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Abstract. The organic aerosol (OA) dataset from an Aero-

dyne Aerosol Mass Spectrometer (Q-AMS) collected at the

Pittsburgh Air Quality Study (PAQS) in September 2002 was

analyzed with Positive Matrix Factorization (PMF). Three

components – hydrocarbon-like organic aerosol OA (HOA),

a highly-oxygenated OA (OOA-1) that correlates well with

sulfate, and a less-oxygenated, semi-volatile OA (OOA-2)

that correlates well with nitrate and chloride – are identified

and interpreted as primary combustion emissions, aged SOA,

and semivolatile, less aged SOA, respectively. The complex-

ity of interpreting the PMF solutions of unit mass resolution

(UMR) AMS data is illustrated by a detailed analysis of the

solutions as a function of number of components and rota-

tional forcing. A public web-based database of AMS spectra

has been created to aid this type of analysis. Realistic syn-

thetic data is also used to characterize the behavior of PMF

for choosing the best number of factors, and evaluating the

rotations of non-unique solutions. The ambient and synthetic

data indicate that the variation of the PMF quality of fit pa-

rameter (Q, a normalized chi-squared metric) vs. number

of factors in the solution is useful to identify the minimum

number of factors, but more detailed analysis and interpre-

tation are needed to choose the best number of factors. The

maximum value of the rotational matrix is not useful for de-

termining the best number of factors. In synthetic datasets,

factors are “split” into two or more components when solv-

ing for more factors than were used in the input. Elements

of the “splitting” behavior are observed in solutions of real

datasets with several factors. Significant structure remains

in the residual of the real dataset after physically-meaningful

factors have been assigned and an unrealistic number of fac-
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tors would be required to explain the remaining variance.

This residual structure appears to be due to variability in the

spectra of the components (especially OOA-2 in this case),

which is likely to be a key limit of the retrievability of com-

ponents from AMS datasets using PMF and similar meth-

ods that need to assume constant component mass spectra.

Methods for characterizing and dealing with this variabil-

ity are needed. Interpretation of PMF factors must be done

carefully. Synthetic data indicate that PMF internal diagnos-

tics and similarity to available source component spectra to-

gether are not sufficient for identifying factors. It is critical

to use correlations between factor and external measurement

time series and other criteria to support factor interpretations.

True components with <5% of the mass are unlikely to be

retrieved accurately. Results from this study may be useful

for interpreting the PMF analysis of data from other aerosol

mass spectrometers. Researchers are urged to analyze future

datasets carefully, including synthetic analyses, and to evalu-

ate whether the conclusions made here apply to their datasets.

1 Introduction

Fine particles have important effects on human health, visi-

bility, climate forcing, and deposition of acids and nutrients

to ecosystems and crops. Organic species represent an im-

portant fraction of the submicron aerosol at most locations

(Kanakidou et al., 2005; Zhang et al., 2007a). Typically re-

ferred to as organic aerosols (OA), they are the sum of mul-

tiple primary and secondary sources that can evolve due to

aging processes. Apportioning organic aerosols into their

sources and components correctly is a critical step towards

enabling efficient control strategies and model representa-

tions.
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The organic source apportionment problem has been

approached by several techniques. Turpin and Huntz-

icker (1991) utilized the ratio between elemental carbon and

organic carbon (EC/OC) from filter samples to estimate pri-

mary and secondary OA. Schauer et al. (1996) used molecu-

lar markers with a chemical mass balance (CMB) approach

to apportion OA extracted from filters and analyzed by GC-

MS. Several sources with unique markers can be identified,

but source profiles must be known a priori, sources without

unique markers are not easily separated, and only primary

OA sources are identified. Szidat et al. (2006) have sepa-

rated anthropogenic and biogenic OA based on water solubil-

ity and 14C/12C ratios and found a major biogenic influence

in Zurich, Switzerland. The technique has very low time res-

olution (many hours to several days) and can identify only

a few categories of sources. Traditional OA filter measure-

ments suffer from low time resolution (several hrs. to days)

and positive and negative artifacts (Turpin et al., 2000).

