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ABSTRACT Electroencephalogram (EEG) signal-based emotion recognition has attracted wide interests

in recent years and has been broadly adopted in medical, affective computing, and other relevant fields.

However, the majority of the research reported in this field tends to focus on the accuracy of classification

whilst neglecting the interpretability of emotion progression. In this paper, we propose a new interpretable

emotion recognition approach with the activation mechanism by using machine learning and EEG signals.

This paper innovatively proposes the emotional activation curve to demonstrate the activation process of

emotions. The algorithm first extracts features from EEG signals and classifies emotions using machine

learning techniques, in which different parts of a trial are used to train the proposed model and assess its

impact on emotion recognition results. Second, novel activation curves of emotions are constructed based

on the classification results, and two emotion coefficients, i.e., the correlation coefficients and entropy

coefficients. The activation curve can not only classify emotions but also reveals to a certain extent the

emotional activation mechanism. Finally, a weight coefficient is obtained from the two coefficients to

improve the accuracy of emotion recognition. To validate the proposed method, experiments have been

carried out on the DEAP and SEED dataset. The results support the point that emotions are progressively

activated throughout the experiment, and the weighting coefficients based on the correlation coefficient and

the entropy coefficient can effectively improve the EEG-based emotion recognition accuracy.

INDEX TERMS EEG, emotion activation, emotion recognition, machine learning.

I. INTRODUCTION

With the rapid development of computer and human-

computer interaction technology, there is a high demand

to build a more intelligent and humanized human-machine

interface (HMI) in the field of human-computer interaction

(HCI) [1], [2]. The original intention and goal of HCI are

to better help users to achieve the intended interactive pur-

pose. However it is worth noting that in the process of HCI,

the user’s interactive behavior is only an external behav-

ior, and the nature of that behavior is driven by the user’s

perception. Contemporary cognitive scientists believe that

in addition to traditional cognitive processes such as per-

ception, learning, memory, and speech, emotion is also an

important cognitive process. Compared to machines, humans

naturally have complex emotional systems, and a person’s

The associate editor coordinating the review of this manuscript and
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behavior is often influenced by emotions. If the machine

has the ability to accurately recognizing human emotions,

it is significant to build a more intelligent and humanized

human-computer interaction system. In this context, affective

computing emerges as required, and it is being studied as a

hot spot [3]–[7]. Affective computing is attracting more and

more attention.

Affective computing is the study and development of

systems and devices that can recognize, interpret, process,

and simulate human affects [8]. In affective computing,

researchers use various sensors to collect physiological and

behavioral signals triggered by emotions and use computer

technology to analyze these signals to obtain emotional

models [9]. Based on the obtained emotional model, the HCI

system can perceive, recognize and understand human emo-

tions, and make targeted responses to different emotional

states of the users, making the whole HCI system more

intelligent and humanized.
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On the other hand, significant amount of research has been

reported to use computer technology to analyze human emo-

tions by both biologists and computer scientists. Russell [10]

proposed a valence-arousal emotion model which mapped

each emotional state to an area in the two-dimensional space.

Among them, the horizontal axis represents the valence of

the emotion, to some extent reflects the degree of positive or

negative emotion and the vertical axis represents the arousal

of emotions, reflecting the level of neurophysiological activa-

tion of emotions. There is also a three-dimensional emotional

model called PAD (Pleasure - Arousal - Dominance) model,

proposed by Russell and Mehrabian in 1974 [11]. The degree

of pleasure and arousal is consistent with the definition in the

valence-arousal emotion model, while the dominance indi-

cates the individual’s state of control over the situation and

others. In this way, computer-based emotional state analysis

has a uniform standard that makes computer-based emotion

recognition possible.

