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INTERPRETATION OF A VARIABLE DIMENSION FIXED
POINT ALGORITHM WITH AN ARTIFICIAL LEVEL*

G. VAN DER LAAN AND A. J. J. TALMAN

Free University, Amsterdam

In this paper two interpretations of the variable dimension algorithm to compute a fixed
point of a continuous function from the product space § of simplices into itself, introduced 1n
an earlier paper, are given. The first interpretation yields a subdivision, whereas the second
one yields a triangulation of the convex hull of the set § on the natural level and some set on
the artificial level. After labelling the vertices of the latter set in such a way that this set 1s
completely labelled, a path of adjacent polyhedra (or simplices) can be generated with
common completely labelled facets starting with the set on the artificial level and terminating
with a completely labelled simplex on the natural level yielding an approximate fixed point.
The intersection of the path with this level is the sequence of the simplices of variable
dimension of the algorithm. So, the algorithm can be viewed as tracing zeroes of a piecewise
linear homotopy function.

1. Introduction. In this paper two intepretations of a variable dimension algo-
rithm for the computation of a fixed point on an (un)bounded set, introduced by the
authors in earlier papers (see [9], [10], [12]-[14], see also [8], [15]) are given. In each
interpretation a set of artificially labelled points 1s added. Doing so, the algorithm can

be viewed as tracing zeroes of a piecewise linear homotopy function.
The main part of the paper 1s concerned with an algorithm introduced in [14] (see

also [15]) for computing a fixed point of a continuous function on the product space §
of N unit simplices. In §2 we give some preliminaries and a concise description of the
algorithm. Then 1in §3 we present the first interpretation, which consists of constructing
a subdivision of § X [0, 1], where § X {0} denotes the artificial level and § X {1} the
natural level. This subdivision is formed by a collection of polyhedra. The vertices of S
are the only grid points on the zero-level. Clearly, if the jth unit simplex has dimension
m; — l,j=1,..., N, then the product space S has H;; \m; vertices, being therefore
the number of grid points on the artificial level.

In §4 we give a second interpretation with the (M — 1)-dimensional unit sitmplex on
the artificial level, where M = % j=i1m;. Therefore the dimension of the set on the
zero-level 1s now M — 1 as compared with 2 _,(m — 1) = M — N for the first inter-
pretation. Again the only grid points on the zero level are the vertices of the
(M — 1)-dimensional unit simplex. Now the subdivision of the convex hull of the
natural and the artificial level 1s formed by a collection of M-dimensional simplices.
For the special case N = 1 the two interpretations are identical and can also be found
in Van der Laan and Talman [9] (see also Van der Laan [8] and Todd [16]).

In §5 the modifications are given to generalize the interpretations to a class of

algorithms on R”, introduced in [12] (see also [13] and [15]). Some concluding remarks
are made at the end of §5.

2. Preliminaries. Let us assume we want to compute a fixed point of a continuous
function f mapping the set S into itself where S is the product space of N unit
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simplices, 1.e.,
N
S = H Sm),-*l’
Jj=1
where for j = 1;.. ., N.

§7 [.x e RS x, = 1}.

First we will triangulate S in (M — N)-dimensional simplices (see [14]), where M
e Z;L 1755

DEerFINITION 2.1. Let X be an m-dimensional convex subset of R”. A collection of
m-dimensional polyhedra 1s a subdivision of X if

(1) the union of all polyhedra 1s X,

(1) the intersection of two polyhedra 1s a face of each,

(111) each compact subset of X 1s covered by a finite number of relative interiors of

faces.
A subdivision 1s called a triangulation if every polyhedron is an m-dimensional

simplex.
Let us define the M X M-matrix Q by
R R R e
5t
0= )
: 0
DR Eaeig 0 Ov

where Q, is the m; X m; matrix corresponding to the standard triangulation of §" ",
1€,

s fiaing O ol
wii] 0
Qj = 0
: R L
DT OB a3V 5 il el
The (k + SYZ m)th column of the matrix Q will be denoted by g(J, k). Further-
more, let d=(d,, ..., dy) be a vector of grid sizes and let D be the M-diagonal
matrix with (k + S/ _\m,)th diagonal element equal to dj_l, =1, .. 5 my,
j=1,..., N.Now, a grid point of § is an element x € §, such that the (k + /~ m.)
th element of x, denoted by x;,, is a multiple of 4~'. The set of indices (j,k),
k= 1,...,mj,j=1,...,Nisdenotedby1.

DEFINITION 2.2. A subset 9 of [ is feasible if for all j at least one (j, k) is not in 9.

This definition means that an index set & is feasible if and only if the matrix with
columns g(j,k), (j,k) € 9, has full rank. |

Let v be an arbitrarily chosen gridpoint. Then we define for any feasible subset ¥,
the region 4 (%) as follows.

DEFINITION 2.3.

