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behavior of concrete 
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A B S T R A C T   

This study aims to provide an efficient and accurate machine learning (ML) approach for predicting the creep 
behavior of concrete. Three ensemble machine learning (EML) models are selected in this study: Random Forest 
(RF), Extreme Gradient Boosting Machine (XGBoost) and Light Gradient Boosting Machine (LGBM). Firstly, the 
creep data in Northwestern University (NU) database is preprocessed by a prebuilt XGBoost model and then split 
into a training set and a testing set. Then, by Bayesian Optimization and 5-fold cross validation, the 3 EML 
models are tuned to achieve high accuracy (R2 = 0.953, 0.947 and 0.946 for LGBM, XGBoost and RF, respec-
tively). In the testing set, the EML models show significantly higher accuracy than the equation proposed by the 
fib Model Code 2010 (R2 = 0.377). Finally, the SHapley Additive exPlanations (SHAP), based on the cooperative 
game theories, are calculated to interpretate the predictions of the EML model. Five most influential parameters 
for concrete creep compliance are identified by the SHAP values of EML models as follows: time since loading, 
compressive strength, age when loads are applied, relative humidity during the test and temperature during the 
test. The patterns captured by the three EML models are consistent with theoretical understanding of factors that 
influence concrete creep, which proves that the proposed EML models show reasonable predictions.   

1. Introduction 

Creep is one of the most significant behaviors of concrete, which 
forms necessary basis for precise prediction and evaluation of both 
short- and long-term mechanical response of concrete structures under 
sustained loads. On one hand, for early-age concrete members that bear 
shrinkage-induced tension stress, creep essentially reduces the magni-
tude of tensile stress evolution [1,2]. On the other hand, for long-term 
mechanical behavior of concrete structures, creep is a major reason 
accounting for serious time-dependent engineering problems such as 
substantial deflection and prestress loss in bridges [3,4]. Therefore, an 
accurate estimation of creep behavior of concrete is important for 
long-term serviceability of concrete structures. For this, a number of 
experimental and numerical approaches have been developed, as 
described below. 

1.1. Experimental methods 

Creep and relaxation have been experimentally studied for decades. 

A wide range of variables have been investigated, including different 
concrete mixtures (i.e., w/c ratio, supplementary cementitious materials 
(SCM), fiber, admixture.) [5–8], environmental conditions (i.e., relative 
humidity, temperature.) [9–11] and loading schemes (i.e., compressive 
or tensile loading, age or duration of loading.) [12,13]. These tests 
provided valuable data for understanding the creep behavior of con-
crete. However, accurate prediction remains a challenge because of high 
sensitivity of creep to wide ranges of parameters and interplay between 
these parameters [14]. 

In recent years, researchers have tried to decouple the influence of 
multiple variables to more accurately measure concrete creep under 
certain conditions. Hydration degree and its interaction with loading 
conditions can significantly influence the experimental results of creep 
tests [15,16]. To overcome this, Wyrzykowski et al. [17] partly replaced 
unhydrated cement with an inert quartz powder to form a non-aging 
system, on which the mechanical properties of pseudo cement paste 
were calibrated to mimic the real one and then uniaxial compressive 
creep tests were conducted. With the concern that most researchers 
assumed an axial load in their creep/relaxation tests, Liang et al. [18] 
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performed biaxial creep tests of high strength concrete using ring test 
method and concluded that creep properties under biaxial stress con-
dition were significantly lower than that under uniaxial stress condition. 
Besides, in order to decouple the influence of shrinkage in creep tests, 
Liang et al. [19] also devised the methodology of flexural deflection test 
to exclude the influence of shrinkage on measurement of creep proper-
ties under the assumption of a symmetric distribution of relative hu-
midity about the neutral plane. As an important factor influencing both 
the hydration reaction and the time-dependent change of microstruc-
ture, temperature can significantly influence creep behavior of concrete. 
Ladaoui et al. [20] tested the basic creep of 4 types of high-performance 
concrete under different temperatures, and observed a factor of 2–3 in 
basic creep when rising the temperature 20 ◦C and 50 ◦C. Similarly, the 
studies [21,22] also observed significant increase of concrete creep 
under elevated temperatures. These observations are in line with [23] 
and can be explained by distortion of water from the CSH gel. Mean-
while, To exclude the influence of temperature and achieve the aim of 
in-situ and early-age measurement of creep, a series of 
temperature-regulated stress testing methods were employed to inves-
tigate the influencing mechanisms of loading age and loading scenarios 
on creep [24–26]. 

Except for macro-scale tests mentioned above, micro-scale indenta-
tion tests have been conducted to investigate the intrinsic creep prop-
erties of C–S–H in recent years [27,28]. Recently, Gan et al. [29–32] 
have proposed the methodology of micro-cantilever bending test to 
characterize the creep properties of cement paste, by which the effects of 
w/b ratio, binder type and stress level on creep measurement were 
investigated. Their results showed that microstructural features largely 
influence the global creep behavior. 

To sum up, the state-of-the-art testing methods for creep of concrete 
can effectively improve the measurement accuracy by using more so-
phisticated loading scenarios, material processing methods, and 
advanced testing machines. However, an unavoidable challenge is that 
only a limited number of parameters can be tested and decoupled in 
laborious experimental works, which largely restraints the estimation 
accuracy of creep behavior of concrete under practical loading 
conditions. 

1.2. Numerical methods 

Based on experimental tests, a series of numerical, analytical and 
semi-empirical models were proposed to predict creep behavior of 
concrete. Bazant et al. [33] proposed a rate-type creep law to charac-
terize the linear creep behavior of concrete, which can be interpreted by 
a Maxwell or a Kelvin Chain model. To avoid the need for storing all the 
stress or strain history of all FE elements and improve the computational 
efficiency, the exponential algorithm proposed by Carol et al. [34] was 
incorporated in the rate-type law. Meanwhile, in order to tackle the 
computational instability and non-uniqueness of a discrete Kelvin 
spectrum, Bazant et al. [35] proposed a continuous retardation spectrum 
to unambiguously fit the experimental creep curve, which can be dis-
cretized and then implemented in a complete creep analysis. Di Luzio 
et al. [36] systematically performed the rate-type creep analysis 
methods formed by Refs. [33–35] on 3 typical creep constitutive models 
(i.e., Eurocode 2, ACI Model, and Model B3), which further validated the 
effectiveness of rate-type creep model in characterizing the creep 
behavior of concrete under various loading scenarios. Similarly, Hede-
gaard et al. [37] assumed the concrete and reinforcement as a composite 
material and implemented the rate-type creep law to approximate the 
creep properties of reinforced concrete. Besides the rate-type method, 
many models were also proposed to simulate creep/relaxation behavior 
with emphasis on various influencing mechanisms (i.e., degree of hy-
dration [38], relative humidity [39], loading eccentricity [40] and 
water-aggregate interaction [41]) and different numerical expressions 
of the creep constitutive model (i.e., time-varying generalized Maxwell 
model [42], age adjusted effective modulus [43] and parallel creep 

curve [44]). 
Except for the modelling approaches that mainly consider a single 

influencing mechanism, more sophisticated models were developed to 
partly or fully characterize the interplay between creep, shrinkage/ 
swelling, damage, hydration and heat transfer. Based on experimental 
observations, time-dependent softening models were developed to 
simulate the creep failure of concrete under different levels of sustained 
loads [45–47]. Moreover, multi-physics models [48–53] were developed 
to incorporate almost all significant aspects of concrete behaviors 
including creep, shrinkage, hydration and crack. These models coupled 
the hydro-thermo-chemo-mechanical mechanisms of concrete and 
therefore could characterize both the short- and long-term behavior of 
concrete. Specifically, for a practical creep test, which is enviably 
influenced by complex interplay of shrinkage, damage, and aging, such 
models will be useful in separating the influence of each individual 
factor on the creep behavior. 

