which can be viewed as long-distance dependencies, we
use long short term memory (LSTM) RNNs [Hochreiter and
Schmidhuber, 1997] for their ability to memorize long term
information. At each time step t, the LSTM unit takes the
t-th input token embedding xt ∈ R

M , the hidden states from
the previous time step h(t−1) ∈ R

H , and the cell states from

previous step c(t−1) ∈ R
H . Then it produces new hidden and

cell state ht, ct:

ht, ct = LSTM(xt, ht−1, ct−1)

Here, M and H are two hyper parameters for the dimen-
sion of the embedding space and the dimension of the hidden
space respectively. We initialize h0 = c0 = 0H as a vector
of zeros. Suppose the input tokens belong to a vocabulary
V = {t1, · · · , t|V |}, the input embeddings are obtained as

xi = WT
v Ii where Wv ∈ R

|V |×M is a learnable parameter

and Ii ∈ R
|V |×1 is a vector whose i-th value is one and all

others zero.

3.3 Convolutional Neural Network on Graph

When drugs are represented by chemical structural graphs,
we use convolutional neural network (CNN) to project chem-
ical structural graphs to dense vector representations. It is

1http://www.rdkit.org/
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Figure 1: Overall data flow and neural network architecture.

more intuitive than using RNN to model them because it elim-
inates the step of linearizing the graph structures. [Duvenaud
et al., 2015] recently demonstrated that, as a differentiable
generalization of circular fingerprint, a CNN based neural fin-
gerprint provides better descriptive drug modeling in a data-
driven manner.

Algorithm 1: Pseudocode of graph CNN.

Input: Molecule graph G = (V,E), radius R, hidden
weights H1

1 . . . H
5
R

Output: A vector ra for each atom a
Initialize: for each node a ∈ V do

ra ← g(a) // Look up initial feature vectors

end
1 for L = 1 to R do
2 for each node a ∈ V do
3 N = neighbors(a)
4 v← ra +

∑

u∈N
ru

5 ra ← σ(vH
|N|
L )

6 end

7 end

Algorithm 1 shows the pseudo-code of our variant of the
neural fingerprint algorithm that produces a dense vector rep-
resentation for each atom in the molecule. We omit the steps
required to calculate a single vector fingerprint, because in-
stead we will exploit atom vectors with attention mechanism
(Section 3.4) to enable interpretability on the drug side. At
the initialization phase, as described in Section 4.2 of [Du-
venaud et al., 2015], the atom features are initialized as a
62 dimension sparse vector that indicates both chemical and
topological properties of the atom. Then the algorithm iter-
atively applies convolutional operation on the graph R times
and updates the atom vectors. The radius parameter R con-
trols how many hops information can be propagated to. In
this paper, R = 3.

While CNNs are usually applied on tensors, e.g. images,
this algorithm is convolutional in the sense that it applies fil-
ters to each atom and its neighborhood to capture local sig-

nals, and then the aggregated local signals are pooled to get
the final vector representation. Different from images where
each pixel always has 8 neighbor pixels, an atom can have
from one to five neighbor atoms. So instead of using one
convolutional filter, the algorithm uses 5 types of linear filters
H1 . . . H5 for atoms with corresponding number of neigh-
bors.

3.4 Attentive Pooling Network

Neural networks with attention mechanism have been effec-
tively applied to vision tasks (e.g., image captioning) and
natural language processing tasks (e.g., machine translation),
where the output components selectively focus on subsets of
the input based on attention weights. Extending the one-way
attention for pairwise inference, attentive pooling network
[dos Santos et al., 2016] provides a two-way attention mech-
anism that enables the input pairs to be aware of each other.

Suppose P ∈ R
Hp×Lp is the context matrix of a given

protein, where Hp, Lp are the dimension of the protein hidden
space and the number of inputs, it can be formed in 3 ways as
proteins have two input sources: (1) columns of the matrix P
are the LSTM hidden vectors with the amino acids sequence
as input so that Lp equals the number of amino acids in the
sequence, (2) columns of P are GO annotations embeddings
so that Lp equals the number of GO terms for the protein,
and (3) the concatenation of both (1) and (2). Note that since
there is no order between GO terms, for situation (2) and (3),
the embeddings of GO terms are fed to the attention module
directly without going through RNN.