The last 15 years have seen the development of a new gen-

eration of real-time aerosol chemical instrumentation, most

commonly based on mass spectrometry or ion chromatogra-

phy (Sullivan et al., 2004; DeCarlo et al., 2006; Williams

et al., 2006; Canagaratna et al., 2007; Murphy, 2007). Cur-

rent real-time instruments can produce data over timescales

of seconds to minutes and have reduced sampling artifacts

compared to filters. Single-particle mass spectrometers (e.g.,

PALMS, ATOFMS, SPLAT) have used particle classification

systems to group particles based on composition or other

characteristics (Murphy et al., 2003). A fast GC-MS sys-

tem (TAG) has been developed that may allow the applica-

tion of the molecular marker technique with much faster time

resolution than previously possible (Williams et al., 2006).

However GC-MS as typically applied discriminates against

oxygenated organic aerosols (OOA) (Huffman et al., 2009),

which is the dominant ambient OA component (Zhang et al.,

2007a), and thus may limit the applicability of this technique

by itself. It is highly desirable to perform source apportion-

ment based on the composition of the whole OA. This infor-

mation cannot be obtained at the molecular level with current

techniques, however several techniques are starting to char-

acterize the types/groups of species in bulk OA (Fuzzi et al.,

2001; Russell, 2003; Zhang et al., 2005a, c).

The Aerodyne Aerosol Mass Spectrometer (AMS) be-

longs to the category of instruments that seeks to measure

and characterize the whole OA. It has been designed to quan-

titatively measure the non-refractory components of submi-

cron aerosol with high time resolution (Jayne et al., 2000;

Jimenez et al., 2003) and produces ensemble average spectra

for organic species every few seconds to minutes (Allan et

al., 2004). Several groups have attempted different methods

to deconvolve the OA spectral matrix measured by a Q-AMS

(Zhang et al., 2005a, c, 2007a; Marcolli et al., 2006; Lanz et

al., 2007). Zhang et al. (2005a) first showed that information

on OA sources could be extracted from linear decomposition

of AMS spectra by using a custom principal component anal-

ysis (CPCA) method applied to OA data from the Pittsburgh

Supersite from 2002. The resulting factors were identified as

hydrocarbon-like organic aerosol (HOA, a reduced OA) and

oxygenated organic aerosol (OOA) and were strongly linked

to primary and secondary organic aerosol (POA and SOA),

respectively, based on comparison of their spectra to known

sources and their time series to other tracers. OOA was found

to dominate OA (∼2/3 of the OA mass was OOA), in con-

trast to previous results at this location (Cabada et al., 2004).

Zhang et al. (2007a) used the Multiple Component Analy-

sis technique (MCA, an expanded version of the CPCA) for

separating more than two factors in datasets from 37 field

campaigns in the Northern Hemisphere and found that the

sum of several OOAs comprises more of the organic aerosol

mass than HOA at most locations and times, and that in rural

areas the fraction of HOA is usually very small. Marcolli et

al. (2006) applied a hierarchical cluster analysis to Q-AMS

data from the New England Air Quality Study (NEAQS)

from 2002. Clusters in this data represented biogenic VOC

oxidation products, highly oxidized OA, and other small cat-

egories. Lanz et al. (2007) applied Positive Matrix Factor-

ization (PMF) (Paatero and Tapper, 1994; Paatero, 1997)