Subsequently, with the advancement of experimental micro- 
mechanical facilities, abundant creep data gathered from micro-scale 
tests motivated more micro-scale creep models to spring up, which 
consider the influence of aggregate [54,55], C–S–H gel [56] and hy-
dration [57]. Recently, with the aim to reproduce the experimentally 
observed creep behavior of cement paste, a local force -based lattice 
fracture model was developed to model the creep behavior [58]. Based 
on the results of X-ray computed microtomography analysis and nano-
indentation tests, the experimentally informed model was capable of 
explaining the experimental results. 

To sum up, the sophisticated numerical models described above have 
not only provided an effective alternative to experimental methods with 
good precision under certain conditions or assumptions, but also 
delivered in-depth explanations for various creep mechanisms and in-
teractions between multiple influencing parameters. Nevertheless, given 
the objectives of predicting the creep behavior of concrete structures, 
most numerical methods turn out to be inappropriate because of the gap 
between the ideal conditions presumed by numerical models and prac-
tical engineering conditions which also constantly change during the 
creep process. 

1.3. Significance of this study 

With the aim to supplement the insufficiency of experimental and 
numerical methods mentioned above, this study provides a Machine- 
Learning (ML) solution to predict the creep behavior of concrete mate-
rials. As a tributary of artificial intelligence, supervised ML has been 
considered as a promising data-driven approach to build robust models 
for predicting various properties and behaviors of heterogenous 
materials. 

In recent years, many researchers in the field of construction mate-
rials have been implementing ML models in prediction of drying 
shrinkage [59], cracking propagation [60], compressive strength 
[61–63], elastic modulus [64], breakout capacity [65], shear capacity 
[66], slump flow [67], flexural strength [68] and interfacial bond 
strength between FRPs and concrete [69]. In these studies, conventional 
machine learning (CML) models including artificial neural network 
(ANN), Gaussian process regression (GPR), support vector machine 
(SVM), multilayer perceptron artificial neural network (MLP-ANN) and 
random forests (RF) proved to be effective in making precise prediction 
based on an existing database. Furthermore, as a well-known approach 
to reduce the risk of overfitting that brought by CML model, ensemble 
machine learning (EML) models were adopted in predicting surface 
chloride concentration [70] and compressive strength [71,72]. The re-
sults showed that compared with CML models, EML models could better 
consider multiple influencing factors and thus had superior prediction 
performance. 

In this study, based on the Northwestern University (NU) creep 
database [73] that constituted by parameters characterizing different 
loading conditions, mixture proportions and environmental conditions, 
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three decision tree-based EML models (i.e., Random Forest (RF), 
Extreme Gradient Boosting Machine (XGBM) and Light Gradient 
Boosting Machine (LGBM)) are established to learn the underlying 
patterns behind 26,458 creep test results. Then, by tunning the hyper-
parameters with Bayesian Optimization, the performance of 3 EML 
models is efficiently improved within 60 iterations of a cross validation 
process. Finally, based on the well-tuned EML models, a game-based 
theory SHapley Additive exPlanation (SHAP) is implemented to un-
ravel the underlying pattern that EML models reveal from the database, 
which can provide an in-depth understanding for the prediction of creep 
behavior. 

2. Data preprocessing 

This study aims to build EML models by exhaustively learning the 
creep data from NU database [73], which contains 29,196 observations 
of creep compliance at different time points. Fourteen parameters are 
selected as model input: water-cement ratio, aggregate-cement ratio, 
cement content (kg/m3), cement type, amount of superplasticizer 
(kg/m3), compressive strength at the age of 28 days (MPa), 
volume-surface ratio, environmental humidity of specimen pre-
conditioning (%), concrete age at loading (day), temperature during 
loading (◦C), humidity during test (%), creep test type, loading stress 
(MPa) and time since loading (day). 

2.1. Categorical parameters 

Compared with other numeric parameters, both cement type and 
creep test type are both treated as categorical parameters here, which 
enables this study to cover a wider range of parameters and promote 
robustness for predictions in practical conditions. 

In the category of cement type, the number 1, 2, 3, 4 will be used to 
classify slowly hardening cement (SL), normal cement (N), rapid hard-
ening cement (R) and rapid hardening high strength cement (RS). While 
in the category of creep test type, according to the original records of NU 
database, most creep tests are lying in the categories of “basic”, “basic?“, 
“total?” and “total”. Due to ambiguous experimental process described 
by the original papers, the NU database does not provide clear infor-
mation regarding the type of every creep test. As basic creep refers to 
time-dependent deformation without the influence of drying creep, 
fully-sealed conditions are clearly required in basic creep tests. While on 
the other hand, total creep tests aim to measure all the deformation that 
induced by both basic and drying creep, which corresponds to no-sealed 
conditions. Therefore, for the creep test type “basic”, “basic?“, “total?” 

and “total”, the sealing conditions of fully-sealed, inadequately-sealed, 
partly-sealed and no-sealed can be reasonably determined, with the two 
terms “inadequately-sealed” and “partly-sealed” are tentatively assumed 
to tackle the uncertain annotation of creep test type in NU database. 
Subsequently, this study labels each creep test type according to their 
sealing condition, using the number 1, 2, 3, 4 to represent the creep test 
type of “total”, “total?“, “basic?“, “basic”. 

2.2. Missing data 

In the selected 14 input parameters mentioned above, much data is 
missing. Therefore, an appropriate data imputation procedure should be 
taken to supplement missing data. First of all, to ensure the reliability of 
data, any observations that have more than 3 missing data has been 
discarded in this study. 

There are mainly two kinds of available strategies to tackle the 
problem of missing data, namely univariate imputation methods and 
multivariate imputation methods. The univariate imputation method is 
a simple approach to impute the missing data with the statistics (i.e., 
mean, median or most frequent) of each column where the missing data 
are located. While the multivariate imputation is a more sophisticated 
approach to impute the missing data by implementing a model to fit the 

correlation of all the available data, which can then be used to estimate 
the missing data point so as to make the process of data imputation 
unbiased and statistically valid [74–76]. For parameters other than 
compressive strength, there are little correlations between the missing 
data and existing data, so a multivariate imputation would be inap-
propriate. Therefore, these missing values are imputed following the 
method of univariate imputation method with its median values. 

