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Abstract

In grating-based x-ray phase sensitive imaging, dark-field contrast refers to the extinction of the
interference fringes due to small-angle scattering. For configurations where the sample is placed
before the beamsplitter grating, the dark-field contrast has been quantified with theoretical wave
propagation models. Yet when the grating is placed before the sample, the dark-field contrast has
only been modeled in the geometric optics regime. Here we attempt to quantify the dark-field
effect in the grating-before-sample geometry with first-principle wave calculations and understand
the associated particle-size selectivity. We obtain an expression for the dark-field effect in terms
of the sample material’s complex refractive index, which can be verified experimentally without
fitting parameters. A dark-field computed tomography experiment shows that the particle-size
selectivity can be used to differentiate materials of identical x-ray absorption.

1. Introduction

Grating-based x-ray phase sensitive imaging techniques generally employ a grating in the x-
ray beam to produce a dense fringe pattern on the image plane at some distance downbeam;
changes in the position and amplitude of the fringes indicate x-ray refraction and coherent
scattering in the sample (Fig. 1) [1–8]. The advantage of the grating approach is its ability to
acquire full-field images using gratings of large areas. X-ray refraction and diffraction both
arise from spatial variation of the refractive index in the sample material, but on different
length scales. X-ray refraction is caused by macroscopic variations of the refractive index in
the sample that are resolved by the imaging detector. Diffraction, or coherent scattering, is
caused by unresolved, microscopic fluctuations of the refractive index. Coherent scattering
causes angular divergence of the incident beam, which is observed in diffraction-enhanced
imaging [9] and rigorously modeled by Nesterets [10].

In grating-based techniques, the scattering effect incurs a drop of the fringe amplitude in
addition to the usual intensity attenuation caused by absorption. The additional fringe
amplitude attenuation is represented by the dark-field image [6]. We showed in a previous
paper that the fringe amplitude decays exponentially with the sample thickness in the
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geometric optics regime [7], and Yashiro et al. showed the same relationship in the Talbot
interferometer configuration with the sample proceeding the beamsplitter grating [sample-
before-grating (SbG) configuration] [11]. The fringe amplitude has also been modeled
phenomenologically in dark-field computed tomography (CT) [12,13]. Specifically, if A is
the fringe amplitude without any sample, and A′ is the fringe amplitude when a sample of a
single material and thickness T is in the beam, then the above models state that

(1)

where μa is the absorption coefficient of the material and μd is the dark-field extinction
coefficient (DFEC). The DFEC accounts for the effect of small-angle scattering on the
fringes and is, by definition, the extinction coefficient of the fringe visibility V. The
visibility is defined as the ratio of the fringe amplitude A over the average intensity J:

(2)

The above relationship is illustrated in Fig. 2.

In coherent scattering, both the cross section and the angular distribution are dependent on
the length scale of the scattering structures, so the dark-field extinction can potentially be
used to characterize materials containing microscattering structures [14]. We showed in
previous works [7,15] that the fringe visibility decays exponentially with the sample
thickness when the fringes are geometric projections of Ronchi-type gratings and that the
DFEC is determined by an autocorrelation of the electron density distribution. The
correlation distance is determined by the device settings. In cases where wave interference
must be considered, Yashiro et al. [11] analyzed Talbot interferometers in the SbG
configuration [Fig. 1(a)]. They showed the exponential relationship with rigorous wave
calculations, and they obtained the expression of the DFEC in terms of the autocorrelations
of the complex refractive index.

An essential assumption shared by the Yashiro et al. model and the earlier Nesterets model
is that the sample is illuminated by a plane wave. Under this assumption, the complex wave
at any point on the wavefront can be expressed as a single-path integral through the sample
along the direction of the beam. However, in the grating-before-sample (GbS) configuration
with the grating proceeding the sample [16], the plane wave assumption no longer holds.
The sample is now illuminated by a sum of plane waves at different angles. The transmitted
wave involves the sum of projections along different paths in the sample. As a result, the
derivations of Nesterets and Yashiro cannot be easily extended to obtain the DFEC.

Because the GbS geometry has certain practical advantages over the SbG geometry, it is
worthwhile to obtain the DFEC for the GbS geometry. These advantages include the ease of
grating fabrications [16] and lower radiation exposure when Ronchi-type intensity gratings
are used [7,15,17–19]. We therefore obtained the theoretical expression of the DFEC for the
GbS geometry using a stacked-slice model and wave propagation calculations.