Although the measurement of emotional state can be

quantified using Russell’s model, recognizing the emotional

state is still a challenging task. Emotion assessment meth-

ods can be broadly divided into subjective and objective

ones [12], [13]. Subjective measures use self-rating instru-

ments, such as Self-Assessment Manikin (SAM) [12] and

questionnaires, while objective measures can be acquired

from physiological cues derived from the physiology the-

ories of emotion [14]. In the physiological signals used to

assess emotions, electroencephalogram (EEG) signal has

attracted more and more attention in recent years and has

been widely used in medical, Affective Computing and other

fields. Abeer et al., used power spectral density (PSD) fea-

tures which were extracted from EEG in combination with

deep neural network (DNN) to categorize emotions [14].

Samarth et al., combined the statistical features extracted

from EEG with deep learning models such as the CNN and

DNN to identify emotions [15]. Raja et al., optimized the

extracted EEG feature set by using p-values, and combined it

with ensembles methods to recognize emotions. All the above

studies have achieved excellent recognition accuracy.

Although much of the recent work has achieved excel-

lent recognition accuracy, most of the existing EEG-based

methods for emotion recognition will cut the instance into

a series of a fixed duration of segments (e.g., 2s or 4s).

Chen et al. used 4-second sliding and 2-second overlapping

timewindows to divide the EEG signal into 29 segments [16].

Zhuang et al. used 2-second sliding and 1-second overlapping

timewindows to divide the EEG signal into 49 segments [17].

In their methods, the labels of all segments are the same,

consistent with the emotional labels of the instance. However,

emotions cannot always be in the same state during a trial,

hence the applicability of this type of marking methods are

limited. In order to solve this problem, some studies only

use the second half of a trial to train their models. These

studies believe that the emotions will be more apparent in the

second half of the experiment, and the results confirm that the

classification accuracy is actually better [18]–[20]. However,

this is only confirmed from an experimental point of view.

Without a theoretical basis, we still do not know how and

when emotions are stimulated in an experiment.

As can be seen from the introduction, most of the tradi-

tional studies have not formed a clear understanding of the

activation process of emotions. In addition, the conclusions

of relevant researches are rarely supported by psychology.

Aiming at the problem of insufficient awareness of emotional

stimulation mechanism in most traditional studies, we pro-

pose an innovative method of emotional activation mecha-

nism based on machine learning and EEG signals in this

paper. The contributions can be summarized as below:

1) We innovatively constructed correction coefficients and

entropy coefficients of emotions by extracting features from

the EEG signals. Based on these two coefficients, a novel acti-

vation curve of emotions is constructed. This activation curve

carries information of the emotional stimulation mechanism.

2) We use the obtained correlation coefficients and entropy

coefficients to construct weight coefficients to improve the

emotion recognition accuracy.

The rest of this paper is organized as follows: Section II

introduced the data used in this paper. The proposed method

is presented in Section III. Section IV contains the results

and their discussion. Finally, the conclusion is presented in

Section V.

II. DATA PRERARATION

The experiments in this paper were carried out on the DEAP

dataset [21] and the SEED dataset [22] which are commonly

used benchmark datasets by many researchers [23]–[27]. The

DEAP dataset and the SEED dataset are briefly introduced

below.

A. DEAP

The Database for Emotion Analysis using Physiological Sig-

nals (DEAP) is a benchmark affective EEG database for

the analysis of emotions. It was acquired in a controlled

laboratory setting. The DEAP contains 32-channel electroen-

cephalogram (EEG) and 8-channel peripheral physiological

signals from 32 subjects among which 22 subjects have

additional positive videos recorded. Figure 1 shows the elec-

trode placements for the EEG. The various emotions of

subjects were stimulated through 40 1-minute music-videos,

corresponding to different emotional state. For each subject,

40 videos were presented in 40 trials following their rat-

ings (1-9) of Arousal, Valence, Like/Dislike, Dominance and

Familiarity of this trial recorded through SAM. After obtain-

ing the score, the emotional state is defined according to the

valence-arousal emotionmodel.With a threshold of 5, the two

dimensional emotional space can be divided into four regions,

namely high valence-high arousal (HVHA), high valence-low

arousal (HVLA), low valence high arousal (LVHA) and low

valence-low arousal (LVLA). The scatter plot of the DEAP

dataset is shown in Figure 2.