Compressive strength is one of the most important parameters of 
concrete that can be correlated to multiple concrete properties [23], 
therefore an accurate estimation for missing compressive strength data 
will be carried out. The XGBoost model, which is widely reported to 
have superior performance in predicting compressive strength [77–81], 
will be established here to conduct imputation of missing compressive 
strength data. Based on, in total, 3051 sets of compressive strength data 
(1206 sets from NU database, 1030 sets from Ref. [82], and 815 sets 
from Refs. [83–91]), the XGBoost model for compressive strength is 
trained on 2440 samples and tested on the remaining 611 samples. Be-
sides, Bayesian Optimization and 10-fold cross validation [92] will be 
implemented to tune the hyper parameters of the XGBoost model. The 
input for prediction of compressive strength are as follows: amount of 
cement, fly ash, slag, superplasticizer, w/c ratio and curing age. The 
hyperparameters are shown in Table 1. The training and testing per-
formance evaluated by coefficient of determination (R2) are shown in 
Fig. 1. Compared with the other ML-Based compressive strength pre-
diction models [71,72,77–81], the XGBoost model is built on the largest 
database of concrete strength, and therefore its prediction should be 
robust and accurate. After the preprocessing, 26,458 observations of 
creep tests results from NU database are selected as final input data and 
will be used in prediction of creep, as is shown in Fig. 2. 

3. Methodology 

For prediction problems involving unstructured data (e.g., image, 
text), deep artificial neural network tends to outperform all other ML 
algorithms. However, when it comes to medium tabular data, tree-based 
ML algorithms remain to be best-in-class. In this study, three kinds of the 
state-of-the-art tree-based EML models, namely Random Forest (RF), 
Extreme Gradient Boosting Machine (XGBoost) and Light Gradient 
Boosting Machine (LGBM) will be built to predict creep compliance of 
concrete under various experimental conditions. During the process of 
cross validation, Bayesian Optimization will be implemented to effi-
ciently tune the hypermeters. Afterwards, with the well-tuned models, 
Shaley Additives Values will be calculated to characterize the influence 
of each parameter on the final inference of creep compliance. 

3.1. Decision tree-based ensemble machine learning (EML) models 

The basic strategy of a decision tree-based EML is to build multiple 
decision trees based on randomly selected subsamples of the whole data 
set, and then combine the prediction of each pre-built decision tree 
estimator to give a new inference corresponding to the input data. 
Specifically, there are mainly two training methods for EML models, 
namely parallel training and sequential training. Parallel learning will 
be used in training of RF, while sequential training will be used for 
XGBoost and LGBM. 

3.1.1. Classification and regression tree (CART) 
The classification and regression tree (CART) is implemented here as 

the basic estimators that will be further ensembled to build the EML 
model. For regression aims, CART consistently conducts binary partition 

Table 1 
Hyperparameters of XGBoost for estimating missing compressive strength data.  

Parameter type Max depth Gamma Number of trees Learning rate 
Value 154 0.43015 796 0.21746  
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for each parameter of the dataset at each level until the prescribed 
maximum depth is reached [93]. During this process, the input data X 
will be partitioned at the split point s for splitting variable j: 
R1(j, s)=

{
X
⃒⃒
Xj ≤ s

}
and R2(j, s)=

{
X|Xj > s

} (1) 
By repeating the binary partition process, the whole dataset will be 

divided into M regions (i.e., terminal nodes) R1, R2, …, Rm, with each 
region Ri corresponding to a prediction response ci. In order to find best 

splitting point s for each splitting variable j, the mean squared error is 
used to build up the cost function: 
J(j, s)=min

c1

∑

xi∈R1(j,s)

(yi − c1)
2 + min

c2

∑

xi∈R2(j,s)

(yi − c2)
2 (2) 

For any choice of j and s, the minimization in Eq. (2) is given by: 

ĉ1 =
1

N1

∑

xi∈R1(j,s)

(yi)
2
and ĉ2 =

1

N2

∑

xi∈R2(j,s)

(yi)
2 (3) 

Fig. 1. Performance of XGBoost for imputing missing compressive strength data.  

Fig. 2. Histogram of creep data selected from NU database 
(The annotations of each parameter are as follows: 1). w 
/c: water-cement ratio; 2). a 
/c: aggregate-cement ratio; 3). c: cement amount (kg/m3); 4). cem: cement type; 5). SP: amount of superplasticizer (kg/m3); 6). fc28: compressive strength at 28 days 
(MPa); 7). V/S: volume-surface ratio; 8); H0: environmental humidity of specimen preconditioning; 9). t0: concrete age at loading (day); 10). T: temperature during 
loading (◦C); 11). RH_test: humidity during test; 12). type: creep test type; 13). sigma: loading stress (MPa); 14). t: time since loading (day); 15). J: creep compliance 
(um/m/MPa)). 
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where yi is the i-th ground-truth value, and N1, N2 is the number of data 
points in region R1, R2. Therefore, the best partition pair of (j, s) can be 
found by minimizing the cost function of Eq. (2). 

An example of CART with a maximum depth of 3 and number of 
nodes of 4 is shown in Fig. 3. With a proper value of maximum depth, 
number of nodes and pruning strategy, a CART can serve as a qualified 
standalone estimator. However, with the intrinsic hierarchical nature of 
training process, the effect of an error in the top split is propagated down 
to all of the splits below, which means CART has very high variance and 
a slight change of input data can greatly change the output [93,94]. As a 
result, overfitting often happens and thus reduces the generalization 
capabilities of the CART model. 

3.1.2. Random forest (RF) 
RF is proposed as a straightforward EML model to tackle the insta-

bility of a standalone CART as described in section 3.1.1. The workflow 
of RF is shown in Fig. 4. Following the parallel learning method, RF uses 
a bagging strategy (i.e., bootstrap and aggregation) to build a number of 
CART models based on subsamples randomly selected from the training 
dataset [95]. Besides, the number of features that used as input for each 
CART model is also randomized from the original number of features. 
Finally, by taking averages, summation or following the majority vote, 
responses of all CART models are combined to provide an inference 
according to a certain input. Although the two injected randomness can 
yield the CART with certain decoupled errors, the aggregation proced-
ure of combining all CART can be effective to cancel out most of these 
errors [96]. Thus, RF can effectively reduce variance at a very small cost 
of bias. 

