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ABSTRACT

Introduction: This study aimed to develop and
validate an interpretable machine-learning
model based on clinical features for early pre-
dicting in-hospital mortality in critically ill
patients with sepsis.

Methods: We enrolled all patients with sepsis
in the Medical Information Mart for Intensive
Care IV (MIMIC-IV, v.1.0) database from 2008
to 2019. Lasso regression was used for feature
selection. Seven machine-learning methods
were applied to develop the models. The best
model was selected based on its accuracy and
area under curve (AUC) in the validation
cohort. Furthermore, we employed the SHapley
Additive exPlanations (SHAP) method to illus-
trate the effects of the features attributed to the
model, and to analyze how the individual fea-
tures affect the output of the model, and to
visualize the Shapley value for a single
individual.
Results: In total, 8,817 patients with sepsis
were eligible for participation, the median age
was 66.8 years (IQR, 55.9–77.1 years), and 3361
of 8817 participants (38.1%) were women. After
selection, 25 of a total 57 clinical parameters
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collected on day 1 after ICU admission
remained associated with prognosis and were
used for developing the machine-learning
models. Among seven constructed models, the
eXtreme Gradient Boosting (XGBoost) model
achieved the best performance with an AUC of
0.884 and an accuracy of 89.5% in the valida-
tion cohort. Feature importance analysis
showed that Glasgow Coma Scale (GCS) score,
blood urea nitrogen, respiratory rate, urine
output, and age were the top 5 features of the
XGBoost model with the greatest impact.

Furthermore, SHAP force analysis illustrated
how the constructed model visualized the
individualized prediction of death.
Conclusions: We have demonstrated the
potential of machine-learning approaches for
predicting outcome early in patients with sep-
sis. The SHAP method could improve the
interpretability of machine-learning models
and help clinicians better understand the rea-
soning behind the outcome.
Graphical abstract:
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Key Summary Points

Why carry out this study?

Sepsis is a common cause for
hospitalization associated with a high
mortality rate and morbidity.

Early detection of septic patients with
potential for acute deterioration has been
proven effective in improving clinical
outcomes. However, relatively few
constructed models have been applied for
practical use due to the black box in
machine learning.

This study aimed to develop and validate
an interpretable machine-learning model
based on clinical features for early
predicting in-hospital mortality in
critically ill patients with sepsis by using
the SHapley Additive exPlanations (SHAP)
method.

What was learned from the study?

We demonstrated the potential of
machine-learning approaches for early
predicting prognosis in patients with
sepsis.

The SHAP method could improve the
interpretability of machine-learning
models and help clinicians better
understand the reasoning behind the
outcome.

INTRODUCTION

Sepsis is a common dysregulated systemic
response to infection and usually results in sig-
nificant morbidity and mortality [1, 2]. A cross-
section survey study from China showed that
sepsis accounted for 20.6% of all cases admitted
to intensive care unit (ICU), and around 35.5%

of whom were dead at 90 days after ICU
admission in 2015 [3]. Despite advances in
management and therapy, sepsis is still recog-
nized as a global health priority [4].

Recent evidence suggested that early detec-
tion of critically ill patients with potential for
acute deterioration has been proven effective at
improving clinical outcomes [5]. It is generally
accepted that machine-learning (ML) approa-
ches can help identify septic patients at high
risk for in-hospital mortality [6–9]. Although
numerous ML methods have demonstrated a
remarkable performance in medicine, surpris-
ingly, few constructed models have been used
for clinical practice [10]. A major barrier to this
progress is the black box in ML [11, 12].
Therefore, an understanding of why and how
decisions are made by the algorithms are crucial
to enable the algorithm to be used in clinical
practice. However, many of the current estab-
lishment of prognosis models pay particular
attention to accuracy, but lack transparency for
sepsis [6, 13]. These will limit the model’s
application in clinical use. Fortunately, a new
interpretation model in ML, called the SHapley
Additive exPlanations (SHAP), was first articu-
lated by Lundberg and Lee to explain individual
predictions for both kernel-based approaches
and tree-based models [14]. Additionally, this
explainable ML has been successfully applied to
a variety of medical fields, such as predictions
for the prevention of hypoxemia during surgery
[15] and precision medicine in acute myeloid
leukemia [16]. However, this advanced method
for model interpretation has not yet been used
in sepsis mortality prediction.

