(the last integral has been taken from a table ${ }^{11}$). Therefore, E_{0} behaves like $(\ln H)^{2}$ for large values of H. A more careful, tedious, but straightforward study of (3), with the use of majorizations and minorizations, gives the following more precise result for the asymptotic behavior of E_{0} :

$$
\begin{align*}
& E_{0}=m c^{2}+(\alpha / 4 \pi) m c^{2}\left\{\left[\ln \left(2 e \hbar H / m^{2} c^{3}\right)\right.\right. \\
& \tag{5}\\
& \left.\left.\quad-C-\frac{3}{2}\right]^{2}+A+\cdots\right\}
\end{align*}
$$

${ }^{11}$ I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, edited by A. Jeffrey (Academic Press Inc., New York, 1965).
where $C=0.577$ is Euler's constant, and where A is a numerical constant for which we have only found bounds: $-6<A<7$.

One readily sees from (3) that even for tremendous values of H (the characteristic field $m^{2} c^{3} / e \hbar$ being $4.4 \times 10^{13} \mathrm{G}$), the radiative correction to E_{0} remains of relative order α. In particular, E_{0} certainly does not vanish at $H=(4 \pi / \alpha)\left(m^{2} c^{3} / e \hbar\right)=7.6 \times 10^{16} \mathrm{G}$, a field value for which (1) is not valid. Some doubts about the limits of validity of the anomalous magnetic moment concept have actually been raised by the authors of Ref. 2 themselves.

Interpretation of a Unified Theory of Gravitation and Symmetry Breaking*

David Peak and Akira Inomata
Department of Playsics, State University of New York, Albany, New York 12203

(Received 15 July 1969)

Abstract

The formalism of Moen and Moffat is interpreted as a Yang-Mills theory set in a space-time generally endowed with curvature and torsion.

IN a recent paper, ${ }^{1}$ Moen and Moffat describe the possibility of a generalized definition of "parallel" transport of a vector nonet [an element of the tensor representation of the combined group of space-time and $U(3)$ transformations] resulting in (a) a connection between space-time and internal symmetries without reference to a "supergroup" and (b) unitary symmetry breaking induced by the presence of a zero-mass boson (to first approximation). We show that it is possible to interpret the formalism in this work as an extended Yang-Mills theory. From this point of view we see that a total symmetry group is already "embedded" in the theory, and that the character of the background space-time is sufficient to break the internal symmetry.

To see how it may be possible to make the aforementioned interpretation, we first review some aspects of a local gauge theory set in a curved background. At the outset there is, presumably, a matter field which displays a unitary symmetry characterized by ${ }^{2}$

$$
\begin{equation*}
\psi^{\prime}(x)=S^{-1}(x) \psi(x) \tag{1}
\end{equation*}
$$

The entities generically designated S are taken to be matrix representations of elements of a group of internal transformations, and are by assumption functions of the space-time coordinates of the event point at which the transformation is made. The internal degrees of freedom of the ψ field are thus adjustable at all other

[^0]points of space-time, in keeping with the requirements of a local picture of interaction. To ensure the invariance of the dynamical structure of this system, it is necessary to introduce auxiliary field operators B_{μ} that couple universally with the various ψ components, and which transform under local internal group action as
\[

$$
\begin{equation*}
B_{\mu}^{\prime}=S^{-1}\left(B_{\mu} S-\nabla_{\mu} S\right) \tag{2}
\end{equation*}
$$

\]

Here ∇_{μ} denotes the relevant space-time covariant derivative with respect to the μ th coordinate.
In a sense, the B_{μ} fields are like components of an affine connection ${ }^{3}$; as a consequence, we may define a totally covariant derivative operator expressed symbolically as

$$
\begin{equation*}
D_{\mu}=\nabla_{\mu}+B_{\mu} \tag{3}
\end{equation*}
$$

D_{μ} commutes with both space-time and internal transformations, and serves to establish a meaning for a parallel transport of fields with mixed indices. In terms of the vector nonets mentioned in I, the operation of D_{μ} provides, for example,
$D_{\nu} A^{\sigma i}=\nabla_{\nu} A^{\sigma i}+B_{\nu}{ }^{i}{ }_{j} A^{\sigma j}=\partial_{\nu} A^{\sigma i}+\left\{\begin{array}{c}\sigma \\ \mu \nu\end{array}\right\} A^{\mu i}+B_{\nu}{ }^{i}{ }_{j} A^{\sigma j}$,
where Greek indices refer to space-time structure, Latin indices to internal.