The DEAP dataset contains two versions of physiological

signal data, which are raw data and pre-processed data. For
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FIGURE 1. Location of EEG electrodes in DEAP.

FIGURE 2. The scatter plot of DEAP, based on valence-arousal model.

the raw data, due to the pre-processing process such as noise

reduction, different results may be obtained due to different

methods. Therefore, in order to ensure consistency, the pre-

processed data is used in this paper. The pre-processed data

in the DEAP dataset includes 32 channels of EEG signals

(128Hz) and 8 channels of peripheral physiological signals.

B. SEED

The SJTU Emotion EEG Dataset (SEED) is a free and pub-

licly available EEG dataset for emotional analysis provided

by Shanghai Jiao Tong University in 2015 [22]. The SEED

dataset contained 62 channels of EEG signals from 15 sub-

jects for 15 experiments. In each experiment, every subject

firstly watched 15 emotional film clips, then the subject had

45 seconds to self-assess and 15 seconds to calm down.

Throughout the experiment, Zheng et al. used film clips to

elicit three emotions of the subject: positive, neutral, and

negative.

The SEED dataset contains 62-channel electroen-

cephalogram (EEG) which was recorded using an ESI

NeuroScan System at a sampling rate of 1000 Hz from

62-channel electrode cap according to the international

10-20 system [22]. In this paper, down sampled the raw data

to 200Hz, and applied a 0-75Hz bandpass filter to filter out

the unwanted signals. The electrode placements for the EEG

is illustrated in Figure 3.

FIGURE 3. Location of EEG electrodes in SEED [22].

III. METHODOLOGY

The main challenge of this paper is how to visualize the

activation process of emotions and verify that the results we

get are reasonable. In the response to the problems above,

this paper proposed a researchmethod of emotional activation

mechanism based on EEG signals and machine learning. The

flowchart of the method proposed in this paper is shown in

Figure 4.

A. PREPROCESSING AND FEATURE EXTRACTION

1) PREPROCESSING

For the DEAP dataset, the duration of each EEG signal

is 63s, the first three seconds of the signal is the pre-trial

baseline signal and it should be removed. In this study, we use

2-second sliding and 1-second overlapping time windows

to cut the 60 seconds EEG signal into 59 segments.

Figure 5 shows the segmentation process.

For the SEED dataset, the duration of each experiment

is different. In order to unify the standard, we choose 185s

which is the shortest duration of all experiments as the

standard experimental duration. For the experiments which

duration is longer than 185s, the last 185s were selected.

In addition, since the experiments in SEED lasts for a long

time (approximately 4 minutes), in order to avoid the possible

interference or the emotions that have not been elicited at

the beginning of the experiment, we have removed the first

30 seconds of EEG data, that is, for the SEED dataset, only

155 seconds of data were used in this paper. The data addition,

since the experiments in SEED lasts for a long time (approxi-

mately 4 minutes), in order to avoid the possible interference

or the emotions that have not been elicited at the beginning

of the experiment, we have removed the first 30 seconds of

EEG data, that is, for the SEED dataset, only 155 seconds of

data were used in this paper. The data segmentation method is

based on the recommended setting in [22], the time window’s

duration is set to 1s without overlapping.

2) FEATURE EXTRACTION

The feature extraction is performed firstly on individual EEG

channel signal for each subject, then a feature tensor is formed
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FIGURE 4. Flowchart of the method proposed in this paper.

FIGURE 5. EEG segmentation process in the DEAP dataset.

by ensemble of these features. The following takes a certain

channel of EEG as an example to describe the feature extrac-

tion method and process on DEAP and SEED.

• DEAP

For the DEAP dataset, the features selected here are 1st

and 2nd order differential features, which are two statistical

features widely used in the field of emotion recognition based

on EEG signals. The features extraction from EEG signals

in this paper are based on the definition of 1st and 2nd

order difference in [28]. The extracted features are described

below.