In this study, based on the Scikit-Learn API [97], RF will be imple-
mented to build a baseline prediction model for concrete creep behavior. 
The selected hyperparameters for tunning process are n_estimators (the 
number of CART), max_features (the maximum size of every random 
subset of features for training each CART), max_depth (the maximum 
depth for each CART), min_samples_split (the minimum number of 
samples required to split an internal node of each CART) and min_-
samples_leaf (the minimum number of samples required in an internal 
node). 

3.1.3. Extreme Gradient Boosting Machine (XGBoost) 
As a counterpart to RF, gradient boosting machine adopts a 

sequential training strategy to create a strong learner by sequentially 
training a number of weak learners (i.e., CART in this study). In every 
step, a weak learner is trained to minimize the loss function by using 
gradient descent optimization algorithm [93]. XGBoost is recognized as 
an advanced implementation of gradient boosting machine, which can 
more effectively control over-fitting by using a more regularized model 
formation [98]. The objective function during the training process of 

XGBoost is expressed as: 

obj(t)=
∑n

i=1

L(yi, ŷi
t
) + Ω(ft) (4) 

in which L is the loss function; Ω is the regularization term for 
measuring the model complexity; t is the t-th iteration for generating t-th 
CART; n is the total number of CART; fi is the mapping function of i-th 
CART. The model complexity of each CART can be expressed as: 

Ω(f )= γT +
1

2
λ
∑T

j=1

w2
j (5) 

in which T is the total number of nodes, w is the score of each node, γ 

and λ are the penalty terms for regularization to avoid over-fitting. When 
t-th CART is created to fit the residual error of the former CARTs, the 
prediction of the new tree can be expressed as: 
ŷi

t = ŷi
t−1 + ft(xi) (6) 

Then the objective function can be written as: 

obj(t)=
∑n

i=1

L(yi, ŷi
t−1 + ft(xi) ) + Ω(ft) (7) 

Expanding ft with Taylor polynomial and assuming the loss function 
L uses the form of mean square error, the approximation of objective 
function with second-order accuracy can be expressed as: 

obj(t)=
∑n

i=1

(
L(yi, ŷi

t−1)+ gi ft(xi)+
1

2
hi ft

2(xi)

)
+ Ω(ft) (8)  

in which gi and hi denote the first- and second-order derivative: 
gi = ∂

ŷi

t−1 L(yi, ŷi
t−1) and hi = ∂2

ŷi

t−1 L(yi, ŷi
t−1) (9) 

Because the value of objective function depends only on gi and hi, a 
customized loss functions can be supported by XGBoost. In this study, 
the mean square error is used as the loss function. Using the XGBoost API 
[98], the selected hyperparameters for tunning process are gamma 
(minimum loss reduction required to make a further partition on a leaf 
node of a CART), n_estimators (the number of CART), learning_rate 
(boosting learning rate), max_depth (the maximum depth for each 
CART) and min_child_weight (minimum sum of instance weight needed 
in a node). 

3.1.4. Light Gradient Boosting Machine (LGBM) 
As a major challenger to XGBoost, LGBM was developed to achieve 

faster training speed and lower memory usage, while maintain high 
accuracy. The main difference between LGBM and XGBoost lies in their 
ways of growing trees, as is shown in Fig. 5. XGBoost, as well as most 

Fig. 3. An example of CART.  
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gradient boosting algorithms, grows trees level-wise following the 
splitting procedure of CART, as described in section 3.1.1. While LGBM 
grows tree leaf-wise by splitting the leaf node using a histogram-based 
algorithm, which yields great advantages on both efficiency and mem-
ory consumption. As leaf-wise tree growth leads to more model 
complexity, LGBM can result in more accuracy gain in every iteration. 
However, it also means high risks of over-fitting, which is tackled by 
regularization terms. Two techniques, namely gradient-based one-side 
sampling (GOSS) and exclusive feature bundling (EFB), are also imple-
mented to make the LGBM a fast, efficient and stable EML algorithm 
[99]. During the training process, because data samples with high 
gradient will contribute more to the information gain, GOSS selects the 
samples with high gradient and discards the ones with low gradient. On 
the other hand, EFB bundles exclusive features in sparse feature space, 
thus reduces the dimensionality and improve efficiency. 

In this study, the API developed in Ref. [99] is used to build a LGBM 
model based on the NU database. The selected hyperparameters are 
num_leaves (the maximum tree leaves of each CART), max_depth (the 
maximum depth of each CART), n_estimators (number of boosted CART 

to fit), learning_rate (boosting learning rate) and min_child_samples 
(minimum number of samples needed in a leaf node). 

3.2. Bayesian Optimization 

In most supervised learning tasks, a bias-variance tradeoff has always 
been one of the most tricky and essential objectives, since it represents 
the generalizing capabilities of the model to predict unseen new input 
data. To achieve the best bias-variance tradeoff, hyperparameters that 
represent the complexity and the training step of EML models should be 
well tuned to get highest prediction accuracy in the process of cross 
validation. For such optimization aim, methods like grid-search and 
random-search are broadly implemented by enumerating all combina-
tions of presumed values for each hyperparameter [59–72]. For 
example, for the 5 hyperparameters selected in LGBM mentioned in 
section 3.1.4, if 3 values are assigned to each hyperparameter, then there 
is 35 = 243 combinations of hyperparameters being required to be 
implemented in 243 times of training process. Furthermore, if a 10-fold 
validation is required, then 2430 times of training will be required to be 

Fig. 4. Workflow of random forest.  

Fig. 5. Different ways for growing trees between XGBoost and LGBM.  
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implemented. Therefore, grid-search and random-search can be highly 
inefficient and time-consuming when it comes to complex models with 
parameters of high dimensionality and large amount of data. Besides, 
such methods strongly depend on experience of the programmer, since 
only limited number of presumed values can be pre-assigned to each 
hyperparameter. In view of the limitations of grid-search and 
random-search, this study proposes to adopt Bayesian Optimization to 
find the optimal hyperparameters corresponding to the highest predic-
tion accuracy in the process of cross-validation. The process of Bayesian 
Optimization mainly includes two components: a statistical model for 
modelling the objective function and an acquisition function for the next 
sampling point. The workflow of Bayesian Optimization used in this 
study is given in Fig. 6. 