Now, the covariant derivative defined in I is just such an operator, that is, it measures the effect of the total variation of fields. As expressed in that work, the

[^1]covariant derivative of a contravariant vector nonet is
\[

$$
\begin{equation*}
A^{\sigma i}{ }_{\nu}=\partial_{\nu} A^{\sigma i}+h_{j k}^{i} \Gamma_{\mu \nu}{ }^{\sigma j} A^{\mu k}, \tag{5}
\end{equation*}
$$

\]

which the $h^{i}{ }_{j k}$ given in terms of the conventional $f^{i}{ }_{j k}$ and $d^{i}{ }_{j k}$ of $U(3)$ symmetry ${ }^{4}$ as

$$
\begin{equation*}
h^{i}{ }_{j k}=(1-\alpha) f^{i}{ }_{j k}+\alpha d^{i}{ }_{j k} . \tag{6}
\end{equation*}
$$

The right-hand side of Eq. (5) is obviously

$$
\begin{equation*}
\partial_{\nu} A^{\sigma i}+h^{i}{ }_{0 k} \Gamma_{\mu \nu}{ }^{\sigma 0} A^{\mu k}+h_{a k}^{i} \Gamma_{\mu \nu}{ }^{\sigma a} A_{\mu}{ }^{k} \tag{7}
\end{equation*}
$$

where the sum on a is $1-8$. Consideration of the transformation law

$$
\Gamma_{\mu \nu}^{\prime}{ }^{\lambda i}=\frac{\partial x^{\prime \lambda}}{\partial x^{\alpha}} \frac{\partial x^{\beta}}{\partial x^{\prime \mu}} \frac{\partial x^{\gamma}}{\partial x^{\prime \nu}} \Gamma_{\beta \gamma}{ }^{\alpha i}+\frac{\partial^{2} x^{\prime \lambda}}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} \delta^{i}{ }_{0}
$$

shows that, under change of coordinates, only the unitary scalar component of $\Gamma_{\mu \nu}{ }^{\lambda i}$ transforms as a connection while the remaining internal components transform as space-time tensors. Hence, it is plausible to interpret (5) as (4) by allowing the identifications

$$
\begin{gathered}
A^{\sigma i}{ }_{; \nu} \rightarrow D_{\nu} A^{\sigma i}, \\
h_{0 k}^{i} \Gamma_{\mu \nu}{ }^{\sigma 0}\left(=\delta^{i}{ }_{k} \beta \Gamma_{\mu \nu}{ }^{\sigma 0}\right) \rightarrow \delta^{i}{ }_{k}\left\{\begin{array}{c}
\sigma \\
\mu \nu
\end{array}\right\},
\end{gathered}
$$

and

$$
h_{a k}^{i} \Gamma_{\mu \nu}{ }^{\sigma a} \rightarrow \delta^{\sigma}{ }_{\mu} B_{\nu}{ }^{i}{ }_{k} .
$$

In fact, the second replacement is already given in I [Eq. (59)]. After interpretation, assuming as in I that internal transformations may be made pathindependent, we are always able to select an internal basis such that the third term of (7) is zero. ${ }^{5}$ Consequently, the total divergence of a vector density nonet $V^{\mu i}$,

$$
D_{\mu} \vartheta^{\mu i}=\partial_{\mu} \vartheta^{\mu i}+2\left\{\begin{array}{c}
\sigma \tag{8}\\
{[\mu \sigma]}
\end{array}\right\} V^{\mu i}+B_{\mu}{ }^{i}{ }_{j} V^{\mu j}
$$

becomes

$$
D_{\mu} V^{\mu i}=\partial_{\mu} V^{\mu i}+2\left\{\begin{array}{c}
\sigma \\
{[\mu \sigma]}
\end{array}\right\} V^{\mu i} .
$$