The 1st order derivative is given by,

δ =
1

T − 1

T−1
∑

t=1

|x(t − 1) − x(t)| (1)

where T is the duration of the signal x.

The 2nd order derivative is given by,

γ =
1

T − 2

T−2
∑

t=1

|x(t − 2) − x(t)| (2)

For additional features, we calculated the normalized 1st

order derivative and the normalized 2nd order derivative.

Normalized 1st order difference is given by,

δ
′

=
δ

σ
(3)

where σ is the standard deviation of the signal x. Simi-

larly, we can get the normalized 2nd difference. In this way,

we extract 4 features for each EEG channel.

As an example, after the feature extraction process,

a T×S×C×F tensor can be obtained, where T is the number

of experiment for each subject which is 40; S represents the

number of segments, here is 59; C represents the number of

32 EEG channels; F represents the feature dimension, and

here is 4. Here, the features of the 32 channels are connected

to form a feature vector. So for a subject, a 40 ×59 × 128

tensor can be obtained.

• SEED

For the SEED dataset, the differential entropy features pro-

vided by the SEED dataset are used in this paper.We calculate

differential entropy for each sample over the five bands of

each EEG channel (delta, theta, alpha, beta and gamma) [22].

Finally, on a channel of a sample, a feature vector of length

5 can be extracted.

For a sample, after the feature extraction process, with the

DEAP dataset, a T × S × C × F tensor can be obtained,

where T is the number of the experiment for each subject of

15; S represents the number of segments, here is 155; C is

62, representing 62 EEG channels, F represents the feature

dimension, here is 5. Here, the features of the 62 channels

are connected to form a feature vector, so, for a subject,

a 15 ×155 × 310 tensor can be obtained.

3) AUTOENCODER

In this paper, since the difference feature extracted from the

DEAP dataset is a relatively simple statistical feature, in order

to improve the discriminative power of the feature, we use the

autoencoder to further process the differential feature. The

differential entropy feature is more complex and discrimina-

tive than the differential feature. Therefore, we only use the

autoencoder to abstract the difference feature extracted from

the DEAP dataset. The following is a brief introduction to the

autoencoder.

Autoencoder is a commonly used neural network model

and widely used in EEG-based emotion recognition

[29], [30]. The goal of an autoencoder is to learn encoding

of input data and the encoding can be used as an abstraction
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FIGURE 6. Network structure of stacked autoencoder.

of input data. In general, this kind of abstract feature is often

more discriminative. An autoencoder is generally formed by

a feed-forward neural network, consisting of an input layer,

an output layer and one or more hidden layers between the

input layer and the output layer. On the whole, an autoencoder

consists of an encoder and a decoder. The encoder abstracts

the input data and the decoder produces the reconstruction of

the corresponding input data. If the difference between the

data reconstructed by the decoder and the input data is small,

then we have reason to believe that the encoding given by the

encoder to the original input data is a good representation of

the input data.

Single-layer autoencoder often have limited abstraction

capabilities. If we want to improve representation or model-

ing capacity, we usually use the structure of stacked autoen-

coder. Stacked autoencoder is a neural network consisting of

multiple layers of autoencoder in which the outputs of each

layer are wired to the inputs of the successive layer.

In this paper, we use the stacked autoencoder to extract

abstract features based on difference features. As mentioned

before, the feature dimension is 128, so the dimension of

the input and output layers of the autoencoder are 128, and

the output dimension of each fully connected layer is 64,

32 and 64 respectively. The activation function of each layer

is Rectifier Liner Unit (ReLU) and we choose MSE as the

loss function. In addition, batch size is set to 32 and adadelta

was selected as optimizer. The network structure is shown in

Figure 6.