to the organic fraction of a Q-AMS dataset from Zurich in

the summer of 2005. The six factors identified in this study

were HOA, two types of OOA (a highly-oxidized, thermody-

namically stable type called OOA-1 that correlates well with

aerosol sulfate; and a less-oxidized, semi-volatile type called

OOA-2 that correlates well with aerosol nitrate), charbroil-

ing, wood burning, and a minor source that may be influ-

enced by food cooking. Lanz et al. (2008) applied a hybrid

receptor model (combining CMB-style a priori information

of factor profiles with the bilinear PMF model) specified by

the Mulilinear Engine (ME-2, Paatero, 1999) to apportion the

organic fraction of a Q-AMS dataset from Zurich during win-

tertime inversions, when no physically-meaningful compo-

nents could be identified by the bilinear model alone. Three

factors, representing HOA, OOA, and wood burning aerosol,

were identified, with OOA and wood-burning aerosol ac-

counting for 55% and 38% of the mass, respectively. More

advanced source apportionment methods based on Bayesian

statistics, which output a probability distribution instead of

scalars for each element of the source profiles and time se-

ries and thus contain information necessary for a statistical

evaluation of the uncertainty of the output, are under de-

velopment (Christensen et al., 2007; Lingwall et al., 2008).

Bayesian models can also incorporate prior information in a

natural and probabilistically rigorous way by specification of

the “prior distribution” for each variable. Bayesian methods

are expensive computationally, and the more complex output

requires greater review by the researcher. Bayesian methods

have not been applied to aerosol MS data to our knowledge.

Of the analysis techniques mentioned above, PMF is the

most widely used in the atmospheric research community

(Lee et al., 1999; Ramadan et al., 2000; Kim et al., 2003;

Xie et al., 1999; Larsen and Baker, 2003; Maykut et al.,
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2003) and its application to PM has been recently summa-

rized in two separate reviews (Reff et al., 2007; Engel-Cox

and Weber, 2007). PMF is a receptor-only, factorization

model based on mass conservation which requires no a pri-

ori information about factor profiles or time trends. PMF

has generally been applied to long-term, low-time-resolution

datasets, though there has been a call for greater application

of source apportionment techniques to air pollution events

to facilitate understanding of specific sources for regulatory

purposes (Engel-Cox and Weber, 2007). As shown schemat-

ically in Fig. 1, PMF is a bilinear unmixing model in which a

dataset matrix is assumed to be comprised of the linear com-

bination of factors with constant profiles that have varying

contributions across the dataset. All of the values in the pro-

files and contributions are constrained to be positive. The

model can have an arbitrary number of factors; the user must

select the solution that “best” explains the data. This is often

the most subjective and least quantitative step of PMF anal-

ysis and relies greatly on the judgment and skill of the mod-

eler (Engel-Cox and Weber, 2007; Reff et al., 2007). In ad-

dition, mathematical deconvolution of a dataset often yields

non-unique solutions, in which linear transformations (collo-

quially referred to as “rotations”) of the factors are possible

while the positivity constraint is maintained. The necessity

of choosing a number of factors and a particular rotation of-

ten complicates the interpretation of the solutions. As clearly

articulated by P. Paatero, personal communication, 2007:

“It is unfortunate that introducing a priori information also

introduces some subjectivity in the analysis [. . . ] However,

the tradeoff is often between a successful albeit subjectively

aided analysis and an unsuccessful analysis. [. . . ] subjective

decisions must be fully and openly reported in publications.

[. . . ] Hiding the details of subjective decisions or even worse,

pretending that no subjectivity is included in the analysis,

should not be tolerated in scientific publications”.

Although the application of PMF analysis to data from the

AMS and other aerosol mass spectrometers is relatively new,

it is quickly becoming widespread. Thus, a detailed charac-

terization of the capabilities and pitfalls of this type of anal-

ysis when applied to aerosol MS data is important. UMR

AMS datasets are very large with typically several million

datapoints (∼300 m/z’s per sample, with ∼8000 samples for

a month-long campaign with 5 min averaging) and fragmen-

tation of molecules during ionization gives each mass spec-

trum strongly interrelated data. AMS datasets differ in two

fundamental ways from most atmospheric datasets to which

PMF has been applied. The structure, internal correlation

between some m/z’s created by significant fragmentation of

molecules in the vaporization and ionization processes in the

AMS, and precision of AMS data are significantly differ-

ent from datasets of multiple aerosol components (metals,

organic and elemental carbon, ions, etc.) measured by sev-

eral instruments typically used with PMF in previous studies.