The theoretical expression was then tested in aqueous suspensions of silica microspheres. In
a 3D tomography experiment of iron-oxide particle suspensions, the dark-field image is
shown to distinguish between materials of different microscopic composition but similar
bulk absorption coefficients [20].
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2. Theory of the GbS Geometry Dark-Field Extinction Coefficient

Our starting assumptions are the same as the ones by Nesterets and Yashiro, but without the
plane wave assumption. These are (i) the short wavelength assumption—over the distance of
the x-ray wavelength λ, the phase and absorption effects in the material are small and (ii)
the small angle scattering assumption—if the typical size of the unresolved scatterers in the
material is D, then λ/D ≪ 1.

We denote the complex refractive index of the imaged sample as

(3)

where

(4)

where δ and β represent the phase shifts and magnitude attenuation in the material,
respectively. The short wavelength assumption means that |χ| ≪ 1. We consider χ to
contain a smooth (resolvable) part χs and a fine (unresolved) part χf [10]:

(5)

We denote an x-ray wave vector as k:

(6)

and kx, ky, and kz are its Cartesian projections:

(7)

Let the incident beam come along the Z axis. Our basic model is to section the sample into a
stack of thin slices of thickness t, along planes perpendicular to the Z axis (Fig. 3).
Removing all material beyond the plane at z allows us to consider the incremental effect of a
single slice t. We denote the fringe amplitude on the detector before adding the slice as A(z),
and after as A(z + t). The average intensities on the detector before and after adding the slice
are denoted as J(z) and J(z + t). The fringe visibility V is defined as the ratio A/J. If V to the
leading order of t satisfies

(8)

and μd is a parameter expressed in the fine fluctuation χf, then the differential form of Eq.
(8) is

(9)

The solution to this equation is simply
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(10)

Equation (10) would mean that the fringe visibility decreases exponentially with the sample
thickness by the coefficient μd, which is the DFEC that we want to solve.

To carry out this procedure, we first focus on the complex wave function at the entry plane z
of the thin slice (the entry wave function) (see Fig. 3) and the complex wave function at the
exit plane z + t (exit wave function). The entry wave function is an integral sum of plane
waves of a spread of wave vector k’s. By the small-angle scattering assumption, kx/k ≪ 1
and ky/k ≪ 1. We denote the complex amplitude of wave vector (kx, ky, kz) as a(kx, ky), so
that the entry wave function is

(11)

The exit wave function can be expressed in terms of the entry wave function by the
projection approximation under the short wavelength assumption [21]:

(12)

where Φ is the phase delay and attenuation through the slice for each plane wave along its
path:

(13)

Because we model the refractive index χ as the sum of smooth and fine parts [Eq. (5)], Φ
also contains two parts:

(14)

where the fine part is explicitly

(15)

Now we expand χf to the leading order of kx/k and ky/k:

(16)

Under the small-angle scattering assumption, if the typical size of the fluctuations in the fine
part of the refractive index χf is D, then

(17)

Substituting Eq. (17) into Eq. (16), and noting that the spatial derivatives of χf in the X and
Y directions are on the order of χf/D, while τ is between 0 and t, we have
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(18)

where O(λt/D2) means a term on the order of λt/D2. Additionally, the k2/kz factor in Eq.
(13) can be expanded by the Taylor series as

(19)

Substituting Eqs. (18) and (19) into Eq. (15) yields

(20)

Now we can make the slice thickness t small enough such that |χf |kt ≪ 1 and λt/D2 ≪ 1,
then

(21)

where

(22)

Equation (22) means that in a thin slice and under the small-angle scattering assumption, the
projection through the slice for the different plane waves can be approximated by a single
projection along the Z direction.

We now substitute Eq. (21) into Eq. (14) and the result into Eq. (12) to simplify the
expression of the wave on the exit plane:

(23)

Note that if the fine part χf did not exist in the slice and only the smooth χs is present, then
the exit wave function would be

(24)

So Eq. (23) means that the actual exit wave function with both χf and χs present can be
expressed as a modification on the smooth wave function Es (note that Es still accounts for
χf in the sample up to the entry plane of the slice):

(25)

We are now ready to calculate the fringe amplitude on the detector plane at position zd. For
horizontal fringes, the fringe amplitude is defined as
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(26)

where “Area” is the detector area illuminated by x rays, I(rd) is the x-ray intensity at position
rd on the detector plane, and g = 2π/(fringe period). The intensity I(rd) is given by the wave
function on the detector plane:

(27)

We write the wave function on the detector plane E(rd) in terms of the wave function on the
exit plane of the thin slice E(r) by a propagator P:

(28)

Substituting Eq. (28) into Eq. (27) and the result into Eq. (26) gives an expression of the
fringe amplitude in terms of the wave function at the exit plane:

(29)

where the function Q is given by

(30)

Now we need to find an explicit form for the function Q in order to calculate the fringe
amplitude. Under the small-angle scattering assumption expressed in Eq. (17), we use the
Fresnel–Kirchhoff diffraction formula for the propagator P [22]:

(31)

We now expand the propagator P with the Fresnel formula under the small-angle scattering
assumption:

(32)

and we substitute this back into Eq. (30) to obtain

(33)

where the distance d is given in terms of the fringe period p as
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(34)

Integrating Eq. (33) over the xd and yd on the detector plane results in a simple expression
for Q:

(35)

By substituting Eq. (35) into Eq. (29), we obtain the expression of the fringe amplitude in
terms of the entry wave function before the slice is added:

(36)

After adding the slice, the fringe amplitude can be written in terms of the exit wave function
in the same way:

(37)

Substituting the expression of the exit wave function in Eq. (25) into Eq. (37) leads to

(38)

Next, we define

(39)

Because we have made the slice thickness t sufficiently small such that |χf |kt ≪ 1, by Eq.
(20) we have ΔΦf(x, y, z) ≪ 1. Therefore, we write the Taylor series of A(z + t) in Eq. (38)
in terms of ΔΦf(x, y, z):

(40)

The leading term of the Taylor series in Eq. (40) is

(41)

With Eq. (36) we recognize As(z + t) as the fringe amplitude we would get if the slice only
contained the smooth variation χs. This is a very useful fact in the following derivation.
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The second term in the Taylor series of Eq. (40) is

(42)

Because ΔΦf(x, y, z) is proportional to the fine fluctuation χf in the slice, and Es contains
only the smooth χs in the slice, the spatial fluctuation of ΔΦf(x, y, z) is random relative to
the rest of the integrand in Eq. (42). Therefore, only the average of ΔΦf(x, y, z) in the XY
plane contributes to the integral. If we denote the average in the XY plane as <>xy, then

(43)

Using the expression of As(z + t) in Eq. (41), Eq. (43) is shortened to

(44)

Because <χf>xy= 0, we have

(45)

Therefore,

(46)

The last term of the Taylor series in Eq. (40) is

(47)

Again by the same reasoning leading to Eq. (43), we have

(48)

Using Eq. (41), Eq. (48) is shortened to

(49)

From the definition of ΔΦf(x, y, z) in Eq. (39) and the definition of Φf(x, y, z) in Eq. (22),
we can further write

(50)
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We define a function C(d, z) as

(51)

then Eq. (50) is shortened to

(52)

Substituting Eq. (52) into Eq. (49) yields

(53)

Finally, we collect all three terms in the Taylor series in Eq. (40) to obtain an expression of
the fringe amplitude after the addition of the thin slice:

(54)

To calculate the fringe visibility V, we still need to find the expression for the average
intensity J on the detector plane. The average intensity on the detector is

(55)

From Eq. (26) we recognize that the average intensity is equivalent to half of a hypothetical
fringe amplitude when the fringe period is infinitely large. Correspondingly, the distance d
defined in Eq. (34) is zero. So, the same expression derived for the fringe amplitude in Eq.
(54) also applies to the intensity except that the distance d is now zero:

(56)

The fringe visibility after the addition of the slice is, by definition, V(z + t) = A(z + t)/J(z +
t). Substituting Eq. (56) and (54) into this definition yields

(57)

where Vs(z + t) is the fringe visibility if the refractive index of the slice only contains the
smooth part χs. Because the smooth part is resolved by the detector and does not alter the
fringe visibility, Vs(z + t) is equal to the fringe visibility before adding the slice:

(58)

Substituting Eq. (58) into Eq. (57) yields
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(59)

or

(60)

In differential form, this equation is equivalent to

(61)

and the solution is

(62)

Thus we finally showed that in the GbS geometry, the fringe visibility also decreases
exponentially with the sample thickness and the extinction coefficient at location z in the
sample is

(63)

To express the DFEC in terms of the complex refractive index of the material χ, we
substitute the definition of C(d) in Eq. (51) into Eq. (63) to obtain

(64)

We define an autocorrelation function of the fine part of the complex refractive index χf as

(65)

where d is the autocorrelation distance. Then, the final reduced expression of the DFEC is

(66)

Experimentally, if the sample is made of a single type of material, then the DFEC is the
same over the sample. It can be measured from the fringe visibility with the sample present
(V′) and without the sample (V):

(67)

where T is the thickness of the sample.
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3. Applying to a Suspension of Microspheres of Uniform Diameter

We applied the above theory to obtain the DFEC of a random suspension of silica
microspheres of diameter D in water. If the distance between the sample and the detector is
L and the fringe period is p, then the autocorrelation distance d defined by Eq. (34) is λL/p.
If we denote the difference of the complex refractive index between silica and water as Δχ,
then Eqs. (66) and (65) lead to a closed-form expression of the DFEC:

(68)

where f is the volume fraction of the microspheres and D′ is the ratio D/d.