B. THE CHOICE OF TARGET EMOTION

Since there are only three emotional labels (positive, negative

and neutral) in the SEED dataset, in order to be consistent,

this paper extracts three emotional subsets from the DEAP

dataset: positive, negative and calm. The three subsets were

selected by extending our previous works [18] and made

some extensions.

In [18], the calm subset was composed of the samples with

an arousal level lower than 4 and a valence level between

4 and 6. Similarly, the negative subset was consisted of the

samples with an arousal level higher than 5 and a valence level

lower than 3. In the end, a total of 279 samples were selected,

of which 146 were calm emotion samples and 133 were

FIGURE 7. The division of emotional subsets in the DEAP dataset.

negative emotion samples. In this paper, we added a positive

group which was consisted of the samples with an arousal

level higher than 5 and a valence level higher than 7.5. The

reason for choosing the valence score of 7.5 as the threshold

is to balance the number of samples in each subset. The

total number of analyzed instances was 439, i.e., 146 from

calm subset, 133 from negative subset and 160 from positive

subset. The division of the three subsets in the DEAP dataset

is shown in Figure 7.

C. CLASSIFIER

We choose the soft voting strategy to build the classifier.

Soft voting strategies can combine the advantages of multiple

classifiers to predict the label of the samples, making it more

robust. Soft voting strategies rely on a series of independent

classifiers and predicts the class label based on the argmax

of the sums of the predicted probabilities. Here we choose

Decision Tree, KNN and Random Forest as the base classi-

fier. After getting the labels of each segment of a trial, in order

to get the label of this trial, we introduced a classification

strategy. Here, we define label(yi) as the label corresponding

to yi, so the classification strategy can be expressed as

YpredFinal = argmax
l

N−1
∑

i=0

I (label(yi), l), (4)

where l is positive, negative or calm and I(label(yi), l) is the

indicator function defined as,

I(label(yi), l) =

{

1, label(yi) = l

0, label(yi) 6= l
. (5)

The classification strategy is shown in Figure 8. For exam-

ple, as mentioned before, in DEAP dataset, we use 2 second

sliding and 1-second overlapping time windows to divide the

60 seconds EEG signal into 59 segments and 59 segments will

be fed to a classifier simultaneously. For the 59 samples from

the same trial, we chose the category with the largest number

of occurrences in the classification result as the overall label

for the 59 samples.

In addition, in the model evaluation step, we aim to

use the K-Fold cross validation to assess the predictive
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FIGURE 8. The classification strategy.

FIGURE 9. The calculation process of the correlation coefficient.

performance of our proposed method. Here, we choose 10 as

the value of K. For example, in DEAP dataset, the total

number of analyzed instances was 439, these instances will

be divided into 10 subsets. For each fold, we choose one of

the subsets as the test set and the other as the training set.

Finally, we calculated the mean of the accuracy as the final

result.

D. EMOTIONAL ACTIVATION CURVE

Here we will introduce the correlation coefficient and the

entropy coefficient, which are based on the classification

results of each segment obtained in the previous step.

1) THE CORRELATION COEFFICIENT

The correlation coefficient is defined below. Assuming

that the classification result of N (N is 59 in DEAP

and 155 in SEED) samples belonging to one trial is

Ypred = {y1, y2, · · · , yN } and the true label of the trial is

ytrue. The ith element ci of the correlation coefficient C can

be expressed as:

ci = I(yi, ytrue), 1 ≤ i ≤ N, (6)

where I( ) is the same as the indicator function mentioned in

Equation 5.

In this way, we can get the correlation coefficient C. For all

trials in the test set, we calculate the correlation coefficient

C and after the 10-fold cross-validation, we can obtain the

correlation coefficients for all trials. Then we calculate the

average of the correlation coefficients for all samples that

belong to the same emotion category. Finally, we can obtain

three correlation coefficient, CCalm, CNegative and CPositive,

corresponding to the three emotions. The calculation process

of the correlation coefficient is shown in Figure 9. Next,

we can map these three coefficients in a two-dimensional

coordinate system and smooth them with the mean filter to

get the correlation curve.