In Bayesian Optimization, a fundamental assumption is that the 
optimization objective follows the multivariate Gaussian distribution (i. 
e., Y (X) ~ N (0, K), where Y is the prediction performance in cross- 
validation, while X is the hyperparameter vectors). Then the Gaussian 
Process (GP) regression can be implemented to provide a prior for the 
objective Y, which forms the GP model mentioned in Fig. 6. In GP, the 
kernel for the covariance term that is corrupted by noise with zero mean 
and standard deviation σnoise can be expressed as: 

K =

⎡
⎣

k(X1,X1) ⋯ k(X1,Xn)
⋮ ⋱ ⋮

k(Xn,X1) ⋯ k(Xn,Xn)

⎤
⎦+ σ2

noiseI (10)  

in which k is the covariance function that is calculated by an exponential 
function of the second norm of the difference value between two sam-
ples; n is the number of samples that are incorporated in the GP model. 
Under the assumption of Gaussian distribution, the distribution of the 
observation of next sample Yn+1 can be expressed as a joint Gaussian 
distribution with the observations in the first n iteration denoted as D1:n 
= (X1:n, Y1:n) [100]: 
Yn+1

⃒⃒
D1:n ∼  N 

(
μ(Xn+1), σ2(Xn+1) + σ2

noise

) (11)  

in which 
μ(Xn+1)= k

T
(
K + σ2

noiseI
)−1

Y1:n (12)  

σ2(Xn+1)= k(Xn+1,Xn+1) − k
T
(
K + σ2

noiseI
)−1

k (13)  

k= [ k(Xn+1,X1) k(Xn+1,X2) ⋯ k(Xn+1,Xn)] (14) 
Thereby, with the GP model, a mapping from the selected hyper-

parameters to the prediction performance in cross-validation can be 
drawn, with a credible interval for every inference. Then, an acquisition 
function will be implemented to calculate the improving potential of 
every sample point. In this study, the Expect Improvement (EI) is 
adopted as acquisition function to achieve the balance between exploi-
tation and exploration, which can be expressed as [101]: 

EI(Xn)= (ybest − μ(Xn))Φ

(
ybest − μ(Xn)

σ(Xn)

)
+ σ(Xn)φ

(
ybest − μ(Xn)

σ(Xn)

)
(15)  

where Φ(⋅) and φ(⋅) are thecumulative distribution function and prob-
ability distribution function of the standard Gaussian distribution; ybest 
is the tentative optimal value in current sample space. Note that the first 
term in Eq. (15) aims to exploit every sample point by evaluating the 
difference between the potential sample point and the best point in 
current sample space. The second term in Eq. (15) aims to quantify the 
uncertainty of each sample point. Therefore, the EI function tends to get 
higher values at sample points with larger posterior mean and credible 
intervals, and thus the balance of exploitation and exploration can be 
achieved. 

4. Results and discussion 

To evaluate the generalization capabilities of the 3 EML models, 
based on a pseudo random-number generator, the database is shuffled 
first and then divided into the training and testing set following the ratio 
of 8:2. For each EML model, 5 hyperparameters will be selected and 
tuned by Bayesian Optimization in the process of 5-fold cross validation 
[92,102]. And then, each tuned EML model will be examined by the 
5292 unseen samples within the testing set. Furthermore, the perfor-
mance of EML models on testing set will be compared with the 
broadly-used empirical model in the fib Model Code 2010 [103]. Finally, 
the game-based theory Shapley Additive Explanation will be imple-
mented on each EML model to provide explanations for its prediction. 

4.1. Model performance 

The performance of the EML models will be evaluated using the 
following 3 metric indexes: coefficient of determination (R2), root mean 
square error (RMSE) and mean absolute error (MAE), whose formula-
tions are given as follows: 

R2 = 1 −

∑n

i=1

(
xi − x̂i

)2

∑n

i=1(xi − x)2
(16)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n

∑n

i=1

(
xi − x̂i

)2
√

(17)  

MAE=
1

n

∑n

i=1

⃒⃒
⃒xi − x̂i

⃒⃒
⃒ (18)  

where xi is the creep compliance of i-th sample point in the database; x̂i 
is the prediction value made by EML models for i-th sample point; x is 
the averaged value of the creep compliance. Both MAE and RMSE 
explicitly characterize the residual error at each sample point and can 
give exact evaluation of model performance. In comparison, R2 nor-
malizes the squared residual error with the variance of the database and 
produces dimensionless score ranging from 0 to 1. By comparison, R2 is 
more intuitive and convenient for comparing the performance of 
different models. Therefore, it’s adopted as the main metric index in the 
following analysis. 

Denote the black-box function represented by each EML model as f, Fig. 6. Workflow of bayesian optimization.  
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which uses a hyperparameter vector θi as the input and then gives an 
output of the model performance indexed by the averaged R2 of 5-fold 
cross-validation. Thereby, the form of the objective function of the 
Bayesian Optimization is given as follows: 
θbest = argmax

θ
f (θ) (19)  

4.1.1. Optimization result and EML model comparison 
Following Eq. (19), the performance of 3 EML models in the process 

of 5-fold cross-validation is optimized. For each EML model, 5 iterations 
are firstly conducted to form an initial sample space, which establishes 
the initial GP prior. Then in the following iterations, the acquisition 
function EI is calculated to select new sample point and then update the 
GP prior at the end of each iteration. According to Ref. [104], at least 30 
iterations is recommended for most optimization aims. In this study, 60 
iterations will be implemented to find the best combination of hyper-
parameters for each EML model. The optimizing history of the 3 EML 
models is shown in Fig. 7. With Bayesian Optimization, the 3 EML 
models successfully obtain high prediction accuracy measured by R2 in 
the process of 5-fold cross-validation. However, there are distinct dif-
ferences lying between them: 

1) Compared with both RF and XGBoost, LGBM obtains highest pre-
diction accuracy within significantly shortest calculation time, which 
is about 2.7% of the XGBoost and 3.4% of the RF. The significant 
improvement in computational efficiency as well as accuracy is 
attributed to the leaf-wise tree growing strategy, gradient-based 
subsampling method GOSS and feature bundling method EFB, ac-
cording to Section 3.1.4.  

2) Compared with RF, the two gradient boosting models XGBoost and 
LGBM shows much higher accuracy at the beginning of Bayesian 
Optimization process and ends with limited improvement of R2, 

which means that both XGBoost and LGBM are much more robust 
than RF and therefore require less effort in hyperparameter tunning. 

The optimized hyperparameters for each EML model are listed in 
Table .2. The range of each hyperparameter is selected according to 
references [97–99], which is listed beneath the name of each hyper-
parameter in the form: (lower boundary, upper boundary). Note that 
although with different names, the parameters min_samples_leaf of RF, 
min_child_weight of XGBoost and min_child_samples of LGBM all refer to 
the minimum number of samples required in the leaf node of CART, 
which controls the complexity of the basic estimators and thus reduces 
the overfitting risk for each EML model. As shown in Table .2, all 3 
well-tuned EML models show preference to larger amounts of basic es-
timators, which is logical since ensemble strategies (bagging for RF and 
gradient boosting for XGBoost and LGBM) play as inherent advantage to 
gain high accuracy for EML models. However, a significant difference 
between the ensemble strategies lies in their preference for complexity 
of basic estimators. For RF, which adopts bagging as the ensemble 
strategy, more complex basic estimators with more depth and smaller 
leaf nodes are preferred. As a standalone estimator, such complexity is 
highly prone to overfitting due to its high variance and low bias, espe-
cially for CART which has a hierarchical decision path and therefore is 
sensitive and unstable to fluctuation of input parameters. However, 
through bagging, the variance of all these complex estimators can be 
effectively counteracted and therefore produce a strong ensemble esti-
mator. On the other hand, for gradient boosting models XGBoost and 
LGBM, a preference for less complex basic estimators (i.e., lower depth 
and large nodes) is observed. Less complex basic estimator, which has 
high bias and low variance, is prone to underfitting and therefore is 
called a weak learner. However, by gradient descent methods and strong 
regularization procedures, gradient boosting method can train the weak 
learners sequentially to compensate the residual errors of the former 

Fig. 7. Optimizing history for 3 EML models.  
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ones, and therefore produce a strong learner at last. 