Similarly, suppose D ∈ R
Hd×Ld is the context matrix of

a given drug, Hd, Ld being the dimension of the drug hidden
space and the number of inputs. The columns of D can be
(1) the LSTM hidden vectors with SMILES string as input
so that Ld equals the number of tokens in the SMILES string
or (2) the atom vectors obtained from graph CNN so that Ld

equals the number of atoms in the molecule.
A soft alignment matrix A ∈ R

Lp×Ld is calculated as

A = tanh(PTUD)

where U ∈ R
Hp×Hd is a trainable parameter. For an intu-

itive example, when proteins are represented by amino acid
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sequences and drug chemical structure graphs, A presents the
interaction between each amino acid and each atom.

Next, the attention weights αp ∈ R
Lp , αd ∈ R

Ld , which
can be interpreted as importance scores on the input units,
are calculated by applying row-wise and column-wise max-
pooling operations to A.

[αp]i = max
1≤j≤Ld

Ai,j and [αd]j = max
1≤i≤Lp

Ai,j (1)

Finally, αp and αd are normalized by Softmax function,
and the results of which are used as weights to weighted sums
of the context vectors:

rp = P · softmax(αp) and rd = D · softmax(αd) (2)

where the softmax function is defined as

[softmax(v)]i =
evi

∑

j e
vj

(3)

3.5 Inference With Siamese Network

A Siamese network [Bromley et al., 1994] has two input
multi-layer networks and one output whose value corre-
sponds to the similarity, possibility of interaction in the case
of this work, between the input pair. As shown in Figure 1,
two networks with 3 linear layers and 2 rectifier layers are
used. To reduce the hyper-parameter space, we require all the
linear layers to have the same input and output dimension Hs

except the first one, whose input dimension corresponds to
previous outputs.

The attention based vector representations rp and rd are
fed separately into the two networks. Then we take the inner
product of the outputs and use a sigmoid function to predict
the probability that an interaction exists between a pair of pro-
tein and drug

vp = fp(rp) and vd = fd(rd) (4)

P (y = 1|p, d) = σ(p, d) =
1

1 + e−vp·vd
(5)

where fp, fd are the transformations of the siamese networks
for protein and drugs respectively.

In a classification scenario, a hyper-parameter threshold δ
is selected as classification boundary

ŷ =

{

1 if P (y = 1|p, d) > δ

0 otherwise
(6)

3.6 Training

Given a dataset D = {(pi, di, yi)}, i = 1 · · ·n, the model
can be trained by maximizing the likelihood of observing the
training data, which is equivalent to minimizing the cross en-
tropy loss function

argmin
Θ

−
n
∑

i=1

yi log(σ(pi, di)) + (1− yi) log(1− σ(pi, di))

(7)
where Θ is the set of neural network parameters.

However, although, in this paper, we use a dataset with
both positive and negative pairs as described in section 4,
negative pairs (yi = 0) are usually not available for similar

tasks especially when a dataset is from a knowledge graph
that stores only existing triples. Therefore, we employ a pair-
wise ranking loss [Bordes et al., 2011] that, for each given
protein p, maximizes the margin between interacting drugs
and non-interacting drugs, i.e. ranking positive drugs higher
than negative drugs as much as possible.

argmin
Θ

∑

p

∑

d∈N+(p)

∑

d′∈N−(p)

max(0, γ+σ(p, d′)−σ(p, d))

(8)
where γ > 0 is a hyper-parameter that specifies the width of
the margin, and N+(p) and N−(p) give the set of drugs that
interact with p and those do not interact with p respectively.
In this setting, negative examples can be generated by sam-
pling pseudo-negative drugs with heuristic criteria if a dataset
does not have any.

4 Experiments

4.1 Dataset

BindingDB [Gilson et al., 2016] is a public, web-accessible
database of measured binding affinities, focusing chiefly on
the interactions of small molecules (drugs/drug candidates)
and proteins (targets/target candidates). We took a snapshot
of BindingDB that contains 1.3 million data records, each of
which contains information such as the identifiers of involved
entities, the observed experiment results, etc. By the follow-
ing criteria we construct a binary classification dataset2 with
39,747 positive examples and 31,218 negative examples.

1. Record has chemical identifier (PubChem CID), and the
small molecule has chemical structure represented by
SMILES3.

2. Record has protein identifier (Uniprot ID), and the pro-
tein has both sequence representation and Gene Ontol-
ogy annotations [Ashburner et al., 2000].

3. Record has IC50 value, a primary measure of binding
effectiveness.

4. The chemical molecule weight is less than 1,000Da, due
to our focus on small molecule drugs.

5. By following the activity threshold discussion in [Wang
et al., 2016], record is positive if its IC50 is less than
100nm, negative if IC50 greater than 10,000nm.