FIGURE 10. The calculation process of the entropy coefficient.

2) THE ENTROPY COEFFICIENT

As mentioned before, after the 10-fold cross-validation,

the prediction results are obtained for all trials. We divided

the trials into three subsets according to the emotion label

and we will get three prediction result arrays and the shape

of arrays is M × N, where M is the number of trials in the

subsets. Then, the ith element ei of the entropy coefficient E

can be calculated as follows,

ei = −

3
∑

j=1

pij log(pij), 0 ≤ i ≤ N − 1 (7)

where pij is defined as,

pij =
mij

M
. (8)

Here mij is the number of label j in segmenting i. and we

define that if pij = 0, then

pij log(pij) = 0 (9)

The calculation process of the entropy coefficient is shown

in Figure 10. In this way, we can get three entropy coef-

ficient EClam, EPositive and ENegative, corresponding to three

emotions. Next, we can map these three coefficients in a two-

dimensional coordinate system and smooth them with the

mean filter to get the entropy curve.

3) THE WEIGHT COEFFICIENT

After obtaining the correlation coefficient and the entropy

coefficient, we can get the weight coefficient based on these

two coefficients. Here, we define label(yi) as the label cor-

responding to yi, the weight coefficientsWClam,WPositive and

WNegative can be expressed as:

Wl =

N−1
∑

i=0

I(label(yi), l)
(Cl[i] + 1 − El[i])

2 ,
(10)

where l is positive, negative or calm.

The weight coefficients can be used to get the final emo-

tional label of a trial. Unlike the classification strategy men-

tioned before, for a trial, the value of WClam, WPositive and

WNegative can be obtained, and then we can select the label
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corresponding to the maximum value as the final label of this

trial. The weight coefficients and the classification strategy

mentioned before will be compared in the next section.

IV. RESULTS AND DISCUSSION

A series of experiments have been designed and conducted

on both DEAP and SEED datasets to validate the effec-

tiveness of our method including emotion activation curves,

the interpretability and accuracy improvement. The time

period comparison experiment shows the impact of using

different section of EEG signals to train classification models

on classification accuracy. Based on the classification results,

we can get the correlation curve and entropy curve. The corre-

lation curve obtained from our method reflects the correlation

between target emotion and emotion at different time points,

which is, the activation process of emotion. The entropy curve

focuses on the uncertainty of emotional state at different

time points and shows hints of interpreting human emotional

activities during the experiments. Furthermore, we showed

that the weight coefficients based on the correlation coeffi-

cients and entropy coefficients have improved classification

accuracy compared to current benchmark algorithms. It is

worth mentioning that misclassification samples have been

removed from the calculations. Themisclassification samples

refers to samples that are misclassified by the classifier

A. EXPERIMENT ENVIRONMENT

The experimental environment was built on a PC running

Windows operating systemwith CORE i5 CPU and 8Gmem-

ory. The computing environment was Python 3.6.

B. THE TIME PERIOD COMPARISON EXPERIMENT

We have compared the classification accuracy using different

sections of the EEG signals. The results are shown in Table 1.

The highest classification accuracy in each group is bolded.

It can be seen from Table 1 that the classification accu-

racy obtained in DEAP dataset has significant improvements

when the model is trained using the second half of the EEG

data. In particular, when the model was trained using the

last 34 seconds of the EEG data, the highest classification

accuracy of 62.63% was obtained. Similarly improvements

have also been achieved in the SEED dataset when the model

is trained using the second half of the EEG data. When

the model was trained using the last 75 seconds EEG data,

the highest classification accuracy of 74.85% was obtained.

Compared to the classification accuracy of 72% achieved

in [22] on the SEED dataset, the best accuracy of ours on

the same dataset is 74.85%. This shows the classification

result in our paper is credible. The two-category classification

accuracy in [18] has achieved a close to 70% accuracy on

the DEAP dataset and the best result of ours achieved a

comparable 62.63% on three categories. As we all know,

when a model transforms from a two-category task to a three-

category task, its classification accuracy tends to be greatly

reduced. So we have reason to believe that our model has

similar discriminatory power compared to that of [18], which

means, the classification result is also credible.