4.1.2. Testing results and comparison with model code 2010 
Using the 5292 data that was separated beforehand from the original 

database and therefore have never been exposed to the EML model, the 
generalization capabilities of the EML models can be examined. The 
validation results are shown in Table .3. As can be expected from the 
results of 5-fold cross validation, 3 EML models all obtain superior ac-
curacy in both the training and the testing set. Because only minor 
discrepancies are observed between the accuracy of training set and 
testing set, the extent of overfitting is marginal and therefore and be 
reasonably neglected. Comparing the performance of the 3 EML models, 
RF and XGBoost obtain almost the same accuracy, while LGBM out-
performs the others in both the training and the testing set in most ac-
curacy indexes. 

To further validate the performance of the EML models, the broadly- 
used empirical prediction model of creep in the Model Code 2010 
(MC2010) [103] is also implemented on the testing set. There are 7 
input parameters considered by MC2010, namely cement type, 
compressive strength at 28 days, concrete age at loading, volume surface 
ratio, relative humidity of the ambient environment, loading time and 
temperature. The comparison between MC2010 and the proposed EML 
models are shown in Fig. 8. The results show that EML models outper-
form MC2010 in the testing set. An intrinsic reason accounting for such 
gap lies in the sophisticated statistical advantages of EML models, which 
guarantees a balance between bias and variance during training process. 
Besides, another reason is the number of parameters that are taken into 
consideration. In EML models, there are 14 parameters being used for 
training, which is twice as many as MC 2010. Despite the significant gap 
when compared to EML models, MC2010 still shows certain precision in 
most data points, which can be attributed to the correct selection of the 7 
input parameters. In the following section, 5 of the 7 input parameters of 
MC 2010 will be proved to be the most influential ones in the prediction 
of EML models. 

4.2. Shapley Additive Explanations (SHAP) 

Although many ML studies in concrete materials have achieved high 
accuracy in predictions of their objectives, inadequate attentions are 
paid to the interpretability of the ML models. For tree-based models, 
many studies calculate the feature importance based on the decision 
path, heuristic approaches, or model-agnostic approaches [105]. How-
ever, these methods are often infeasible and biased for EML models, 
especially for those ones with high bias [106]. In this study, the SHapley 
Additive exPlanation (SHAP) is adopted to illustrate both local and 

global interpretation of each input parameter. 

4.2.1. Overview of SHAP 
Based on the cooperative game theory, SHAP is represented by the 

average marginal contribution of a feature value across all possible co-
alitions. Specifically, the SHAP value of a feature is the averaged pre-
diction value of the samples with this feature minus the averaged 
prediction value of the other samples without this feature. To provide 
interpretability of an ML model, the output of the ML model is expressed 
by a linear addition of its input features multiplied by corresponding 
SHAP values: 

f (x)=φ0 +
∑N

i=1

φiXi

′ (20)  

where f is the mapping function represented by the ML model; N is the 
number of input features; φ0 is the average of all predictions; φi is the 
SHAP value for i-th feature; Xi’ is the coalition vector of the i-th feature, 
which can be calculated from the original input Xi by a mapping function 
expressed as Xi = hx (Xi’). Lunderberg et al. [107] proposed a unique 
solution for Eq. (20) based on the 3 desirable preconditions: local ac-
curacy, missingness and consistency. Local accuracy ensures that the 
additive relation expressed by Eq. (20) is achieved. Missingness ensures 
that all missing values get a SHAP value of 0. And consistency ensures 
that changing a ML model does not change the relative SHAP value of 
that feature, which means that assuming z’\j=0 and fx’(z’)- fx’(z’\j) ≥ fx 
(z’)- fx (z’\j), then φi (f’, x) ≥ φi (f, x). Thereby the unique solution to the 
SHAP value of a feature value is weighted and summed over all possible 
feature value combinations: 

φi(f , x)=
∑

z,⫅X
′

|z
′
|!(N − |z

′
| − 1)!

N!
[fx(z

′

)− fx(z
′

\i)] (21)  

where |z’| is the number of non-zero entries in z’. For computational 
efficiency, Lundberg et al. [94] estimated that fx (z’) = fx (hx (z’))=E [f 
(z)| zs], with S being the non-zero indexes in z’. In this study, the SHAP 
value of each input features are calculated on the testing set for each 
tree-based EML models based on the API [108]. 

4.2.2. Local interpretation 
Local interpretation aims to give explanation for prediction of each 

individual sample. As is given by Eq. (20), the linear addition of SHAP 
values forms the output of each sample data, and therefore the SHAP 
value of each input parameter can characterize the contribution of each 
feature. As is shown in Fig. 9, based on LGBM, 3 samples that represent 3 
typical scenarios are selected to be explained by their SHAP values. With 
a fixed base value of 68.59, the final prediction for creep compliance is 
the counteracting result of SHAP values of different features. Force plot 
is used here to visualize the counteracting process, in which red and blue 
bars present positive and negative contribution to the magnitude of 
prediction value, respectively. 

In scenario 1 as shown by Fig. 9 (a), although beginning from the 
base value of 68.59, the final creep compliance predicted by LGBM is 
99.06. As shown by the force plot of scenario 1, the most significant 
reason accounting for this prediction result is the high temperature (T =
80 ◦C), which is believed to induce desorption of water from the gel and 

Table 2 
Optimized hyperparameters of 3 EML models.  

RF max_depth (1,100) n_estimators (1,3000) max_features (7,14) min_samples_leaf (2,35) min_samples_split (2,60) 
73 2640 11 2 2 

XGBoost max_depth (1,100) n_estimators (1,3000) learning_rate (0.001,0.3) min_child_weight (2,35) Gamma (0.1,0.9) 
20 2799 0.0076 32 0.7516 

LGBM max_depth (1,100) n_estimators (1,3000) learning_rate (0.001,0.3) min_child_samples (2,35) num_leaves (5,50) 
22 2578 0.0333 24 40  

Table 3 
Comparison of EML model performance.   