A(9) = {x ES|lx=v0+ 2 a(j,k)Dg(J,k)
(jk)ET

for positive numbers a( /, k), (j,k) €Y ;.

J

N
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FIGURE |. Tnangulation of S,
N =2: my=imy=2,di=4; d>=16,0=03/4; 1/4,,2/3,:1/3);;
Ni= 2 my=3my=2,di=l.d5=2.0=101:0,0:2.2)"
Ne= 2, imi= 3 my=2d, =2, dy=1, v:=i(2,3,0:1,0)".

A(9) is nonempty, then A(%) is t-dimensional if 7 1s the number of indices in 9.
Clearly the collection of these regions partltlons S. Now, the closure of A(%9), denoted
by A (%), is triangulated in ¢-simplices o( y',7(9)) with vertices y', ..., »**'in S, such
that

(i) y'=0v+3xeasB(,k)Dg(j,k) for nonnegative integers B(j,k), (j,k)ET
and

i) y'*'=y'+ Dg(m), i=1,...,t, where #(9)=(m,,...,m) is a permutation
of the elements of 9

[t can easily be seen that all vertices are grid points and that the collection of these
simplices is indeed a triangulation of 4(9). Van der Laan and Talman [14] prove that
the union of the triangulations (over the feasible ) i1s a triangulation of § (see Fig-
ure 1).

To generate a simplex of this triangulation which approximates a fixed point of f, a
grid point x receives a vector label /(x) in R™ defined by

i{(x) == f(x)+ x* e

where e denotes the M-vector (1, ..., 1)’. The vector e is added to guarantee that
solutions of the system of equations given in Definition 2.4 below are bounded. Let
e(j,k) denote the (k + >/ _m,)th unit vector.

DerFNITION 2.4. For feasible 9 a (¢t — 1)-simplex a(w', ..., w’) is called 9-
complete if the system of M linear equations

2 AW+ X p(jik)e(j k)=e

i=1 (j,k)&9T

has a nonnegative solution A*, i=1,...,¢ and p*(j,k), (j,k) &9

In the following we assume nondegeneracy in the sense that the system of equations
has always a positive solution. This can be assured by a small perturbation of the
right-hand side of the system.

Note that r < M — N + 1. By summing up for j=1,..., N over the equations

(j,k), k=1, m;, we obtain the following lemma.

LEMMA 2.5. Let A*,i=1,...,tand p*(j, k), (J,k) & U be the solution of the system
of linear equations corresponding to a J-complete simplex.
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Define for (j, k) € T, u*(j, k)= 0. Then forj=1, ..., N,

( )
m; >, ¥+ El p*(J k) = m;.

=1

DEFINITION 2.6. An (s — 1)-simplex a(w', ..., w*) is called completely labelled if
D Al(w)=e
=1
has a nonnegative solution A*, i=1,...,s.

From Lemma 2.5 it follows that for a completely labelled simplex S_ A* = 1. As
proved in [14], the point x* = 37 _ A*w' is a good approximation of a fixed point of f.

Also 1n [l4], Van der Laan and Talman present an algorithm to generate a
completely labelled simplex. The method starts with an (arbitrarily chosen) zero-
dimensional simplex {v} and the initial system of linear equations Ip = e. By pivoting,
a path of adjacent simplices of variable dimension of the triangulation of S is
generated. To be more precise, if 9§ is the set of eliminated unit vectors, a path of
adjacent z-simplices o( y', 7(9)) of the triangulation of A4 (U) 1s generated, such that the
common facets are J-complete. As soon as a unit vector, say e(i, h) is eliminated, i.e., a
(Y U {(i,h)})-complete simplex o(y', s 8 ,y’“) In A_(‘ST) 1s found, the dimension of the
simplex o(y', ..., y'*") is increased by adding the vertex y‘'*2 = y'*' 4+ Dg(i, h), the
set U 1s extended with the element (7, 4) and the algorithm continues in A (F U {(i,h)}).
If a simplex of the path of generated simplices in 4(9) has a F-complete facet in
;1_("’5\{(]', k)}) for some (j,k) € J, then the set § becomes J\{(/,k)} and the dimen-
sion of the current simplex (', ..., y’*") is decreased by deleting the vertex y‘*",
whereas the algorithm continues in the region 4 (9\{(,k)}) by reintroducing e( J,k) in
the system of linear equations. The algorithm terminates as soon as a completely
labelled simplex i1s found, which will be the case if § becomes infeasible. Clearly, then
by Lemma 2.5, YA* = 1. In [14] it is proved that the algorithm terminates within a
finite number of iterations with a completely labelled simplex. This simplex can be
used to choose a new starting point in a next application of the method for a finer grid
to improve the accuracy of the approximation. In the next sections the interpretations
of this algorithm with artificial points are all based on the regions A4 (%).