In summary, the results in Table 1 confirm that when

we train the model with the second half of the EEG data,

the classification accuracy will be higher. This is consistent

with the fact that training the model with the latter half of

the trial has the potential to improve the results as reported in

[18]–[20]. In other words, the EEG signal in the second half

of the whole trial have a stronger discriminating ability for

recognizing the target emotions.

C. THE CORRELATION CURVE AND EMOTION

ACTIVATION PROCESS

Figure 11 show the correlation curves of the negative, neu-

tral and positive emotions in the DEAP dataset (a-d) and

SEED dataset (e-h), respectively, where the blue dashed lines

represent negative emotion, yellow ones are calm emotions

and pink ones represent positive emotions. To eliminate the

bias introduced by classifiers, we have used four different

classifiers to construct the correlation curves, namely the

ensemble model defined in section III(C), Decision Tree,

KNN and Random Forest.

In Figure 11(a-d), there are two things are worth noted.

Firstly, we found that the correlation coefficients of calm

emotions tend to increase from beginning. We believe that

this is related to the fact that human emotions are usually in

a relatively calm state, which is also very consistent with our

intuitive understanding of emotions. Secondly, the correlation

curve of positive emotions starts to show a descending trend

after the peak, while the negative emotion correlation curve

remains as ascending trend. Reference [31] shows that posi-

tive emotion reached peak value earlier than negative in heart

rate response and our correlation curve from EEG shows the

same patterns. We think this is in line with the point made in

literature [32] that people are more likely to get used to and

adapt to positive emotions. This seems to be more consistent

with people’s daily life experience, that is, people are easy

to adapt to and ignore positive emotional experience, but

difficult to forget negative one.

As one can see from Figure 11(e-h), the correlation curves

of the three emotions obtained on the SEED dataset show a

similar gradual ascending trend. Although the overall trend

of the correlation curve from the SEED dataset is roughly

the same as that from the DEAP dataset, there are still some

differences. Comparedwith theDEAP dataset, the correlation

curve obtained from the SEED dataset has a higher position,

indicating that the emotional correlation is generally higher

than that in the DEAP dataset. In other words, the emotional

expression in the

SEED data set may be more intense, which is also consis-

tent with the fact that the classification accuracy based on the

SEED data set is higher than the accuracy achieved on the

DEAP dataset.

In addition, in the SEED dataset, the peak of positive

emotions appears later than that of negative emotions, which

is inconsistent with the conclusions in [31], but is consistent
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TABLE 1. Results of training models using different period of EEG signals.

FIGURE 11. The correlation curve of DEAP(a-d) and SEED(e-h).

with the theory of negativity bias in psychology. Negativity

bias theory refers to a priority attention mechanism for neg-

ative emotions. The negativity bias, is the notion that, even

when of equal intensity, things of a more negative nature

(e.g. unpleasant thoughts, emotions, or social interactions;

harmful/traumatic events) have a greater effect on one’s psy-

chological state and processes than neutral (calm) or positive

things [33]–[36]. More in-depth research may be needed on

this point.

In general, although there are some differences in the emo-

tional activation curves obtained based on DEAP and SEED,

both of them show an ascending trend over time, supporting

the theory of progressive activation process of emotions.

Furthermore, the correlation curves of the three emotions

all show an ascending trend over time which indicates that

as the trials progress, the correlation between the subject’s

emotions and the target emotions increases. In other words,

the emotional correlation curve reflects the progressive acti-

vation process of emotions. This result seems suggest that

emotions are gradually activated during the trial.