The error structure is also more coherent and self-consistent

due to the use of data from a single instrument, rather than
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Fig. 1. Schematic of PMF factorization of an AMS dataset. The

time series of the factors make up the matrix G and the mass spectra

of the factors make up the matrix F in Eq. (1).

mixing data from different instruments for which the relative

errors may be more difficult to quantify precisely, or that may

drift differently, etc.

In this work, we apply PMF to data obtained with the

quadrupole Aerosol Mass Spectrometer (Q-AMS) during the

Pittsburgh Air Quality Study. Three factors, interpreted as

HOA, aged regional OOA, and fresh, semivolatile OOA are

reported for the Pittsburgh ambient dataset. The ambigui-

ties associated with choosing the number of factors and their

best rotations are reported. In addition, sensitivity analyses

are performed with synthetic datasets constructed to retain

the inherent structure of AMS data and errors. We explore

methods that can inform the choice of the appropriate num-

ber of factors and rotation for AMS OA datasets, as well as

investigate the retrievability of small factors.

2 Methods

2.1 Aerosol Mass Spectrometer (AMS)

The Q-AMS has been described in detail elsewhere (Jayne

et al., 2000; Jimenez et al., 2003) and only a brief sum-

mary is given here. The AMS consists of three main parts:

an inlet system which generates a particle beam, a particle

sizing section, and a particle composition analysis section.

The inlet focuses submicron particles into a narrow beam. A

mechanical chopper allows all particles (“beam open”), no

particles (“beam closed”), or a packet of particles (“beam

chopped”) to pass to the particle sizing region. Particles im-

pact on a flash vaporizer (600◦C) at the rear of the sizing

region under high vacuum (∼10−7 Torr). The vapors from

non-refractory components are ionized by electron impact

(70 eV) and the resultant positively charged ions are analyzed

by the quadrupole mass spectrometer.

www.atmos-chem-phys.net/9/2891/2009/ Atmos. Chem. Phys., 9, 2891–2918, 2009
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The Q-AMS can be operated in any of three modes: mass

spectrum (MS), particle time-of-flight (PToF), or jump mass

spectrum (JMS). In MS mode, the chopper alternates be-

tween the beam open and closed positions while the mass

spectrometer scans across m/z 1 to 300. Each e.g. five-minute

average is the difference between the total open and closed

signals and is the ensemble average mass spectrum of thou-

sands of particles. In PToF mode, the beam is chopped and

packets of one or a few particles enter the particle sizing re-

gion. Particles achieve size-dependent velocities at the exit

of the lens which allows measurement of particle size dis-

tributions, but only at ∼10–15 selected m/z’s. JMS mode is

identical to MS mode except in that only ∼10 m/z’s are mon-

itored to maximize signal-to-noise ratio (SNR) (Crosier et

al., 2007; Nemitz et al., 2008). We use the MS mode data

for this study because it has high signal-to-noise and con-

tains the full structure of the mass spectra and thus the most

chemical information. Each sample is the linear combina-

tion of the spectra from all particles and species vaporized

during the sample period. If JMS data is available, it may be

used to replace the MS m/z’s as the JMS data has much better

SNR (Crosier et al., 2007). Preliminary analyses show that

PToF data contains significant information that can be ex-

ploited by PMF-like methods (Nemitz et al., 2008), however

this also introduces additional complexities and it is outside

of the scope of this paper.