For hard x rays, the difference between the complex refractive indices of two materials is
determined by the difference in the electron density Δρ and absorption coefficient Δμ:

(69)

where re is the classical electron radius of 2.82 × 10−15 m. Because both Δρ and Δμ are
known, the DFEC can be evaluated directly from Eq. (68) and verified experimentally
without any fitting parameters.

4. Experimental Test of the Theory

The experiments were performed at beamlines 32-ID and 2-BM of the Advanced Photon
Source (APS) at the Argonne National Laboratory, Argonne, Ill. Four samples of
microsphere suspensions were imaged, each containing 10 μm uniform silica microspheres
of 2.0 g/cm3 density and 0.15, 0.3, 0.5 or 1.5 μm diameters, separately. The experimental
conditions are tabulated in Table 1. The samples were held in 0.5 ml centrifuge vials. The
size of the x-ray beams were approximately 1.0 mm. Each vial was positioned, in turn, to
center on the beam and imaged. On the 32-ID beamline, the 15 μm fringes were produced
with a custom-fabricated silicon π/2 phase shift grating of 15 μm period. The grating was
placed at one-fourth the Talbot distance from the detector. On the 2-BM beamline, a two-
dimensional cross-grid Ronchi grating was used to produce the 78 μm fringes [23]. The
Ronchi grating was a geological sieve woven of gold wires.

To obtain theoretical values of the DFEC from Eq. (68), the volume fraction f of the
microspheres in a sample was determined from the measured intensity attenuation
coefficient μ and the published values of water and silica by the United States National
Institute of Standards and Technology
(http://physics.nist.gov/PhysRefData/FFast/html/form.html):

(70)

In order to plot data from different x-ray energies and microsphere diameters on the same
graph, we calculated the normalized and unitless DFEC, which we define as

(d71)

By Eq. (68) μd′ is only dependent on D′, which is the ratio of the microsphere diameter
over the autocorrelation distance. We can therefore plot all data on a μd′ versus D′ graph.
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The experimental values of the DFEC were computed from the fringe visibility according to
Eq. (67). The fringe visibility was computed from the fringe amplitude according to its
definition of (fringe amplitude)/(average intensity). The fringe amplitude and average
intensity were in turn measured from the raw images according to Eq. (26) [7,15].

5. Results

In all four samples, the volume fraction of the microspheres ranged between 4% and 5%.
The experimental DFEC and the theoretical curve are plotted in Fig. 4.

The measured data agreed with the theory over the entire range of experimental conditions.
For a fixed volume fraction of the microspheres, the DFEC is seen to increase linearly with
the microsphere diameter D when D is small relative to the autocorrelation length d. It peaks
at D = 1.8 d, then decreases gradually for larger diameters. At the largest D/d ratio we tested,
which was 12, the DFEC decreased to about 40% of the peak values. Generally, and in
agreement with theory, the dark-field effect is biased toward larger microspheres.

6. 3D Tomography of an Iron-Oxide Nanoparticle Suspension

A common, water-based, acrylic black paint contains iron-oxide pigments (PBk11) of 0.1 to
0.2 μm size. X-ray diffraction by these pigments should give rise to the dark-field effect if
the autocorrelation distance d of the imaging device is adjusted to the pigment size. We
performed 3D tomography of samples containing a black paint (Liquitex Thin Body Mars
Black) and 80 mg/ml KI solution in a laboratory scanner. The scanner consisted of a
tungsten-target x-ray tube (Oxford XTG UltraBright) operating at 60 kVp and 40 W power,
an x-ray camera consisting of a 16 bit water-cooled CCD array of matrix size 2045 × 2048
and pixel size of 30 μm, coupled to a Gd2O2S:Tb phosphor screen via a 1:1 fiber-optic
taper (PI-SCX-4096, Princeton Instruments), and a radiography Bucky grid acting as a
Ronchi grating. The distance between the x-ray source focal spot and the camera was 2.0 m.
The grating was placed exactly midway between the source and the camera, and the samples
were held on a rotating stage 6 cm behind the grating. The period of the grating was 127
μm.