D. THE ENTROPY CURVE AND INTERPRETABILITY

Figure 12 shows the entropy curves of the negative, calm

and positive emotions obtained from the DEAP dataset (a-d)

and SEED dataset (e-h), respectively. The blue lines represent

negative emotion; yellow lines represent calm emotions and

pink one represent positive emotions. Four different classi-

fiers have been applied to construct the entropy curves, i.e.

the ensemblemodel, Decision Tree, KNN andRandomForest

from left to right. As seen from Figure 12, the entropy curves

of all three emotions demonstrate a descending trend over

time, indicating that the uncertainty of the three emotions

gradually decreases in their respective trial subsets.

Two points worth to be made from Figure 12(a-d). Firstly,

the entropy value of calm emotions is relatively low at the

beginning which indicates that the calm emotions are rela-

tively less uncertain. This result is consistent with the ones

measured by correlation curves in Figure 11(a-d). Secondly,

the entropy curve of positive emotions began to rise after

reaching the lowest point, while the entropy curve

of negative emotions still shows a descending trend, which

is consistent with the results obtained from Figure 11(a-d).

As can be seen from Figure 12(e-h), the entropy curves of

the three emotions obtained from the SEED dataset also show

a descending trend. As with the correlation curve, the entropy

curve obtained on the SEED dataset is somewhat different

from that obtained on the DEAP dataset, i.e. the smaller

entropy values and the valley of negative emotions comes ear-

lier than positive emotions. This represents the same pattern

as explained earlier in the correlation curves.
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FIGURE 12. The entropy curve of DEAP(a-d) and SEED(e-h), corresponding to ensemble model, Decision Tree, KNN and Random Forest from left
to right.

TABLE 2. Results of the weight coefficients.

Both correlation curves and entropy curves have demon-

strated the interpretability of our method. The trends showed

in the curves are compliant with the progressive activation

process of emotion reported in the literatures.

E. THE WEIGHT COEFFICIENTS EXPERIMENT

The weight coefficients impact is explored on classification

accuracy in this section. The results are shown in Table 2.

The highest classification accuracy in each group are bolded.

As seen in Table 2 , the classification accuracy of the weight

coefficients is higher than that of the original classifica-

tion strategy mentioned in Section III.C on both the DEAP

dataset and the SEED data set, demonstrating the valid-

ity of the proposed weighting coefficients. Compared with

the simple voting-based classification strategy, the weight-

ing coefficient-based classification strategy proposed in this

paper considers the influence of emotions at different time

points on target emotions. Since the weight coefficient is

based on the correlation coefficient and entropy coefficient,

the validity of the weight coefficient also indicates the

validity of the proposed correlation coefficient and entropy

coefficient from another aspect, which indicates that the

proposed theory of progressive activation of emotions is

reasonable.

V. CONCLUSION

In this paper, aiming at the challenge of insufficient aware-

ness of emotional stimulation mechanism in most traditional

studies, we proposed a coefficients-based method based on

machine learning using EEG signals. This method not only

outperformed the benchmark algorithms in terms of accuracy

but also interpret the progress of emotion activation. Firstly,

we extracted features from EEG signals and classified emo-

tions using machine learning techniques. We further found

that the latter stage of EEG signals have better correlations

with emotions, hence better classifier performance can be

achieved if the second half of the trial is used for training.

Secondly, based on the classification results, the correlation

curves and entropy curves of emotions are constructed, which

to a certain extent indicate the emotional activation progres-

sion. It is found that emotion was progressively activated.

The proposed method has provided a quantitative tool to

theoretically explain emotional activation mechanism such

as why the second half of a trial leads to better classifi-

cation results. Finally, the obtained correlation coefficients

and entropy coefficients are used to construct weight coef-

ficients to improve the classification accuracy compared to

current benchmark algorithms. Since the weight coefficient is

based on the correlation coefficient and entropy coefficient,
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the validity of theweight coefficient also indicates the validity

of the proposed correlation coefficient and entropy coefficient

from another aspect, which indicates that the proposed theory

of progressive activation of emotions is reasonable.
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