Hence, the objective of this study was to
develop and validate seven ML models based on
clinical features for early prediction of in-hos-
pital mortality in critically ill patients with
sepsis. The best performing model was selected
for further mortality prediction and inter-
pretability by using the SHAP method.
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METHODS

Study Design

In this retrospective modeling study, the
development, validation and interpretation of
the models proceeded in three steps. First, we
developed the models using seven ML methods.
Next, we evaluated and compared the model
performance of the ML methods in a validation
cohort. Finally, we interpreted why and how
decisions are made in an optimal algorithm by
using the SHAP method.

Data

Data for this study were collected using the
Medical Information Mart for Intensive Care IV
(MIMIC-IV, v.1.0) database. MIMIC-IV is a large,
single-center, freely accessible database with
clinical data from patients admitted to an ICU
at a large tertiary care hospital in the US
between 2008 and 2019, and contains over
70,000 ICU admissions for adult patients (aged
18 years old or older) [17]. One member in our
team has finished the Collaborative Institu-
tional Training Initiative (CITI) examination
(Record ID: 47460147 for CH) and has been
approved to access the MIMIC-IV database. This
project was approved by the Institutional
Review Boards of Beth Israel Deaconess Medical
Center (Boston, MA, USA) and the Mas-
sachusetts Institute of Technology (Cambridge,
MA, USA). Requirements for individual patient
consent and an ethical approval statement were
waived because the project did not impact
clinical care and all patients in database were
deidentified [18]. Additionally, our study com-
plies with the Declaration of Helsinki and was
performed according to Transparent Reporting
of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis guidelines [19].

Participants

We enrolled all adult patients (aged 18 years old
and older) with sepsis in the MIMIC-IV data-
base. Patients were diagnosed with sepsis using
the Sepsis-3 criteria [2] in the first 24 h of ICU

admission: (1) with confirmed or suspected
infection, and (2) with 2 or more Sequential
Organ Failure Assessment (SOFA) [20] points
(Supplementary Figure S1). Exclusion criteria
for participation in the study were: (1) patients
had multiple ICU admissions (only the first
admission was included for analysis), and (2)
patients with ICU length of stay less than 24 h.
The primary clinical outcome was in-hospital
mortality.

Variable Selection

Following the Deshmukh et al. [21] procedure
for variable selection, we selected 57 candidate
variables based on their association with the
outcome. These included demographic vari-
ables, comorbidities, vital signs, laboratory
findings, medical treatments, urine output, and
the Glasgow Coma Scale (GCS) score. Demo-
graphic variables were included for age, gender,
body weight, and height. Comorbidities were
included for hypertension, diabetes, congestive
heart failure, cerebrovascular disease, chronic
pulmonary disease, liver disease, renal disease,
tumor, and acquired immune deficiency syn-
drome. For vital signs, we selected the mean
values in the ICU for the following variables:
heart rate, systolic blood pressure, diastolic
blood pressure, mean arterial pressure, respira-
tory rate, and body temperature. For laboratory
findings, we selected the maximum value for
the following variables: blood glucose, lactate,
pH, PCO2, base excess, white blood cell, anion
gap, bicarbonate, blood urea nitrogen, serum
calcium, serum chloride, serum creatinine,
serum sodium, serum potassium, serum fib-
rinogen, international normalized ratio, pro-
thrombin time, partial thromboplastin time,
alanine aminotransferase, alkaline phosphatase,
aspartate aminotransferase, total bilirubin,
amylase, creative phosphokinase, creatine
kinase MB, and lactate dehydrogenase. The
minimum value was selected for PaO2, SPO2,
PaO2/FiO2 ratio, hematocrit, hemoglobin, pla-
telets, and albumin. Medical treatments were
included for use of ventilation, antibiotic, and
vasopressor. Finally, the cumulative urine out-
put and the minimum value of GCS score were

1120 Infect Dis Ther (2022) 11:1117–1132



also included (Supplementary Table S1). For
each variable above, we extracted the value
recorded within the first 24 h of ICU admission.
Features with[30% missing were dropped
(Supplementary Figure S3), and multiple impu-
tation by chained equations (MICE) was used
for missing value imputation in the remaining
feature space. Considering the large number of
features still present in the cohort, least abso-
lute shrinkage and selection operator (LASSO)
regression, which could effectively prevent
overfitting, was utilized in variable selection.
The list of input variables used in the model
development are presented in Supplementary
Table S2.