We remark that the application for integer labelling is straightforward and is
described in full detail in [14], see also [15]. Whereas the vector labelling method
terminates in general with full dimensional simplices (we assume always nonde-
generacy), the dimension of the integer labelling method’s terminal simplex lies

between min,_, ym;—1and M — N.

lllll

3. Geometrical interpretation with a polytope on the artificial level. To give an
interpretation of the variable dimension algorithm on S, we subdivide the set S X [0, 1],
where zero corresponds to the artificial level and one to the natural level. We will
argue below, that doing so, the algorithm can be seen as a method which traces a path
of zeroes of h(x,§), a piecewise linear approximation with respect to the subdivision of
§ X [0, I] to a homotopy function A(x,8) with

h(x,0)=C'l(x—c) and h(x,1)=x— f(x),

where the vector ¢ € S is defined by ¢;, = m;"' and C is the diagonal matrix with

(k + 3/ im)th element equal to ¢;;, k=1,...,m;, j=1,...,N.
Let § X {1} be triangulated as defined in the previous section. The set S X {0)
consists of one piece, i.e., the (M — N)-dimensional artificial level S X {0} is not

triangulated. Now § X [0, 1] is subdivided as follows. Let u(p) = u(p,, . . . , py) be the
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FiGure 2. Trnangulation of S2%0,1); d=3; v=1/3, 1/3, l/3)T.

vertex of S with
u,, = 1 1f h=pj, =il i N

and
u;, =0 otherwise.

For any feasible 9, a grid point x € A(Y) on the one-level 1s connected with all
vertices u(p) on the zero-level, such ‘that for all j=1;..., N;(J, Pj) & 9. Before we
prove that indeed a subdivision is obtained, we give some properties and special cases.

First, we remark that v € 4(@). Hence, we have that v X {1} is connected with all
vertices u( p) on the zero-level, which implies that a (M — N + 1)-dimensional polyhe-
dron is formed (see Figures 2 and 3). On the other hand, let § be a feasible subset of 7,
such that for all j, there is a unique 4, with (j,h;) & Y. Then a point x € A(Y) 1s only
connected with u(h,, . .., hy). Hence, if a(w', . . ., wM=N+lisa (M — N)-simplex in
A (%), then all vertices w' X {1} are connected with u(h,, ..., hy) On the zero level
and a (M — N + 1)-dimensional simplex 1s formed.

We consider now two special cases. The first one is N = 1. Then we obtain the
triangulation of § m=1 %10, 1] as described by Van der Laan and Talman [9] and [13],
Todd [16], Barany [1] and Van der Laan [8] (see Figure 2). In the case that m; = 2,
j=1,..., N, S is the product of N ]-dimensional simplices and is the analog of the
N-dimensional unit cube C" = {x € R"|0 < x; < 1}. For this special case the subdi-
vision of S X [0, 1] described above is equal to that of C N % [0, 1] given by Todd [17],
Todd and Wright [18] and Barany [2]. In Figure 3 this case is illustrated for N = 2
Observe that the point v is connected with 4 points on the zero-level, a point x € 4(Y)
with || = 1 with 2, and a point x € 4(9) with || = 2 with 1 point. Returning to the

FIGURE 3. Triangulation of S X [0, 1] with N=2, m =m,=2,d\=d,=2,v= 1 11
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general case we have that if x € 4 (9) for some § with k; elements (j,h), j =1, , N
(0 < k; < m; — 1), then x is connected with II, j(m; — k) points on the zero level

In the remainder of this section we use the tJollowmg notation. The set L is the
collection of polyhedra of S X [0,1]. A point (y,8) denotes an element of S X 10, 1]
and for any feasible 7, E(7) denotes the set of vertices u(p,, . . ., py) X {0} such that
for j=1,..., N, (j, p) €9, ie, E(T) is the set of vertices on the zero level with
which a point x € 4(J) on the one-level is connected. Observe that § C 9 implies
E(9) C E(9). Furthermore we denote by H(Y) the set of N-dimensional vectors p such
that (u(p),0) € E(9).

Finally, for a simplex o in 4(9), P(0) denotes the polyhedron defined by the convex
hull of the vertices of o on the one-level and the elements of E ().

To prove that L indeed subdivides S X [0, 1] we have to show that each point of S
lies in an element of L. To find this element is a rather technical task. To illustrate the
proof below, take some element (y,8) € § X [0, 1] in Figure 2 or 3. Clearly, if § = 0,
we have that (y,d) belongs to the polyhedron defined by the convex hull of the point
(v,1) and all vertices (u(p),0). If § =1, let § be the unique subset of 7 such that
y € A(Y). Then (y,1) belongs to a polyhedron defined by the convex hull of a
t-simplex of A(9) which contains y and the elements of E(Y9). More generally, if
y € A(Y) we have that (y,d) belongs to a polyhedron formed by the convex hull of a
snnplex m A (9) X {1} and the elements of E(9), where § =@ if § = O Jif 6=1
and 9C9Y if 0< 8 < 1. Actually, the number of elements of 9§ is a monotone
nondecreasing function of §.