As a result, the conservation law

$$
\begin{equation*}
D_{\mu} \mho^{\mu i}=0 \tag{9}
\end{equation*}
$$

yields

$$
\dot{F}^{i}(t)=\int \partial_{\mu} v^{\mu i} d^{3} x=-2 \int\left\{\begin{array}{c}
\sigma \tag{10}\\
{[\mu \sigma]}
\end{array}\right\} v^{\mu i} d^{3} x .
$$

[^2]The symmetry of the F-spin operators is broken, even in the case of zero Yang-Mills fields, by the unconventional space-time structure available in our hypotheses. The right-hand side of (10) vanishes, we note, both in the event of a torsion-free space-time and when the torsion present is completely antisymmetric.
Let us examine, in the light of our interpretation, statements (a) and (b) given initially. The assumptions in I appear tacitly to include a supergroup, namely, the direct product of space-time and internal groups. One then sees a trivial combination of the two sets of symmetries, a situation manifested in the vanishing of the Yang-Mills fields. On the other hand, symmetry breaking is still feasible as a result of the assumed torsion. The torsion acts as an independent field which couples to the current $V^{\mu i}$ to break the unitary symmetry, but the unambiguous identification of a particle with this field is problematic. ${ }^{6}$
A slight modification in the unitary transformation laws given in I provides a nontrivial local gauge picture, replete with symmetry breaking even in the ordinary Minkowski background. If we let the vector nonets transform internally as

$$
\begin{equation*}
\bar{\delta} A^{\sigma i}(x)=i \epsilon^{j}(x) L_{j k}{ }^{i} A^{\sigma k}(x), \tag{11}
\end{equation*}
$$

the variation of $A^{\sigma i}{ }_{i \nu}$ gives a "connectionlike" law for $h^{i}{ }_{j k} \Gamma_{\mu \nu}{ }^{\sigma j}$

$$
\begin{array}{r}
\bar{\delta}\left(h^{i}{ }_{j k} \Gamma_{\mu \nu}{ }^{\sigma j}\right)=i \epsilon^{n}\left(L_{n m}{ }^{i} h^{m}{ }_{j k} \Gamma_{\mu \nu}{ }^{\sigma j}-L_{n k}{ }^{m} h^{i}{ }_{j m} \Gamma_{\mu \nu}{ }^{\sigma j}\right) \\
-i\left(\partial_{\nu} \epsilon^{j}\right) L_{k j}{ }^{i} \delta^{\sigma}{ }_{\mu} . \tag{12}
\end{array}
$$

Since the parameters $\epsilon^{j}(x)$ are taken as scalar-valued functions of space-time, (12) is the statement in I language of the infinitesimal version of (2). With the wider generality, (8) and (9) imply

$$
\dot{F}^{i}(t)=-2 \int\left\{\begin{array}{c}
\sigma \tag{13}\\
{[\mu \sigma]}
\end{array}\right\} V^{\mu i} d^{3} x-\int B_{\mu_{j}}{ }_{j} V^{\mu j} d^{3} x,
$$

which indicates that the coupling of the Yang-Mills field to the current density alone is sufficient to break the symmetry. In the usual theory ${ }^{2}$ massless spin- 1 bosons are associated with the B_{μ} fields; these can be held responsible for the breaking (13). The prototype (and as yet singular) example is, as mentioned in I, that of the electromagnetic potentials A_{μ}.

[^3]
[^0]: * Supported in part by the National Science Foundation.
 ${ }^{1}$ I. O. Moen and J. W. Moffat, Phys. Rev. 179, 1233 (1969); herein this paper shall be referred to as I.
 ${ }^{2}$ C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

[^1]: ${ }^{3}$ See, e.g., J. L. Anderson, Principles of Relativity Plysics (Academic Press Inc., New York, 1967), p. 44.

[^2]: ${ }^{4}$ M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
 ${ }^{5}$ H. G. Loos, J. Math. Phys. 8, 2114 (1967).

[^3]: ${ }^{6}$ See, e.g., R. Finkelstein, J. Math. Phys. 1, 440 (1960).