Training Set Testing Set 
RF RMSE MAE R2 RMSE MAE R2 

9.780 3.009 0.977 14.836 5.207 0.946 
XGBoost RMSE MAE R2 RMSE MAE R2 

10.751 3.789 0.972 14.816 5.409 0.947 
LGBM RMSE MAE R2 RMSE MAE R2 

9.761 3.469 0.977 13.901 4.830 0.953  
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therefore the gel gradually becomes the sole phase subject to molecular 
diffusion and shear flow [23]. Another feature that is of positive 
contribution for scenario 1 is that drying-related parameters 
volume-surface ratio (V/S = 30) and relative humidity (RH_test = 99%). 
High V/S means that less surface area of the specimen is exposed to the 
environment, which indicates less drying creep and therefore the 
magnitude of predicted creep compliance decreases. On the other hand, 
high RH_test can reduce the drying creep and hence is identified as a 
negative contribution in scenario 1. Besides, loading age (t0) is consid-
ered as a negative contribution since scenario 1 has a late loading age (t0 
= 90 days). 

However, in scenario 2 as shown by Fig. 9 (b), t0 becomes the most 
significant positive contribution since its value 0.65 indicates loading at 
very early age, when the degree of hydration is low and the gel micro-
structure is weak, indicating more deformation under the action of 
sustained loading. On the other hand, the leading negative contribution 
of scenario 2 is high strength at 28 days (fc28 = 122 MPa), which means 
that in the scenario of early age loading, high strength concrete has a 
lower creep compliance than normal concrete. 

In scenario 3 as shown by Fig. 9 (c), when the loading stress is 
applied at the age of 28 days (t0 = 28 days), high compressive strength 
(fc28 = 97.3 MPa) is identified as the most significant contribution to 
reduce the magnitude of predicted creep compliance. Besides, as 
mentioned in scenarios 1 and 2, normal temperature (T = 20 ◦C) and 
high relative humidity (RH_test = 101%) are both considered as nega-
tive contribution in scenario 3. Note that the value 101% of RH_test 
means a steam experimental condition. 

4.2.3. Global interpretation 
Global interpretation aims to provide an overview of the SHAP 

values for input parameters of all required samples. In this section, SHAP 
values of 5292 samples in the testing set are calculated based on the 3 
EML models. The SHAP values of each feature are shown in Fig. 10, in 
which the features are sorted in the order of their averaged SHAP value. 
Therefore, the features listed on the top contribute more to the final 
prediction results of their corresponding samples. Comparing the results 
of the 3 EML models, 5 features are identified as the most significant 
input parameters influencing the prediction results of creep compliance: 
time since loading (t), compressive strength (fc28), age when loads are 
applied (t0), relative humidity during the test (RH_test) and temperature 
during the test (T). Moreover, for the 5 influential features, boundaries 
of feature values that can separate negative and positive contribution 
can be explicitly observed. The influence of the top 5 features on final 
prediction of creep compliance illustrated by global SHAP values here is 
consistent with what has already been discussed in local interpretation 
(see Fig. 9). Besides, for the influence of cement type (cem), the 
boundaries between the negative and positive contribution are not clear, 
which mainly due to: 1) limited influence of cement type on creep and 2) 
imbalanced distribution of the input parameter (see Fig. 2). While for 
the influence of creep test type (type), which corresponds to the sealing 
degree (described in detail in section 2.1), a very clear boundary can be 
observed. The distribution of SHAP values calculated by the 3 EML 
models for the input parameter creep test type (type) points out that 
high sealing degree can reduce the magnitude of creep compliance, 
which is exactly consistent with most observations in basic creep tests 
and total creep tests and can be explained by the influence of drying 
creep [9]. 

In order to look deeper into how a precise prediction is given by the 
EML model, the SHAP values of the most influential parameters need to 
be further analyzed. Although there is strong consensus between the 3 

Fig. 8. Prediction of EML models and Fib Model Code 2010.  
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EML models on the importance ranking and distribution of the SHAP 
values of input parameters, a slight difference between the SHAP results 
of the EML models indicates the importance of base model selection. 
Besides, according to Eq. (21), the calculation of SHAP values requires to 
enumerate all the possible coalition of the input features, which can be 
very time-consuming. Therefore, the SHAP results of LGBM, which 
shows the best accuracy and efficiency as mentioned in section 4.1, is 
adopted to show how the 6 most influential factors affects the final 
prediction of creep compliance (Fig. 11). The overall patterns of how the 
6 parameters influence the creep compliance captured by the LGBM 
model are: 1) The increase of compressive strength, concrete age, and 
relative humidity will decrease the (predicted) creep compliance; 2) The 
increase of loading time, temperature and water-cement ratio will in-
crease the predicted creep compliance. Moreover, some more specific 
patterns can also be captured: 1) The influence of loading time and 
concrete age will decrease as their values increase, which is in accor-
dance with power function shape of creep compliance curve and hy-
dration degree evolution in early-age stages [38]; 2) the influence of 
temperature becomes significant when the temperature reaches 70 ◦C 
[23]. Thereby, based on common knowledge of how concrete creep is 
influenced by various factors [23], the reasonability of the LGBM can be 
examined. 

4.3. Exemplification of typical scenarios 

To further exemplify the applicability of the proposed EML models 
for predicting the creep behavior of concrete, this section selects 6 
typical scenarios from the testing set and makes predictions of the cor-
responding creep compliance ranging from 1 to 12,000 days (i.e., 32.8 
years). The details of 6 selected scenarios (S1~S6) are shown in Table .4. 
The selected scenarios cover creep test results of the frequently-used w/c 

ratio of 0.4–0.6 under a temperature of about 20 ◦C. S1 and S2 represent 
the total creep tests starting from the concrete age (t0) of 28 days with 
loading durations of 1944 and 1278 days, respectively. S3 and S4 
represent the basic creep tests starting from the concrete age of 7 days 
with the same loading duration of 28 days. S5 and S6 represent the basic 
creep tests starting from the concrete age of 14 days with loading du-
rations of 11,076 and 4992 days, respectively. 

4.3.1. Exemplification results 
Based on the LGBM model, the predictions of the 6 selected scenarios 

are shown in Fig. 12. As comparison, the predictions made by MC2010 
are also plotted. As reported by Refs. [109–111], the creep compliance 
curve can be effectively characterized by power law function and log-
arithmic function. Thereby, the predictions made by LGBM will also be 
fitted by the power law function and logarithmic function, as shown in 
Eq. (22) and Eq. (23): 
Jlog(t, t0)= a * ln[(t − t0)+ c] + b (22)  

Jpower(t, t0)= a * (t − t0)
c + b (23)  

where a, b, c are fitting parameters. The fitting procedure is based on 
Least Square Method and is solved by Levenberg-Marquardt algorithm, 
which is robust and efficient for solving unconstraint problems [112]. As 
shown in Fig. 12, for each scenario, the prediction results of LGBM are in 
conformity with the experimental results. In S1, S2, S5, and S6, where 
the experimental data cover wide time ranges, such conformity is much 
more obvious. Meanwhile, as already validated in Section 4.1.2, the 
prediction accuracy of LGBM significantly outperforms that of MC2010. 
Obvious gaps between MC2010 and experimental results can be seen in 
all selected scenarios. In S2, although the MC2010 shows certain accu-
racy in first days, it still cannot capture the long-term development of 

Fig. 9. Force plot for local interpretation of 3 typical scenarios based on LGBM.  
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creep compliance in later stages. By comparing the fitting results, both 
logarithmic and power functions can well characterize the prediction 
results of LGBM, with the R2 all above 0.965. In S1–S4, the logarithmic 
function shows slight advantages compared to power function, but in 
S5–S6 the power function prevails with higher R2. 