The fringe period was twice the grating period on the camera due to the projection
magnification of the cone beam. The spectrum of the x-ray tube was broadly centered at 30
keV. The corresponding autocorrelation distance d in the DFEC expression [Eq. (66)] was
0.16 μm, matching the size of the pigments. A complete tomographic data set contained 180
projections of 1° increments each with 10 s exposure. Volumetric data of absorption and
DFECs were obtained by processing the projections with a harmonic method in the Fourier
domain [7,15] followed by projection/reconstruction.

The results are summarized in Fig. 5. The KI solution and acrylic paint attained the same
level of x-ray absorption of 1.43 cm−1. The acrylic paint had a DFEC of 1.32 ± 0.14 cm−1.
This is significantly higher than the 0.67 ± 0.05 cm−1 value of the KI solution. However, the
KI solution still had an apparent dark-field extinction rather than the null result one would
expect from the theory due to the radiation hardening effect of the sample [24]. This effect
can be corrected by placing a reference orthogonal grating in front of the camera, as was
demonstrated previously [20].

7. Conclusion

We proved from first-principle wave calculations that under the short wavelength and small
angle scattering assumptions, scattering by the sample media in GbS geometry grating
interferometers results in exponential extinction of the interference fringe visibility relative
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to the sample thickness. The same conclusion has been drawn previously for geometric
optics [7,12] and SbG geometry interferometers [11]. We obtained an explicit expression of
the DFEC and verified its accuracy in experiments with micro-sphere suspensions. Because
our derivation was not specific to the way the fringes are produced, it also applies to other
types of grating-based imaging techniques such as reflective grating Mach–Zehnder
interferometers [25].

The expression of the DFEC shows particle-size selectivity: the DFEC is the strongest when
the autocorrelation distance d is approximately equal to the radius of the scatterers. We can
adjust the imaging device to meet this condition, and we thereby distinguish a material that
contains particular scatterers from a uniform material, even though they have the same level
of x-ray absorption.

A seeming contradiction between our expression of the DFEC and the general small-angle
scattering consideration is that smaller particles produce larger scattering angles, and they
may therefore be expected to cause a greater reduction of the fringe visibility or a higher
extinction coefficient. But this is the opposite of the trend shown in Fig. 4 for particle sizes
less than 1.8 d. The explanation for this behavior is that the total amount of scattered x ray
from a particle decreases rapidly with the size of the particle and offsets the effect of the
larger scattering angle for sufficiently small sizes. Overall, the DFEC is related to structures
that are too small to be directly resolved by the imaging detector. For this reason, it can be
used for identifying materials of different microscopic composition in an imaging setting.
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Fig. 1.
Two different configurations of grating interferometers. (a) In the SbG geometry, a plane
wave illuminates the sample and then the gratings. (b) In the GbS geometry, the plane wave
is split by the grating into different directions of propagation and then transmitted through
the sample.
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Fig. 2.
Illustration of the fringe amplitude A and average intensity J of a fringe pattern on the
detector screen. The fringe visibility V is defined as A/J.
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Fig. 3.
To model the DFEC in the GbS geometry, the imaged sample is sectioned into thin slices
along the Z axis. The effect of a slice of thickness t at position z is analyzed by first
removing all material beyond z, and then adding only the slice. The gap between the two
surfaces of the section plane at z is artificially added to illustrate the entry wave into the
slice.
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Fig. 4.
Experimental and theoretical values of the unitless DFEC defined in Eq. (68). Because all
parameters are known a priori, no fitting was involved.
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Fig. 5.
(a) Cross section of the volume CT data of absorption coefficient of two vials holding a
black acrylic paint (on left) and 80 mg/ml KI solution, respectively, in units of cm−1. (b) The
same cross section showing the DFECs of the vials. (c) and (d) are semitransparent volume
renditions of the absorption and DFEC, respectively. The vials have the same level of
absorption, but x-ray scattering by the paint pigments causes a more visible dark-field effect.
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Table 1

Experimental Conditions

Sector 32-ID, 33.2 keV, 15 μm Fringe Period Sector 2-BM, 15 keV, 78 μm Fringe Period

Autocorrelation Distance d (μm) Sample-to-Detector Distance (cm) Sample-to-Detector Distance (cm)

0.125 5.0 11.8

0.25 10.0 23.6

0.50 20.1 47.3

0.75 30.1 70.9
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