Suppose Ptrain and Dtrain are the sets of proteins and drugs
that are observed in the training dataset. [Pahikkala et al.,
2014] suggested that there are 4 experimental settings under
which the model can be learned and applied to predict the
label between a drug (candidate) and a protein target d and p:

1. Both p and d are observed in the training dataset: p ∈
Ptrain and d ∈ Dtrain;

2. The protein p is observed in the training dataset but the
drug d is not: p ∈ Ptrain and d /∈ Dtrain;

3. The drug d is observed in the training dataset but the
gene p is not: p /∈ Ptrain and d ∈ Dtrain;

2https://github.com/IBM/InterpretableDTIP
3Simplified molecular-input line-entry system [Weininger, 1988]
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Dataset Protein Drug Positive Negative

Train 758 43,160 28,240 21,915
Dev 472 5,077 2,831 2,776
Test 466 5,016 2,706 2,802

Table 1: The number of distinct proteins, drugs, known positive
pairs, and known negative pairs of the training, development, and
testing datasets.

4. Neither p nor d is observed in the training dataset: p /∈
Ptrain and d /∈ Dtrain.

We split proteins and drugs into those that should be ob-
served in training and those that should not with four experi-
mental settings; we then allocate DTI pairs into training, de-
velopment, and testing datasets. Statistics of the datasets are
shown in Table 1.

4.2 Training Details

During training, the parameters are initialized randomly from
an uniform distribution Θ ∼ (−0.08, 0.08). In each step,
with batch size equals 32, a batch of proteins or drugs is ran-
domly selected from the training data. Then we retrieve pos-
itive and negative interactions that involve them as input to
the model. Dropout is applied on the output of embedding
lookups and between Siamese network layers. According to
Equation 5 and Equation 8, we use Adam gradient descent
optimization with initial learning rate equals to 0.001 to train
the parameters. We train the model for 30 epochs, where each
epoch consists of 100 steps. The model is evaluated using the
validation dataset after each epoch, and the one with the best
ROC score is reported.

The validation set is also used to select model configu-
rations, hyperparameters, and the classification boundary δ.
As mentioned in Section 3.4, there are 3 ways to represent
proteins and 2 ways to represent drugs. We found that the
best model uses both amino acid sequences and GO anno-
tations for proteins, and it uses atom vectors from graph
CNN for drugs. We use gradient-boosted-tree search from
scikit-optimize4 to find effective hyperparameters. All the
space dimensions are selected from powers of two that are
between 8 and 64, embedding dropout probability from 0 to
0.2, Siamese dropout probability from 0 to 0.5, and training
margin γ from 0.0001 to 0.5. All ranges are inclusive. The

4https://scikit-optimize.github.io/

Protein
Sequence

Embedding Size 16
Hidden Dimension 16
Embedding Dropout 0.1

GO
Embedding Size 16
Embedding Dropout 0.1

Drug Graph CNN Hidden Dimension 64

Siamese
Hidden Size 32
Dropout 0.1

γ 0.0005

Table 2: Hyper parameters for the best model.

values of hyperparameters of the best model are shown in Ta-
ble 2, and the best classification boundary is δ = 0.4995.

4.3 Baselines

We compare our system with 3 baselines: matrix factoriza-
tion, a similarity-based machine learning method, and a pre-
vious deep learning based method.

Matrix Factorization Instead of viewing DTI prediction as
a classification task, it can also be treated as a collaborative
filtering task. Given the IC50 values of the known pairs in our
dataset, the task is to predict the IC50 values of other pairs.
From this perspective, matrix factorization has been widely
used and proved effective [Koren et al., 2009]. We use the
implementation from LIBMF5 as the first baseline.

Note that although this baseline does not use content-based
information from amino acids sequences and molecules, it
uses extra information from the IC50 values, including those
of neither positive nor negative examples, from BindingDB.
The raw IC50 values are truncated at an upper threshold
100,000 and fed into LIBMF in their logarithmic values.

Similarity Based Method We also compare our approach
against a similarity based prediction approach. In particu-
lar, we use as our second baseline a state-of-the-art similarity
based prediction system adapted to DTI predictions: Tire-
sias [Fokoue et al., 2016]. Tiresias system takes as input a
pair of drug and protein, builds a feature vector using the
statistics of a large number of similarity measures against
known DTI pairs, and outputs the prediction using a logis-
tic regression classification model.

Deep Learning Based Method At last, we compare our
approach with [Wen et al., 2017] as mentioned in Section 2.
Its hyperparameters, including the number of units of RBM
layers, the number of pre-train and fine tuning epochs, and
the learning rates are obtained by the same gradient-boosted-
tree search as for our model. We refer this method as DBN in
the rest of this paper.