Newer versions of the AMS include the compact time-

of-flight mass spectrometer (C-ToF-AMS, Drewnick et al.,

2005) and the high-resolution ToF-AMS (HR-ToF-AMS,

DeCarlo et al., 2006). These instruments operate in MS

and PToF modes. Conceptually the MS mode from the C-

ToF-AMS produces identical data to those from the Q-AMS,

except with higher SNR, and thus the results from this pa-

per should be applicable to PMF analyses of such data. The

MS mode from the HR-ToF-AMS contains much additional

chemical information such as time series of high resolution

ions (e.g., both C3H+
7 and C2H3O+ instead of total m/z 43)

that facilitates the extraction of PMF components. The first

application of PMF to HR-ToF-AMS MS-mode data has

been presented in a separate publication (Aiken et al., 2009).

The datasets used in this study are comprised of only the

organic portion of the AMS mass spectrum measured by

the Q-AMS, which is determined from the total mass spec-

trum by application of a “fragmentation table” (Allan et al.,

2004) for removing ions from air and inorganic species. The

atomic oxygen to carbon ratio (O/C) for UMR MS can be

estimated from the percent of OA signal at m/z 44 (predom-

inately CO+
2 ) in the OA MS (Aiken et al., 2008). Percent

m/z 44 is reported here as an indication of the degree of oxy-

genation of representative spectra.

The time series of inorganic species (non-refractory am-

monium, nitrate, sulfate, and chloride) are not included in the

PMF analysis and are instead retained for a posteriori com-

parison with the time series of the factors and for use in their

interpretation. It is also of interest to perform the PMF analy-

sis on the total spectrum without removing inorganic species

(but still removing the large air signals), however this is out-

side the scope of this paper.

2.2 Factorization methods

2.2.1 Positive Matrix Factorization (PMF)

Positive Matrix Factorization (PMF) (Paatero and Tapper,

1994; Paatero, 1997) is a model for solving a receptor-only,

bilinear unmixing model which assumes that a measured

dataset conforms to a mass-balance of a number of con-

stant source profiles (mass spectra for AMS data) contribut-

ing varying concentrations over the time of the dataset (time

series), such that

xij =
∑

p

gipfpj + eij (1)

where i and j refer to row and column indices in the ma-

trix, respectively, p is the number of factors in the solution,

and xij is an element of the mxn matrix X of measured data

elements to be fit. In AMS data, the m rows of X are ensem-

ble average mass spectra (MS) of typically tens of thousands

of particles measured over each averaging period (typically

5 min) and the n columns of X are the time series (TS) of

each m/z sampled. gij is an element of the mxp matrix G

whose columns are the factor TS, fij is an element of the

pxn matrix F whose rows are the factor profiles (MS), and

eij is an element of the mxn matrix E of residuals not fit

by the model for each experimental data point (E=X−GF).

A schematic representation of the factorization is shown in

Fig. 1. The model requires no a priori information about

the values of G and F. We normalize the rows in F (MS)

to sum to 1, giving units of mass concentration (µg/m3) to

the columns of G (TS). The values of G and F are iteratively

fit to the data using a least-squares algorithm, minimizing a

quality of fit parameter Q, defined as

Q =

m
∑

i=1

n
∑

j=1

(eij/σij )
2 (2)

where σ ij is an element of the mxn matrix of estimated er-

rors (standard deviations) of the points in the data matrix, X.

In the “robust mode” of the algorithm, outliers (|eij /σ ij |>4)

are dynamically reweighted throughout the fitting process so

that they cannot pull the fit with weight >4. The Q-value

reported by PMF is calculated using the reduced weights for

the outliers. This scaling makes optimal use of the informa-

tion content of the data by weighing variables by their de-

gree of measurement certainty (Paatero and Tapper, 1994).

It is possible that there may be multiple local minima of the

Q function (Paatero, 1997); additional solutions can be ex-

plored by starting the PMF2 algorithm from different pseu-

dorandom values known as “seeds” within the PMF algo-

rithm. Additionally, the values in G and F are constrained to
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Fig. 2. Screenshot of PMF Evaluation Tool developed for general examination of PMF solutions.

be positive, reflecting positive contributions of each factor to

the measured mass and positive signal in each m/z, respec-

tively.