LEMMA 3.1. The set L of polyhedra forms a subdivision of S X [0, 1].

PrROOF. It 1s sufficient to prove the conditions (i)—(iii) of Definition 2.1. Since the
total number of faces is finite it remains to prove (i) and (ii). To prove (i) let
(y,0%) € § X[0,1]. For 6* = 0 or 1 the proof follows immediately from the arguments
given above. So, let §* € (0, 1). Firstly, let * be the feasible set such that y € 4(J*).
Since the regions 4 (Y) partition S, this set is unique. By definition there are unique
positive numbers Q4 (/,k) € U*, such that

¥imeey, X Cq(J k).
(1:K) 3"
For 6 €0, 1], let aj*k(S) and ,8j1k(3) be determined as follows. For j=1,..., N, let
(7, kj) be an index not in §*. Then, for A = k. + 1 (with k. +1=141 kj = mj),
a;,(0)=max(0, -y, + 8v;,) and B, ,(§)= max(0, Yin — 00 5)

andforh=kj+2,. e e rav e

where h — 1 = m, if h=1. Then we have that

y—8v= 2 a,,(8)9(j.k)+ > Bix(8)e(j.k).
(J,k) (J,k)
By definition of A(9) we have that B 2(1)=0; o (1)="8a,, (k)€ I* and a; (1)
=0, (J,k) & 9*. Observe that a; ;(0) 1 nondecreasmg In 6 Hence « A (8*) = () smce
(J,k) &T% j € Iy. Moreover, for all (/,k), we have that «a; k(S)BM(S) =
Consequently, there exists a feasible set ¢ C 9* such that

y—8%=" > a:(8%)q(jik)+ 2 B(8%)e(j.k). (3-1)

(J,k)ED (J.k)&T
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Let § be the subset of ¥ such that a +(6%) > 0 for all (j, k) € 9. Then it follows from
(3.1) that

y=0%x"+(l=0%)2 (3:2)
where
x=0+8"" > a,(8%)q(jk)
(j,k)ET
and

:=(1-8%"" 32 B(8%)e(jik).

(J,k)&EY

We will prove now that x € 4 () and z is a convex combination of the vertices u( p)
with (u(p),0) € E(9). By the structure of Q we get after adding the equations (j, k),

k=1,...,m n the system (3.1) that for fixed

Bi= D, _@-‘k(ﬁ*)=k21(y—8*vj_k=(l—6*), g Lot 5 NG

k:(j k)&

which implies that z is in S. Since z;, =0 for j,k & 9, z can be expressed as a linear
combination of the extreme points u(p), p € H(Y (). To prove that x € A (%), suppose
the contrary. Then, since a;,(8*) > 0 for all (i,4) €Y we must have that x,, <0 for
some (i,h) € 9. Moreover we have that e, ,(j,k) =0 for all (j,k) &9 5. Consequently

z;,, =0 and hence by (3.2), Yin < 0 which contradicts the fact that (,6) € § X [0, 1].
So, (3.2) implies that ( y,8*) is a convex combination of (x,1) € 4 () X {1} and (z,0),
which is a convex combination of the elements of E(%). Now, let o be a simplex in
A(9) which contains x. Then (y,8*) € P(o) which proves (1).

To prove (ii), suppose P, and P, are two polyhedra of L both containing a point
(y,8*). We will show that (y,6*) belongs to a common face of P, and P,. | 57 o 2
i = 1,2, be the corresponding simplex on the l-level, 1e., o, X {1} = P, N (S X {1})
and let E(9"), i = 1,2, be the set of vertices of P, on the zero level. If 6* = 1, we have
that (y,1) € (¢, N 0,) X {1} which is a common face of P, and P,. If 6* =0, then
(,0) is a convex combination of the elements of E(9") for both i = 1 and 2 and hence
(y,0) lies in the convex hull of the elements of E(J') N E(F%). Since E(J') N E(T°)
C E(5"), i = 1,2, this convex hull is a common face of P, and P,. For * € (0, 1), let
T be the largest feasible set of indices such that (3.1) holds .e., B;x(0%) >0 for all
(j,k) & J. Now, (y,0%) lies in the convex hull P of the vertices of (erl N o,) X {1} and
the elements of E(G) Since (y,6*) € P;, (3.1) also holds for ¥ = 9". So E(G') C E(F),
i = 1,2. Hence the convex hull of the elements of E(%) is a common face of P, and P,.
The same holds for (¢, N 6,) N {1}. So, P is a common face of P, and P,. Q.E.D.

To conclude this section we show that the path of t-simplices generated by the
variable dimension algorithm described in §2 corresponds to a path of adjacent
polyhedra of L such that each polyhedron contains a line segment of zeroes of the
piecewise linear approximation h(x,8) to h(x,8) defined above. Observe that, al-
though S X {0} is not triangulated, A(x,8) is well defined by the fact that h(x,§) is
linear on § X {0}.