5 Results

5.1 Effectiveness

Before diving into the results, recall that different amounts
and levels of information are exposed to the systems. Since
matrix factorization is not content-based, it does not learn
from any low-level representation and cannot handle unob-
served instance, and so it is only evaluated in the first set-
ting. However, it uses extra information from the raw IC50
values and uses more training examples whose IC50 values
(larger than 100nm and smaller than 10,000nm) fall outside
of our classification range. Tiresias, as the state-of-the-art
similarity-based system, uses a set of expert designed similar-
ity measures based on protein and drug properties. For deep
learning approaches, DBN uses middle-level features from
expert designed molecular fingerprints and protein descrip-
tors, whereas our best model (E2E) learns from molecular
chemical structures, amino acids, and GO annotations in an

5https://www.csie.ntu.edu.tw/ cjlin/libmf/
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Figure 2: Performance comparison of our model (E2E), our model
without using GO annotation (E2E/GO), matrix factorization (MF),
similarity-based approach (Tiresias), and deep learning based ap-
proach (DBN). For each system three metrics are reported: area un-
der receiver operating characteristic (ROC) curve, accuracy, and area
under precision recall curve (AUPR). The four charts correspond to
the experimental settings as mentioned in Section 4.1. Note that the
accuracy scores of Tiresias do not show in the plot (3) and (4) be-
cause they are lower than the lower bound of the y-axis.

end-to-end manner. For a fair comparison with DBN, we also
include a version of our model without using GO annotations
(E2E/GO).

Figure 2 presents the performance comparison of our
model and the baselines. As mentioned in Section 4.1, the
systems are evaluated in four different testing datasets, to
which the systems have different visibility of entities in the
training data. In terms of overall performance, our best sys-
tem (E2E) is the only one that consistently performs well
across all datasets and all metrics (all greater than 0.8),
whereas the performance of the baselines drops dramatically
when the proteins are not observed in the training data. If we
aggregated the 4 cases, our method outperforms other base-
lines in all metrics, e.g. the average AUPR of E2E is 0.91
while that of DBN is 0.81.

The baselines are more effective than our model when the
tested proteins are observed. However, when the tested pro-
teins are not observed, Tiresias fails as its similarity measures
for proteins are not effective, DBN loses to its counterpart
E2E/GO in most cases except for its accuracy in the third
setting, and, finally, our best model E2E introduces more im-
provement on top of E2E/GO by exploiting its flexibility of
incorporating high level information.

5.2 Case Study for Interpretability

The key advantage of our model over all baselines is its in-
terpretability. Before conducting costly lab tests on potential

Figure 3: The interaction between SCHEMBL16362922 and the
MAP kinase-interacting serine/threonine-protein kinase 2. The pro-
tein is shown in yellow and the small molecule is shown in green.
The predicted top seven contributing residues by our method are
highlighted in orange. The 2D view of the small molecule shows
the contributing weights of each atom proportional to the saturation
of red. The blue fan represents a solvent accessible surface.

interactions, it is helpful for researchers to gain insights by
telling them where to look at.

To demonstrate that, we conducted a case study of a
top predicted interaction between chemical (PubChem ID:
117793281) and protein (UniProt ID: Q9HBH9) by compar-
ing our interpretation with that obtained by molecular dock-
ing, which is currently more biologically interpretable. We
use molecular docking to generate their structural interaction
pattern and the result was analyzed in Discovery Studio Vi-
sualizer 2017 R2 (Figure 3). We found that, according to
the attention mechanism, the top seven contributing protein
residues are either within or surrounding the protein binding
pocket, and two of them (GLU 160 and PHE 150 as labeled in
Figure 3) may closely interact with the drug. From the drug’s
perspective, among the most contributing atoms (marked in
saturated red), three are nitrogen atoms, which have poten-
tial to formulate hydrogen bonds, and one is a carbon atom
that has a relatively big solvent accessible surface, indicat-
ing potential solvent interaction can be formulated. Thus, our
model gives reasonable cues on the factors for the binding,
which may have broad pharmaceutical applications.

6 Conclusion

We have presented an interpretable end-to-end deep learning
architecture to predict drug-target interactions from low level
representations. Experimental evaluation shows that this ap-
proach overall outperforms all baselines, and it is the only one
capable of generalizing well to new proteins (i.e., not seen in
the training data), which is critical for drug discovery given
that only a small fraction of proteins are known to be targets
of chemical compounds. Furthermore, we have illustrated,
via a case study, the ability of our approach to provide bio-
logical insights to understand the nature of predicted interac-
tions.
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