Statistical Analysis

Categorical data are presented as counts and
percentages. Between-group differences are
compared by the v2 test or the Fisher test.
Continuous data are presented as means with
standard deviations (SDs) or medians with
interquartile ranges (IQRs) depending on the
distribution of the data. We used analysis of
variance or the Mann–Whitney U test for con-
tinuous data to compare the differences
between groups.

Missing data with\30% in each feature were
handled by multiple imputation with ‘mice’
package in R. LASSO regression was used for
feature selection. After that, the population was
divided randomly into two parts, with 80% as
the derivation data and 20% as the validation
data. We employed a median absolute deviation
based robust similarity metric to eliminate the
outliers. Additionally, the continuous variables
were placed on a z scale with a mean of 0 and SD
of 1 to estimate the model parameters. Seven
common ML methods [Support Vector Machine
(radial bias function) (SVM), k-Nearest Neigh-
bors (KNN), eXtreme Gradient Boosting
(XGBoost), Decision Tree (DT), Naive Bayes
(NB), Random Forest (RF) and logistic regression
(LR)] were applied to develop the models in
training cohort. The quantitative performance
of models was compared with area under curve
(AUC) and accuracy in validation cohort. The
optimized model with the best performance for

mortality prediction in validation cohort
defined as the final model. The illness severity
scoring systems including SOFA, SAPS-II, and
qSOFA were assessed to predict the risk of death
and were compared with our final model in
validation cohort.

Furthermore, we employed SHAP method to
improve the interpretability for the final
model. Firstly, the SHAP summary plot was used
to illustrate the effects of the features attributed
to the model. Secondly, the SHAP dependence
plot was utilized to analyze the importance of
individual features affects the output of the
model. Finally, the SHAP force plot was
employed to visualize the impact of key features
on the final model in individual patients.

All analyses were carried out using Python
(v.3.6.6) and R (v. 3.6.1, R Foundation for Sta-
tistical Computing). Two-tailed P values\0.05
were labeled as significant.

RESULTS

Participants

Of 76,540 critically ill patients assessed from the
MIMIC-IV database, 12,292 with sepsis were
screened. Of these, 2657 were excluded because
of multiple ICU admission (only the first ICU
admission was included for analysis), and 818
were excluded due to their length of ICU stay
being less than 24 h. Finally, a total of 8817
patients were eligible for participation (Supple-
mentary Figure S2).

Baseline characteristics of the eligible par-
ticipants are shown in Table 1. The median age
was 66.8 years (IQR, 55.9–77.1 years), and 3361
of 8817 participants (38.1%) were women.
Hypertension was the most common (4256 of
8817, 48.3%) comorbidities, followed by dia-
betes (2528 of 8817, 28.7%) and congestive
heart failure (2365 of 8817, 26.8%). Those non-
survivors were more likely to be older [70.2
(58.5–79.9) vs. 66.4 (55.5–76.6), P\0.001],
have a higher proportion of medical treatments,
such as ventilation use (68.5% vs. 58.2%,
P\0.001), vasopressor use (51.3% vs. 38.2%,
P\0.001), and have higher severity of illness
scores (P\0.001), compared with survivors.
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Table 1 Demographic and clinical characteristics at baseline

Characteristics Survivors (n5 7710) Non-survivors (n5 1107) P value

Demographic

Age, year 66.4 (55.5–76.6) 70.2 (58.5–79.9) \0.001

Gender 0.001

Male, n (%) 4819 (62.5) 637 (57.5)

Female, n (%) 2891 (37.5) 470 (42.5)