4.3.2. Limitations and discussion 
As shown in Fig. 12, non-smooth creep compliance curves predicted 

by LGBM are observed. This is inherently due to the nature of the input 
database in the following 3 aspects: 1) The data of creep tests in the NU 
database are formed by scattered points distributed in different time 
ranges and characterized by multiple mixture parameters and experi-
mental conditions, as shown in Fig.2; 2) Derived from creep tests that 
last days, months or years, errors inevitably happen to the experimental 
results and therefore the scattered points often do not follow a presumed 
smooth curve, as shown in Fig.12; 3) Some information is missing in the 
NU database, as processed in Section 2.1 and 2.2, which can also in-
fluence the prediction results. Because the performance of the EML 
models highly depends on the input database, the scattered, incomplete 
and possibly abnormal data can result in local numerical instability of 
EML models in prediction of the creep compliance at a long-term 
continuous time range. In view of the limitations mentioned above, 3 
possible measures can be taken to promote the applicability of ML ap-
proaches in prediction of creep compliance:  

1) Improve the quality of the database before training. This can be 
achieved by implementing a thorough data cleaning procedure to 
identify anomalies and interpolate the missing values. However, 
large-scale data cleaning procedure requires a highly-accurate al-
gorithm, or the quality of the database may be significantly reduced. 
A potential method is to fit all the creep test data with a predefined 
function (e.g., logarithmic or power functions), and then using the 
fitting parameters as output of ML models. However, this can be risky 
because the fitting results are already biased (by the predefined 
function) and may often be very different from the original testing 
results. In this study, only slight and careful preprocessing measures 
have been implemented to tackle the missing information while 
maintaining the originality of the NU database (as discussed in 
Section 2.1 and 2.2).  

2) Increase the robustness of ML models to decrease the influence of 
unstructured and possibly abnormal data points. This can be ach-
ieved by the “bagging and bootstrap” procedure typically used in 
EML models, which are reported to be highly effective in prevent 
overfitting (as discussed in Section 3.1). Besides, instead of training 
the ML models on scattered points as this study, another potential 
method can be to treat the experimental results as time-series, 
although the unstructured database may pose even more diffi-
culties in this case.  

3) Keep the originality of the database and filter the prediction results 
after training. This can be achieved by simply fitting the prediction 
results of EML models with a predefined function. In this study, the 
logarithmic and power functions are fitted by the prediction of 
LGBM. As shown in Fig. 12, these fitted results still preserve high 
accuracy when compared with original experimental results. 

Overall, this study mainly adopts measure 2 and 3: the advantages of 
EML models are taken to prevent overfitting and obtain high accuracy 
through Bayesian Optimization. This is validated by both cross- 
validation and SHAP. For further application, the final results on a 
long-term continuous time range should be processed by a proper fitting 
function (e.g., logarithmic or power functions). As for measure 1, this 
study does not implement large-scale data cleaning procedures, while 
only conduct slight and careful measures to complement missing in-
formation. This keeps the originality of the database but also allows the 
anomalies to influence the training process. Further studies are recom-
mended to focus on the data preprocessing techniques to effectively 

Fig. 10. Global SHAP values based on the 3 EML models.  
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filter the anomalies, interpolate missing information while maintaining 
the originality of the database. 

5. Conclusions 

This study builds three Ensemble Machine Learning (EML) models (i. 
e., Random Forest (RF), Extreme Gradient Boosting Machine (XGBoost) 

Fig. 11. SHAP values of the most influential features based on LGBM.  

Table 4 
Details of selected scenarios for exemplification.   

w/c a/c c cem SP fc28 V/S H0 t0 T RH_Test type sigma 
S1 0.47 1.37 390 3 0 50 75.0 99 28 20 60 1 7.00 
S2 0.56 5.40 334 3 0 42 44.4 65 28 20 65 1 16.68 
S3 0.40 3.92 438 3 0.6 42 30.0 98 7 20 99 4 9.14 
S4 0.50 5.09 350 3 0.3 35 30.0 98 7 20 99 4 7.61 
S5 0.58 4.75 337 3 0 35 16.5 100 14 21 100 4 7.89 
S6 0.45 4.75 291 3 0 27 16.5 100 14 21 100 4 7.27  
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and Light Gradient Boosting Machine (LGBM)) for prediction of creep of 
concrete, based on an input vector constituted by parameters of concrete 
mix proportions, environmental conditions and loading conditions. 
Firstly, the NU database is preprocessed by a prebuilt XGBoost model 
and split into a training and a testing set. Then, through Bayesian 
Optimization and 5-fold cross validation, the EML models are tuned to 
achieve a high accuracy. Based on the cooperative game theories, the 
Shapley Additive Explanations (SHAP) is adopted to interpretate the 
predictions of the EML model and validate its reasonability by 
comparing its interpretations with common knowledges in the field of 
creep of concrete. Finally, the applicability of the EML models is 
exemplified by 6 typical scenarios and the limitations and potential 
improvement measures of the ML approaches are discussed. Through 
this study, the following conclusions can be obtained:  

(1) Through Bayesian Optimization and cross validation, three EML 
models all can achieve high accuracy in the testing set 
(R2

>0.946), which largely outperforms the broadly used empir-
ical model code MC2010 (R2=0.378).  

(2) Compared with XGB and RF, LGBM can achieve higher accuracy 
in significantly shorter calculation time on the NU database: the 
coefficient of determination of LGBM, RF and XGBoost are 0.953, 
0.947, 0.946, while their calculation time is 969, 28,063, 36,073 
s, respectively.  

(3) The well-tuned EML models can be effectively interpreted by its 
SHAP values both locally and globally. Although different EML 
models produces different SHAP results, all three EML models 
arrive at the same conclusion about the 5 most influential pa-
rameters for concrete creep compliance: time since loading (t), 
compressive strength (fc28), concrete age when loads are applied 

Fig. 12. Prediction of typical scenarios.  
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(t0), relative humidity during the test (RH_test) and temperature 
during the test (T).  

(4) The patterns that EML models captured are consistent with 
common knowledge about factors that influence concrete creep, 
which validates the reasonability of proposed EML models.  

(5) The prediction of EML models on a long-term continuous time 
range are in conformity with experimental observations. The 
creep compliance curves are not smooth due to the scattered, 
incomplete and possibly abnormal data in the NU database. 
Further improvements are required on the data preprocessing 
techniques for anomaly identification and missing data 
imputation. 
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