We label now each vertex (y,8) of the subdivision of S X [0, 1] by

[(y,8)=h(p,8)+e.

Observe that for each vertex of the subdivision holds § = 0 or 1 and that the labelling
rule results in

[(p1)=h(p,l)+e=y—f(y)+e
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for a grid point y on the one-level, which is consistent with the rule given in §2, and
f(y,0)=h(y,0)+e= Co (y=¢c)+te=C"y.

In particular this means that
lk(u(p),O) = C " 'u(p), -
(flk(“(P)’O):mj if k=pfﬁ>, Ji=olls sV

= () otherwise |
We show that for a (z — 1)-facet 7(w', ..., w') of a simplex o in 4 (%) the system of
linear equations
[
2MW)+ > n(k)e(jk)=e (3:4)
i =1 (J,k)&ESD

has a feasible solution if and only if

SAL(wW )+ > p(p)(u(p),0)=e (3.3)

i=1 pE H(9)

has one. Recall that if (3.4) has a feasible solution, 7(w', ..., w’) is F-complete.
Moreover, the vertices in (3.5) are the vertices of P(), being the (M — N )-dimensional
face of P(o) with vertices (w',1),i=1,...,t, and the elements of E(9). Assume that
the system (3.5) has a feasible solution )_\;“, =1, ! w5t and p*(p), (#(p),0) € E().
SetA* = A%, i=:1,i.ust and p*(j, k) = m; > p*(p), where the sum is over p € H(J)
such that P k.Clearly A*,i=1,...,tand p*(j,k), (j,k) & 9 is a feasible solution
of (3.4). If, on the other hand, the system (3.4) has a feasible solution A* i=1, ..., ¢,
u*(j, k), (j,k) & 9, then all elements (A*, p*) of the set

peE H(Y)
7

\

(3.6)

are solutions of (3.5). From Lemma 2.5 it follows that this set is nonempty. For
Instance we can take

N

p*(p)=(1—-26%""" Hl (m*(j.k)/m),

j=
where 6* = > _ | A¥.

i=1%% —
Consequently, we have that a (r — 1)-facet 7(w', ..., w") of a simplex o in 4(9) is
J-complete, if and only if the (M — N )-dimensional facet P(7) of P(o) contains a zero

point of h(x,d), namely the point (y*,6*), where

[
yre SN N eN(p)ulp)
i=] peE H(Y)
Note that S_ A* + 2 e n( P*(p) =1, which follows from (3.5) by adding all equa-
tions.

Since the solution of the system of linear equations (3.4) corresponding to
r(w', ..., w")is unique, it follows from (3.6) that (y*,0%) 1s unique. Consequently the
algorithm can be interpreted as a method which generates a path of adjacent
polyhedra of L starting with the polyhedron P(v) = conv(S X {0} X {(v,1)}). Such a
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polyhedron is a simplex if just one element (/, k) is not in 9 for at least N — 1 indices ;.
The facet S X {0} of P(v) which is on the boundary of § X [0, 1] contains a zero point
of h(x,8) viz. (¢,0) and the common facets of the sequence of polyhedra contain all a
zero point of A(x,8) obtained from the solution of (3.5). So the method traces a path
of zeroes of h(x,8) and terminates as soon as a zero point on the one level is found
which is the case if and only if all p*(p), p € H(Y), are zero and hence D A* = 1. The
intersection of the path of generated polyhedra with § X {1} 1s the path of simplices of
the variable dimension algorithm described in §2.

4. Interpretation with M points on the zero level. In the previous section we have
subdivided S X [0,1], in which case we obtained a subdivision in (M — N + 1)-
dimensional polyhedra (and simplices). In this section we interpret the algorithm
described in §2 as an algorithm which generates a path of M-dimensional simplices.
To do so we triangulate the convex hull of the (M — 1)-dimensional unit simplex S~
on the zero-level and the set S on the one-level, 1.e., we triangulate the set

L

S=conv((SM_' X {0}) U (S X {l}))

So, instead of the (M — N)-dimensional set § (having Hlemj vertices) we have now
on the zero level the (M — 1)-dimensional set ™' having M vertices. Clearly, if
N =1 we have that § = Hf'=lS"5'_' = S™~! which implies that in this case the two
interpretations are identical.

Now, we define G as the set of M-simplices which are obtained by connecting a grid
point (w, 1) in A(9) X {1} with all the vertices (e(}j,k),0) of S ~' X {0} such that
(j,k) & 9. So, in particular we have that the zero-dimensional simplex (ov,1) of
A (D) X {1} is connected with all the vertices of S™~' X {0}, whereas the vertices of a
t-simplex in A (%) for some feasible § with |J| = t = M — N are connected with the N
vertices e(i,h) on the zero level where for alli=1,..., N, (i,h) 1s the unique index

not in 9.

LEMMA 4.1. The set G of M-simplices triangulates S.