Weight, kg 81 (69–95) 80 (67–95) 0.003

Height, cm 170 (163–178) 168 (160–178) \0.001

Comorbidities

Hypertension, n (%) 3815 (49.5) 441 (39.8) \0.001

Diabetes, n (%) 2208 (28.6) 320 (28.9) 0.853

Congestive heart failure, n (%) 1968 (25.5) 397 (35.9) \0.001

Cerebrovascular disease, n (%) 996 (12.9) 238 (21.5) \0.001

Chronic pulmonary disease, n (%) 1875 (24.3) 325 (29.4) \0.001

Liver disease, n (%) 794 (10.3) 292 (26.4) \0.001

Renal disease, n (%) 1278 (16.6) 276 (24.9) \0.001

Tumor, n (%) 883 (11.5) 215 (19.6) \0.001

Acquired immune deficiency syndrome, n (%) 21 (0.3) 1 (0.1) 0.512

Vital signs on day 1

Heart rate, bpm 83 (75–94) 89 (76–102) \0.001

Systolic blood pressure, mmHg 115 (107–124) 111 (102–124) \0.001

Diastolic blood pressure, mmHg 60 (55–66) 60 (53–67) 0.259

Mean arterial pressure, mmHg 76 (71–82) 75 (69–83) \0.001

Respiratory rate 18 (16–21) 21 (18–24) \0.001

Body temperature, �C 36.9 (36.6–37.2) 36.8 (36.4–37.2) \0.001

SPO2, % 93 (91–95) 92 (88–95) \0.001

Laboratory findings on day 1

Blood glucose, mg/dL 170 (140–206) 188 (146–257) \0.001

Lactate, mmol/L 2.2 (1.5–3.2) 2.9 (1.7–5.7) \0.001

pH 7.43 (7.39–7.47) 7.41 (7.36–7.46) \0.001

PO2, mmHg 88 (63–122) 63 (42–91) \0.001

PCO2, mmHg 46 (41–52) 47 (39–56) 0.293

PaO2/FiO2 ratio 192 (118–276) 129 (77–223) \0.001

Base excess 1 (0–3) 0 (- 3 to 2) \0.001
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Model Development and Validation

A total of 57 clinical variables collected during
the first 24 h after ICU admission, 10 of which

with[30% missing were dropped (Supplemen-
tary Figure S3). MICE was used to impute miss-
ing data in the remaining feature space. LASSO
regression was employed to identify signature
variables for hospital mortality in patients with