The bilinear model can be solved by the PMF2 (Paatero,

2007) and multilinear engine (ME) (Paatero, 1999) algo-

rithms developed by P. Paatero, or by custom algorithms de-

veloped by others (Lu and Wu, 2004; Lee and Seung, 1999;

Hoyer, 2004). Here we use PMF2 because of its robustness

and wide use in the research community. Future work will

explore more complex models using the ME program. All

analyses in this study were done with PMF2 version 4.2 in

the robust mode, unless otherwise noted. The default conver-

gence criteria were not modified. Since the output of PMF is

very large and evaluating it is very complex, we developed a

custom software tool (PMF Evaluation Tool, PET, Fig. 2) in

Igor Pro (WaveMetrics, Inc., Portland, Oregon) to evaluate

PMF outputs and related statistics. The PET calls the PMF2

algorithm to solve a given problem for a list of values of p

and FPEAK or SEED, stores the results for all of these com-

binations, and allows the user to rapidly display and com-

pare many aspects of the solution matrix and residuals and to

systematically evaluate the similarities and differences of the

output spectra and time series with known source/component

spectra and tracer time series.

Choosing the number of factors

The number of factors, p, in the real dataset is generally un-

known. Choosing the best modeled number of factors for a

dataset is the most critical decision to the interpretation of the

PMF results. Several mathematical metrics have been used

to aid determination of this value. A first criterion is the Q-

value, the total sum of the squares of the scaled residuals. If

all points in the matrix are fit to within their expected error,

then abs (eij )/σij is ∼1 and the expected Q (Qexp) equals

the degrees of freedom of the fitted data = mn−p(m+n)

(Paatero et al., 2002). For AMS datasets, mn≫p(m+n),

so Qexp≈mn, the number of points in the data matrix. If

the assumptions of the bilinear model are appropriate for the

problem (data is the sum of variable amounts of components

with constant mass spectra) and the estimation of the errors

in the input data is accurate, solutions with numbers of fac-

tors that give Q/Qexp near 1 should be obtained. Values of

Q/Qexp≫1 indicate underestimation of the errors or variabil-

ity in the factor profiles that cannot be simply modeled as the

sum of the given number of components. If Q/Qexp≪1, the

errors of the input data have been overestimated. As addi-

tional factors are considered, Q is expected to decrease, as

each additional factor introduces more degrees of freedom
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that should allow more of the data to be fit. A large decrease

in Q with the addition of another factor implies that the addi-

tional factor has explained significantly more of the variation

in the data and has also been used as a metric for choosing

a solution (Paatero and Tapper, 1993). A second metric for

choosing a best solution is based on the values of the rota-

tional matrix (RotMat, output by PMF and explained below).

Some have used the criterion of a solution with the least ro-

tation (lowest maximum value of Rotmat) as one of several

qualitative metrics for making the determination of the num-

ber of factors (Lee et al., 1999; Lanz et al., 2007). Many

studies have concluded that source apportionment models

must be combined with supplementary evidence to choose

and identify factors (Engel-Cox and Weber, 2007).

Choosing the best number of factors requires the modeler

to determine when additional factors fail to explain more of

the variability in the dataset. Note that it is possible for one

true factor to be mathematically represented by multiple fac-

tors which, in total, represent the true factor (Paatero, 2008a).

Consider a case in which two true factors make up the data

with no error, such that

X = GF (3)

where G=[ab], the matrix of the time series of the two fac-

tors, and FT =[st]T , the matrix of the profiles of the two fac-

tors, and a, b, s, and t are column vectors. If the same dataset

X is solved with three factors, an exact solution could be ob-

tained as

X = [ef b] × [sst]T (4)

if e+f =a. In fact, a case could be constructed in which two

factors reconstruct b instead of a, generating a second type

of 3-factor solution. More combinations are possible when

the same X created with 2 factors is solved with 4 factors,

e.g.,

X = [ef bb] × [ssuv]T (5)

where e+f =a and u+v=t , or

X = [def b] × [ssst]T (6)