ProoF. To show that each point of S lies in at least one simplex of G, let (y,8) be
an arbitrarily chosen point in S. If § = 0 it is immediately clear that (v,0) lies 1in the
simplex which is the convex hull of S ' X {0} and {(v,1)}. If § =1, then y € S and
there is a unique feasible ¢ such that y € 4(9). Letting o be some simplex of A(T)
containing y, then (y, 1) lies in the simplex of G being the convex hull of ¢ X {1} and
the vertices (e(/, k),0) for (j,k) & 9. So, it remains to consider the case that 0 < o < 1.
Since (y,0) € §, there are points x € S and z € SM~1 such that

y=0x+(1—-190)z
and so
y =.00-=0(X' = o)+ (1—"19)z

Since x and v belong to S, we have

H]!’,-

kz—jl(y—‘su)j'k__-(l—S)Azlzj-‘k} Ofoenal ==l ol (4.1)

So, using the special structure of the matrix O, we obtain that there 1s at least one
feasible set 9 of I such that

y — O0v = ('}?E aiuq (i, h) + Uge‘ k€ JsK) (4.2)
i, Sy R N
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for unique nonnegative a*,, (i,h) € 9, and > (J, k) & 9. Consequently,
e 2 : k€ (] k) + oy (4-3)

where .J_) ="0F Z(a‘,}t) EE‘T‘S % ]a:irqua h)
As in the proof of Lemma 3.1, we can show that j € A (9) where

J={(i,h) €T |a}, >0).

In fact, supposing that y & A (9) we must have y,, <0 for some (i,h) € 5 and hence
by (4.3) y,, <0, which contradicts that y € S.

Now define = (0 for (_],k) € 9\Y. From (4.1) and (4.2) we now obtain that
2, E]EZofi%)k(J—ayz;z 7,,=1-38,
(j,k)E':’J j=1k=1 Jj=1k=1

since z € SM~!. Hence

(1= 8)7" D) Be(i k)

(J.K)&ED

is a point in S™~'. Since by (4.3) y=(1—-10)z+0y we have that (y,8) is a convex
combination of the point (y,1) in 4(9) X {1} and (Z,0) in SM_l X {0}. Hence (y,0)
lies in the simplex of G, whose vertices are (e(/, k), O) for (j,k) & 9 and the vertices of
o X {1}, where o is some simplex of A4 (%) containing y.

This proves (1) of Definition 2.1. To prove (ii), let o, and o, be two M-simplices of G
both containing some point (y,d) and let 7, and 7, be the faces of ¢, and g, lying on
the one-level, 1.e., 7, =0, N (S X {1}),i=1,2.

Moreover, let 9", i = 1,2 be such that (e(/,k),0), (j,k) & ' are the vertices of . on
the zero level. Then (4.2) holds for both J' and 9°%. Let 9* be the largest feasible set of
indices such that (4.2) holds, i.e., B >0 for all (j,k) & 9*. Now (»,8) is in the
convex hull  of the vertices of 7, ﬂ frz and the vertices (e( j,k) 0);ii(j /)i F*. Since
% C9* i= 1,2, the convex hull of (e(/,k),0), (j,k) & I* 1s a face of both o, and o,.
Clearly, also 7, N 7, 1s common face of o, and 0,. Hence G is a common face of o, and
0,.

Finally (1) of Definition 2.1 follows immediately from the fact that the total
number of faces is finite. Q.E.D.

The variable dimension algorithm described in §2 can now be interpreted as tracing
zeroes of the piecewise linear approximation 4(x, §) with respect to the triangulation G
to a homotopy function A(x,8) which satisfies

h(x,1)=x— f(x) and h(x,0)= Mx —e.

Labelling each vertex (y,8) of S by f(y,S) = 5()?,8) + e we obtain that for a grid
point (y, 1),

[, )=y~ f(y)+e

which is consistent with the labelling / of §2, and that

H(y,0) = My,
which implies that f(e(j,k), 0) = Me(j,k) for all (j,k) € 1. Let r(w',...,w") be a
(1 — 1)-facet of a simplex a(w', ..., w'*!)in 4(9) and let R be the (M — 1)-facet of

r+l

the M-simplex P = conv(o X {0} U {(e(},k),0)|(j,k) & 9}) of G opposite to w
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Clearly, 7 is 9-complete if and only if the system of linear equations corresponding
to R,

[

;)t,.z (w') + ; n(j,kyMe(j, k)=e, (4.4)
has a feasible solution A*, i=1,...,1t g*(j,k), (j,k) & 3. To be more precise, 7 1s
-complete with solution A¥,i=1,...,¢t u*(j,k), (j, k) & I 1ift N*=1k¥, i =] 7

and p*(j, k)= M ~'p*(j, k) is a solutton of (4.4). From Lemma 2.5 it follows that

[

DA+ N (Rl

i=1 (j.k)&T
Consequently, if 7(w', ..., w") is J-complete then R contains a zero of h(x,98),
namely the point (x*,B*), where

[ I
= > Aw'+ > B*jk)e(j,k) and &%= > A
i=1 (j,k)&T i=1
Observe that (M ~'e,0) is a zero of h(x,8) in SM~'x {0}. So, starting with the
simplex of G, being the conv(S™~' X {0} U {(v,1)}), the method generates a path of
M-simplices of G such that common facet of two adjacent generated simplices
contains a zero point of h(x,8). The method terminates as soon as for some ¥, all
n*(j, k), (j,k) &9, become zero, i.e., as soon as for some 5 an M-simplex R 1s
generated having a zero of h(x,8) in the corresponding ¢-face o(w', G e
(A(9) X {1)) of R on the one level.