Table 1 continued

Characteristics Survivors (n5 7710) Non-survivors (n5 1107) P value

Hematocrit, % 29 (25–34) 30 (25–34) 0.030

Hemoglobin, g/dL 9.8 (8.4–11.3) 9.6 (8.2–11.4) 0.123

Platelets, 9 103/lL 157 (113–216) 154 (88–227) 0.001

White blood cell, 9 103/lL 13.8 (10.4–18.2) 16.0 (11.3–21.5) \0.001

Anion gap 14 (12–17) 18 (15–22) \0.001

Bicarbonate, mmol/L 25 (23–27) 23 (20–26) \0.001

Blood urea nitrogen, mg/dL 19 (14–28) 32 (20–50) \0.001

Serum calcium, mmol/L 8.4 (8.0–8.9) 8.5 (8.0–9.0) \0.001

Serum chloride, mmol/L 108 (104–111) 106 (101–111) \0.001

Serum creatinine, mg/dL 1.0 (0.8–1.4) 1.6 (1.0–2.6) \0.001

Serum sodium, mmol/L 140 (138–142) 141 (137–144) 0.001

Serum potassium, mmol/L 4.4 (4.1–4.8) 4.6 (4.1–5.2) \0.001

International normalized ratio 1.3 (1.2–1.5) 1.5 (1.2–2.1) \0.001

Prothrombin time, s 14.6 (12.9–16.6) 16.2 (13.5–22.8) \0.001

Partial thromboplastin time, s 32.4 (28.3–40.8) 38.9 (30.3–63.0) \0.001

Medical treatments

Antibiotic, n (%) 5543 (71.9) 764 (69.0) 0.047

Ventilation, n (%) 4484 (58.2) 758 (68.5) \0.001

Vasopressor, n (%) 2942 (38.2) 568 (51.3) \0.001

Urine output on day 1, mL 1763 (1195–2526) 1035 (464–1797) \0.001

Severity of illness scores

GCS 14 (10–15) 9 (3–14) \0.001

SOFA 5 (3–8) 10 (6–13) \0.001

OASIS 34 (28–40) 44 (37–50) \0.001

SAPS-II 35 (28–44) 50 (39–61) \0.001

Data are reported as no. (%) or median (IQR)
GCS Glasgow Coma Scale, SOFA Sequential Organ Failure Assessment, OASIS Oxford Acute Severity of Illness Score,
SAPS-II Simplified Acute Physiology Score II
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sepsis. Ultimately, 25 out of 47 clinical param-
eters remained associated with prognosis, and
these results are presented in Supplementary
Figure S4 and Table S2. We have constructed
seven ML binary classifiers in predicting the risk
of death for sepsis: eXtreme Gradient Boosting
(XGBoost), Random Forest (RF), Naive Bayes
(NB), Logistic Regression (LR), Support Vector
Machine (radial bias function) (SVM), k-Nearest
Neighbors (KNN), and Decision Tree (DT)
(Fig. 1). Figure 2A describes the performance of
these predictive models and shows that the
XGBoost model could provide a relatively better
model fit performance with an area under the
curve (AUC) of 0.884 and an accuracy of 0.895
in the validation cohort, compared with the
other ML models (AUC: RF, 0.882; NB, 0.856;
LR, 0.845; SVM, 0.763; KNN, 0.651; DT, 0.655;
Accuracy: RF, 0.891; NB, 0.862; LR, 0.890; SVM,
0.872; KNN, 0.868; DT, 0.842) (Table 2). Addi-
tionally, Fig. 2B shows that the AUCs of the
analyzed scores and the comparison of the
curves between each other. The XGBoost model
was superior to other severity of illness scores
(AUC: XGBoost, 0.884; SOFA, 0.770; SAPS-II,
0.766; qSOFA, 0.647). The calibration curve for
the XGBoost model showed that the predicted
risk is in good agreement with the actual risk.

The predicted value of the model is close to the
actual probability of the outcome (Supplemen-
tary Figure S5). Therefore, XGBoost was selected
for further prediction in this study.

Model Explanation

We calculated the feature importance using the
SHAP value for XGBoost, which had the greatest
discriminatory ability in the validation cohort.
Figure 3A presents the top 20 clinical features
according to the average absolute SHAP value.
Figure 3B provides an overview of the (positive
or negative) impact of factors on the XGBoost
model. The features specific to death included a
lower GCS score, urine output, PO2, and systolic
blood pressure, and each of these had a negative
SHAP value and therefore drove the prediction
toward mortality. Additionally, elevated blood
urea nitrogen, respiratory rate, age, and anion
gap also supported a prediction of mortality.
The impact of top 6 factors on the XGBoost
model’s mortality risk prediction were further
explored using the the SHAP dependency plot.
Figure 4 shows that a higher level of blood urea
nitrogen, higher respiratory rate, and older and
higher anion gap were associated with a signif-
icant increase in mortality risk. Conversely, as

Fig. 1 Flowchart of this study. MIMIC-IV Medical Information Mart for Intensive Care IV
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the GCS score increased, the risk of mortality
decreased. Interestingly, we found that there
was a U-shaped curve association between urine
output and mortality (Fig. 4D).

Model Application

To further explore the contribution of the fea-
tures on a certain individual patient and clinical
application for the XGBoost model, we ran-
domly selected one patient from the validation
cohort. Figure 5 provides a visual interpretation
of the XGBoost model. The constructed model

Fig. 2 Receiver operator characteristic (ROC) curves for
the ML models and the traditional severity of illness scores
to predict in-hospital mortality (validation cohort).
A ROC curves for the seven ML models to predict in-
hospital mortality; B ROC curves for the traditional
severity of illness scores to predict in-hospital mortality.
XGB eXtreme Gradient Boosting, RF Random Forest,
SVM Support Vector Machine (radial bias function), LR
Logistic Regression, NB Naive Bayes, KNN k-Nearest
Neighbors, DT Decision Tree, OASIS Oxford Acute
Severity of Illness Score, SAPS-II Simplified Acute Phys-
iology Score II, AUC area under the curve

Table 2 Performances of the seven machine learning
models for predicting in-hospital mortality