where d+e+f =a. We refer to this type of behavior as “split-

ting” of the real factors, where either the MS or TS from a

real factor are split into two new factors. Linear transfor-

mations (“rotations”, discussed further in the next section)

of these solutions are also possible. A rotation of the three-

factor solution shown in Eq. (4) could be represented by

X = [ef b]T × T−1[sst]T (7)

where T is a 3×3 non-singular transformation matrix and

T−1 is its inverse and is a valid solution to the PMF model

as long as the rotated factor matrices [ef b] T and T−1 [sst]T

all have positive values. Thus the rotated solutions need not

necessarily contain repetitions of the factors from the original

solution (Paatero, 2008a). We refer to this later behavior as

“mixing” of the real factors.

Rotational ambiguity of solutions

Despite the constraint of non-negativity, PMF solutions may

not be unique, i.e., there may be linear transformations (“ro-

tations”) of the factor time series and mass spectra that result

in an identical fit to the data, such that:

GF = GTT−1F (8)

where T is a transformation matrix and T−1 is its inverse. A

given tij>0 would create a rotation by adding the mass spec-

tra and subtracting the time series of factors i and j , while

tij<0 would create a rotation by subtracting the mass spectra

and adding the time series of factors i and j . An infinite num-

ber of “rotations” may exist and still meet the non-negativity

constraint. Note that orthogonal or “solid body” geometric

rotations of the factors are only a subset of the possible lin-

ear transformations.

PMF2 does not report the possible values of T, but does

report the standard deviation of possible values of T as the

“RotMat” matrix. Larger values in T imply greater rotational

freedom of a solution. Specifically, a larger value of tij sug-

gests that the i and j factors can be mixed in varying degrees

while still satisfying the non-negativity constraint. Diagonal

elements of T are always 1, and their standard deviations are

therefore 0. RotMat for a one-factor solution is always 0.

The value of RotMat as a diagnostic has been debated in the

literature (Lanz et al., 2007; Lee et al., 1999; Paatero, 2007),

and we explore its use as a qualitative indicator of rotational

freedom of a given solution (Sect. 3.1.2, 3.2.2).

With PMF2, once the approximate best number of factors

has been determined, a subset of the rotational freedom of the

solution may be explored through use of the FPEAK parame-

ter. FPEAK allows for examining approximate or “distorted”

rotations that do not strictly follow Eq. (7) and thus produce

a higher value of Q. Of greatest interest are FPEAK values

for which Q does not increase significantly over QFPEAK=0,

since the PMF model (Eq. 2) is still satisfied with little addi-

tional error. Some researchers recommend exploring a range

of FPEAKs such that Q/Qexp increases from its minimum

by e.g. 10% (P. K. Hopke, personal communication, 2007).

Solutions reported in the literature generally have an FPEAK

value between −1 and +1 (Reff et al., 2007). Not all pos-

sible rotations can be explored by varying FPEAK, and the

characterization of rotations outside of that realm is a topic

of current research (Paatero and Hopke, 2008; Paatero et

al., 2002). As stated above, none of these metrics or crite-

ria can unequivocally pinpoint the “best” or “true” solution,

but a chosen PMF solution can be justified through compar-

ison of factor profiles with known profiles and comparison

of factor time series with the time series of tracer species.

If several plausible solutions are found, e.g. with different

FPEAKs, the differences in the solutions are a good indica-

tion of the uncertainty of the PMF solution (Nemitz et al.,

2008; Paatero, 2007).
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Uncertainty of the solutions

The difficult issue of the uncertainty of the solutions is rarely

addressed in PMF studies in the literature (Reff et al., 2007).

We address this point in this work in two ways: in a qualita-

tive way by running the PMF algorithm from many different

random starting points (SEEDs; Paatero, 2007), and quanti-

tatively with bootstrapping with replacement of MS (Norris

et al., 2008; Press et al., 2007a).