Assuming nondegeneracy t = M — N. Observe, however, that the solution on the
one level is degenerated in the sense that the weights associated with the unit vectors at
the artificial level become simultaneously zero. The intersection of the path of
generated simplices of G with the one-level is the path of simplices of the variable
dimension algorithm discussed 1n §2.

5. Modifications for R" and some concluding remarks. A class of restart algo-
rithms without an artificial level to compute a fixed point of a function f on the
n-dimensional real space R” has been presented by the authors in [12]. Before setting
the algorithms in the framework of the previous sections we have to summarize the
main ideas of that paper.

Let m,, ..., my be N positive integers such that 2 _, m.=n, and write R" as

J
= Hf':lRm Let Q be the n by n + N matrix defined. by

B =]

0, O AN
g
- "k

: 0

i AP 0 o
where Q; is an m; by (m; + 1) triangulation matrix of R" (see [11]). Let / be the set of
indices (J,k) k=1, ,m+1, j=1, , N and let the vector g(/,k) denote the
. S (m+l))theolumnon k—l ,m+ 1, j=1, ..., N x€R" the

element x; , denotes the (k + S/ Z im)th component of x. i x & R"*N the element x;
denotes the (k + SYZ1(m, + 1))th component of x. We redefine for each feamble
subset ¢ of I the open regions A4 (%) by

A(T) = {xER”|x=v+ S «(j,k)q(. k) for positive a(j, k). (j,k)ee'}.
(1. K)ES
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The closure 4(9) is triangulated by simplices o( y',m(9)) as done in §2 with Q as
defined above. To compute a fixed point of a function f from R” into itself we define a
function g from R” to R"*" by

gix(X) —fk(x) r f k=1,...,m,
2 — &ix(X) it k=m + 1,

Each grid point x € R" receives a vector label /(x) € R"*" defined by
[(x)=g(x) + e.

A F-complete simplex o(w',...,w’) and a completely labelled simplex are now
defined as in Definitions 2.4 and 2.6 with M = m + N.

Again a completely labelled simplex o(w',...,w") yields an approximate fixed
point >._ A*w', where A*, i=1,...,1 is the solution of the system of linear
equations (see [12]). To find such a completely labelled simplex the algorithm proceeds
as described 1n §2 starting with the zero-dimensional simplex {v} of A4(@) and the
system of n + N linear equations /u = e.

To interpret the algorithm as a method tracing zeroes of a piecewise linear approxi-
mation to a homotopy function we have again to add an extra level of points. This
extra level will consist of a polytope and hence the extra level is bounded.

For the first interpretation, the analog of §3, we take on the zero level a polytope Z:
being the product of N m;-dimensional simplices Z, j = 1, Nidie., ' Z =" i=1Z;.
Clearly Z has [] -_l(m + 1) vertices. The simplices have to be defined in such a way
that there 1s just one vertex say z(p)=z(py, - -->pn), M A(py, - . ., py) X {0} where
A(py, .- py) =A0) with I = I\{(/J, R,')U =1,..., N}. Following the lines of §3, a
subdivision into (n + 1)-dimensional polyhedra of the set

Z =conv(Z X {0} UR" X {1})

1s obtained by connecting a grid point x € 4(%) on the one-level with all the vertices
z(pys . - -, py) such that (Js P& Js i Lyase o5V

Observe that the subdivision is not locally finite as is required by many authors (see
Eaves [3], Barany [1]). Locally finiteness, 1.e., each point x has a neighborhood meeting
only a finite number of polyhedra, is to guarantee that every compact subset is covered
by a finite number of relative interiors of faces (see Definition 2.1 (ii1)). This is indeed
the case for the subdivision presented above. By choosing an appropriate homotopy
function 4(x,8) on Z we can prove that, as in §3, the algorithm traces a path of zeroes
of h (x,0), the piecewise linear approximation to A(x,9).

We obtain the analog of §4 if we take on the zero-level the (n + N — 1)-dimensional
set —S"*V ™1 ie., the “negative” unit simplex. Then conv(R" X {1} U — §"*¥-1 x
(0}) 1s trnangulated 1in (n + N )-dimensional simplices by connecting a grid point (x, 1)
in A(Y) X {1} with all the vertices (—e(i,h),0), (i,h) & 9. Again the algorithm can be
interpreted as tracing zeroes of the piecewise linear approximation h(x,8) to a
homotopy function A(x,d) with A(x,1) = g(x) and A(x,0) = —(e + (n + N)x).