ML Accuracy AUC

XGBoost

Training set 1.000 1.000

Validation set 0.895 0.884

RF

Training set 1.000 1.000

Validation set 0.891 0.882

SVM

Training set 0.875 0.747

Validation set 0.872 0.763

LR

Training set 0.882 0.833

Validation set 0.890 0.845

NB

Training set 0.856 0.836

Validation set 0.862 0.856

KNN

Training set 0.904 0.940

Validation set 0.868 0.651

DT

Training set 1.000 1.000

Validation set 0.842 0.655

ML machine learning, XGBoost eXtreme Gradient
Boosting, RF Random Forest, SVM Support Vector
Machine (radial bias function), LR Logistic Regression,
NB Naive Bayes, KNN k-Nearest Neighbors, DT Decision
Tree, AUC the area under curve
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predicted the probability of death in this
patient to be 54% (Fig. 5A). The result suggested
that the GCS score of 5, partial thromboplastin
time value of 150, and respiratory rate of
25/min were the top 3 contributors to this pre-
diction. Figure 5B presents the specific impact
of how these factors contributed to the
prediction.

DISCUSSION

Seven ML models have been developed and
validated, based on 25 clinical variables col-
lected in the first 24 h after ICU admission, to
predict the prognosis for patients with sepsis
admitted to ICU. The XGBoost model demon-
strated the best performance. Feature impor-
tance analysis showed that the GCS score, blood
urea nitrogen, respiratory rate, urine output,
age, and anion gap were the top 6 features of the
XGBoost model, with the greatest impact in
predicting mortality. Furthermore, we have
described and captured how these features
affected the XGBoost model. Finally, we used a
SHAP force analysis to illustrate how the
XGBoost model visualized the individualized
prediction of death for patients with sepsis.
These findings should make an important con-
tribution to a deeper understanding of ML in
patients with sepsis.

Recently, ML approaches have become a
powerful tool to distinguish and predict prog-
noses in patients with sepsis. Several previous
studies have constructed ML models with good
performance to predict mortality in sepsis pop-
ulations admitted to the ICU, compared with
traditional regression model [6, 9, 13, 22]. For
instance, Yao et al. [6] revealed that the
XGBoost model displayed a better performance
in discrimination and calibration than that of

Fig. 3 SHAP summary plot for the top 20 clinical features
contributing to the XGBoost model. A SHAP feature
importance measured as the mean absolute Shapley values.
This matrix plot depicts the importance of each covariate
in the development of the final predictive model. B The
attributes of the features in the model. The position on the
y-axis is determined by the feature and on the x-axis by the
Shapley value. The color represents the value of the feature
from low to high. SHAP SHapley Additive explanation,
XGBoost eXtreme Gradient Boosting. GCS Glasgow Coma
Scale, BUN blood urea nitrogen, RR respiratory rate, HR
heart rate, PTT partial thromboplastin time, CVD
cerebrovascular disease, MAP mean arterial pressure,
WBC white blood cell, PT prothrombin time

Fig. 4 SHAP dependency plot for the top 6 clinical
features contributing to XGBoost model. A GCS, B BUN,
C RR, D urine output, E age, F anion gap. SHAP values
for specific features exceed zero, representing an increased
risk of death. GCS Glasgow Coma Scale, BUN blood urea
nitrogen, RR respiratory rate, SHAP SHapley Additive
explanation, XGBoost eXtreme Gradient Boosting

c
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the conventional logistic regression model and
SOFA score to early recognize septic patients
who are at high risk of death (AUC: 0.835 vs.
0.737 and 0.621, respectively). Hou et al. [13]
concluded that ML-based XGBoost possessed a
significant predictive value to estimate the risk
of 30-day mortality in sepsis patients, compared
with a traditional logistic regression model
(AUC were 0.857 and 0.819; respectively). Kong
et al. [22] developed four ML methods to predict
in-hospital mortality of sepsis patients, and
found that a gradient boosting machine showed
the best performance in discrimination (AUC:
0.845). In accordance with the previous results,
our study demonstrated that ML methods were
more accurate in predicting death than logistic
regression among patients with sepsis. Mean-
while, we compared the optimized model with
other existing severity of illness scores com-
monly applied to predict in-hospital mortality.
These results demonstrated that the XGBoost
model could effectively improve the prediction
of in-hospital mortality in patients with sepsis.

However, even the success of algorithms in
this field, one of the current challenges is
opening the black box of ML [12]. In other
words, accuracy is important but not sufficient
to engender trust. Before an algorithm can be
used in clinical practice, care providers need to
understand why and how decisions are made by
the algorithm. SHAP is a game-theoretic tech-
nique developed by Lundberg and Lee [15] to
successfully overcome the black box nature of
ML by providing consistent interpretability.
Nevertheless, none of the previous models have
utilized SHAP to interpret the results of ML
algorithms in predicting the death of patients
with sepsis. We first used SHAP in the XGBoost
model to achieve the best predictive effect and

interpretability. Additionally, individual expla-
nations constructed by SHAP force analysis can
help doctors understand why the model makes
specific recommendations for high-risk deci-
sions. All of these have contributed to a better
understanding of the decision-making process
of the predictive model for users.

To further confirm how input factors con-
tribute to the model, we calculated SHAP fea-
ture importance and feature effects. The
importance of variables showed that the GCS
score, blood urea nitrogen, respiratory rate,
urine output, and age were the most important
input parameters that contribute to the pre-
dicted risk of death in patients with sepsis. The
GCS score, as a level of consciousness scale
ranging from 3 to 15, could obviously indicate
neurological deterioration (with lower scores
indicating worse condition). Previously con-
structed models had confirmed that the GCS
score was associated with the risk of mortality in
the sepsis group [9, 23]. Consistently, in the
current study, the GCS score accounted for the
biggest weight in the XGBoost model, and
indicated that it was the most important pre-
dictor to predict the mortality of patients with
sepsis. Our study also found that the blood urea
nitrogen was closely related to mortality in
sepsis. Blood urea nitrogen is excreted mainly
by the kidney. The elevated blood urea nitrogen
level indicated renal lesions, while the latter has
been determined to cause adverse outcomes
[24]. The respiratory rate was another important
effector in predicting outcomes for sepsis. To
date, several studies have identified a link
between the respiratory rate and worse out-
comes [25]. Additionally, we found that urine
output was associated with better outcomes,
which was consistent with those of previous
studies [26]. In the present study, age was
shown to be a predictor of mortality in critically
ill patients with sepsis. An observational study
in Australia and New Zealand also showed that
the mortality of sepsis was less than 5% in the
absence of comorbidities and older age [27].
Finally, we explored the association between
the features’ dynamic changes and outcomes in
patients with sepsis. Interestingly, we found
that there was a non-linear, U-shaped associa-
tion between urine output and mortality in

bFig. 5 SHAP force plot for explaining of individual’s
prediction results in the validation cohort. Screenshot of
the death prediction in patients with sepsis. A, B Model
predictions by randomly drawing a single sample from the
validation cohort. Redder sample points indicate that the
value of the feature is larger, and bluer sample points
indicate that the value of the feature is smaller. GCS
Glasgow Coma Scale, BUN blood urea nitrogen, RR
respiratory rate, CVD cerebrovascular disease
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patients with sepsis. In brief, the values of urine
output between approximately 2000 and
4000 ml/L on day 1 after ICU admission were
associated with the lowest mortality in patients
with sepsis. This finding was consistent with the
observation from a previous study that there
may exist an optimal range of urine output on
day 1 after ICU admission for critically ill
patients with sepsis [28].

However, there were also some limitations in
this study. Firstly, the current research was a
single-center retrospective modeling study
using the MIMIC-IV database, which restricted
us from identifying the causal relationship
between features and outcomes. Thus, further
prospective randomized clinical trials are
required to validate the effectiveness for our
model. Secondly, many unmeasured con-
founders may contribute to the impact on the
prognosis of death for septic patients, such as
racial and treatment strategies. We may there-
fore have neglected some important features
used for the XGBoost model due to the limita-
tion of MIMIC-IV. Thirdly, the imputation and
feature selection were performed before the split
of the training and validation sets, which may
have influenced the final models. Fourthly, our
study lacked external validation by an inde-
pendent cohort from other regions or other
countries, thus further research is needed to
verify our results. Finally, our modeling study
only recruited adults, and the predictive effec-
tiveness of the XGBoost model on the prognosis
for children with sepsis remains unclear. This
conclusion should be interpreted with caution
and needs more evidence to confirm it in the
near future.

CONCLUSIONS

We have demonstrated the potential of ML
approaches for predicting outcomes early in
patients with sepsis. The SHAP method could
improve the interpretability of ML models and
help clinicians better understand the reasoning
behind the outcomes.
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