The class of algorithms on R” discussed above has two extreme cases. The first one,
N =1, 1s the “standard” variable dimension algorithm on R” (see [10] and [16]). In this
case the two interpretations are again identical and can be found already in Van der
Laan and Talman [13], Todd [10] and Barany [1]. For the other extreme case, N = n,
m.=1,j=1,..., N, the first interpretation was found by Barany [2] and Todd and
Wright [18], see also Todd [17]. As computational results have shown (see [12]) the
latter case (N = n) 1s very appropriate to compute a fixed point of a function on R”".
This 1s due to the fact that in this case the algorithm generates simplices of the
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so-called K’ triangulation, which depends on the starting point and allows for making
fast movements in all directions. One of the disadvantages, however, 1s that we have to
handle with a system of 2n linear equations instead of n + 1 in the standard case.
Making use of the fact that the algorithm actually traces zeroes of a homotopy
function from R"*' to R" (the first interpretation) Todd [17] shows that under some
additional constraints the size of the system can be reduced from 2n to n + 1. Since we
have shown that for each intermediate case 1 < N < n the algorithm traces a path of
zeroes of a function from R"*' to R”, in fact we can prove that for each case the size
of the system of equations can be reduced to n + 1 (M — N + 1 for the algorithm on
S). In [14] we constructed an example of a continuous function on the product space §
of some unit simplices. This example shows the importance of having an algorithm on
S. It is not clear if there is any advantage in having a class of algorithms on R". We do
not have an example for which one of the intermediate cases, 1 < N < n, 1s very
appropriate to use. It could be possible that an intermediate case becomes advanta-
geous if the function on R” has some properties, e.g., linearity or separability. For a
further discussion of the properties and possibilities by using an element of the class of
algorithms on R”" we refer the reader to [12] and [15].

Recently, some studies have appeared exploiting the ideas behind variable dimen-
sion restart algorithms to compute fixed points. Firstly, Kojima and Yamamoto [5] and
(6] have put the simplical fixed point algorithms in a unified framework based on a
primal-dual pair of subdivided manifolds (see also Kojima [7]).

Let a(w', ..., w") be a 9-complete facet of a simplex in A(9) generated by the
algorithm with solution A¥, ..., A*, u*(j, k), (j,k) & 9. Then it follows from Defini-
tion 2.4 that for x* = S'_ A*w’ with A* = A*/3_ A* holds

—f(x*) + x* €Q(T)

where f is the piecewise linear approximation to f with respect to the triangulation of §
and

&) = {y e R |for some a > 0, yin=2a, (J;h) €Y, yjn < a,(j,h) QGJ'}.

Kojima and Yamamoto interpret the algorithm as a method tracing a path of points
(x, y) € A(T) X C(9). The set I changes if some boundary is hit, 1e, if x E
A(T\{(j,k)}) for some (j,k) €Y or y,, = a, for some (j,h) & 3.

Secondly, Freund [4] has given an interpretation based on a new mathematical
structure, called a V-complex, and its associated H-complex. In this paper we have
presented path-following interpretations of variable dimension algorithms by connect-
ing vertices of the triangulation on the natural level with the vertices of a certain set on
an extra level. In contrast with Kojima and Yamamoto, in our interpretation a path of
zeroes of a homotopy function is followed. In comparison with Freund, the con-
structed subdivisions of S X [0, 1] can be seen as being H-complexes. However, an
H-complex is not necessarily a subdivision. In the first interpretation the artificial set 1s
the product of several simplices and has the same dimension as the real set. This
interpretation is an extension of work done by Todd and Wright [18], Todd [17] and
Barany [2]. Note that this interpretation yields a polyhedral subdivision. This implies
that, although the path of zeroes of the piecewise linear approximation to the
underlying homotopy function is uniquely determined, the solution of the correspond-
ing system of linear equations is not necessarily unique (see (3.6)).

In the second interpretation the set on the extra level is a simplex with a higher
dimension than the dimension of the real set, which results in a simplicial subdivision
of the convex hull of the set on the natural level and the one on the artificial level.
Hence, following the standard technique of simplicial fixed point algorithms, a path of
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adjacent simplices 1s generated. Each common facet of two adjacent simplices of this
path has now a unique solution with respect to the associated system of linear
equations.

The second interpretation can be easily adapted for integer labelling by labelling the
(J,k)th unit vector on the extra level with (j,k). For the first interpretation the
adaption to integer labelling appears complicated. One possibility is to label the face
which is a convex hull of the vertices in E(9) with the labelset . To apply index
theory the second interpretation seems to be more appropriate than the first one. On
the other hand index theory can be applied directly without using an extra level, as is
done by Van der Laan [8] for the extreme case N = 1.
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