2.2.2 Singular value decomposition

In contrast to PMF, the singular value decomposition (SVD)

of a matrix produces only one factorization (as in Eq. 1) with

orthogonal factors. Starting with the factor that explains the

most variance of the original matrix, factors are retained in

order of decreasing variance of the matrix to explain enough

(usually 99%) of the variance of the original matrix. These

orthogonal factors usually contain negative values. SVD is

applied to selected data matrices and residual matrices to de-

termine the number of factors needed to explain 99% of the

variance of the matrix. The relationship between SVD and

PMF is described by Paatero and Tapper (1993).

2.3 Data sets

2.3.1 Real Pittsburgh dataset

The real Pittsburgh dataset investigated here is the same as

that analyzed by Zhang et al. (2005a) with the CPCA method.

Versions without pretreatments and with pretreatments ap-

plied (filtering for high-noise spikes, 3-point smoothing of

m/z time series, and use of cluster analysis (Murphy et al.,

2003) to remove unusual spectra as described in Zhang et al.,

2005a) were analyzed with PMF2. Additional information

on the Pittsburgh study can be found in previous publications

(Zhang et al., 2004, 2005a, b, c, 2007b). The study took place

7–22 September, 2002 in Pittsburgh, Pennsylvania as part of

the Pittsburgh Air Quality Study (PAQS) at the EPA Super-

site. 3199 time-averaged mass spectra (5–10 min averaging)

were collected for m/z 1 to 300. Fragments with plausible

organic fragments were retained, leaving 270 m/z fragments.

Thirty fragments were removed because they could not have

plausible organic fragments, have overwhelming contribu-

tion from inorganic or gaseous species, or high instrument

background (Zhang et al., 2005a). In addition, organic frag-

ments at m/z 19 and 20 are omitted as the signals at these

m/z’s are directly proportional to m/z 44 and have negligible

contribution (<0.05% of the total signal) and therefore do

not add new information to the factorization analysis. The re-

maining matrix had 268 columns (m/z) and 3199 rows (time-

averaged mass spectra) with 857 332 data points.

The error values for use with PMF were calculated in five

steps. First, the initial error values were calculated by the

method of Allan et al. (2003) by the standard Q-AMS data

analysis software (v1.41). We recommend that for Q-AMS

data, version 1.41 or later of the standard data analysis soft-

ware is used for estimation the errors for use with PMF,

as corrections to the error calculation algorithms have been

made from previous versions and error matrices calculated

from earlier versions may give different factors because of

different weighting. Nonsensical behavior of the factors (MS

with one dominant fragment or TS that oscillate between

zero and several µg/m3 over 5-min periods) were observed

with this dataset when the error estimates from older ver-

sions of the Q-AMS data analysis software, but not when

v1.41 was used. Second, a minimum error estimate of one

measured ion during the sampling time (equivalent to 11 Hz

or 0.12 ng/m3, which reflects the duty cycle used during this

campaign) or the average of the adjacent error values is ap-

plied to any elements of the error matrix (σ ij ) with values

below this threshold by

σi,j = max(σi,j , max(1/t s, (σ i−1,j+σ i+1,j )/2)) (9)

where ts is the time, in seconds, spent sampling each m/z.

Third, the 3-point box smoothing applied to the dataset was

propagated in the error estimates by summing the error of the

3 smoothed points in quadrature. This has the effect of de-

creasing the noise estimate by a factor of ∼sqrt(3). Fourth,

we follow the recommendation of Paatero and Hopke (2003)

to remove variables (TS of m/z in our case) with signal-to-

noise ratio (SNR) less than 0.2 (“bad” variables) and down-

weight variables with SNR between 0.2 and 2 (“weak” vari-

ables) by increasing their estimated error values. For this

dataset, no columns are “bad” by this definition and 76 of

the higher mass fragments (m/z 167–168, 207, 210, 212, 214,

220–223, 230–238, 240–249, 254–300) are “weak” and their

error estimates are increased by a factor of 2. Finally, in or-

der to appropriately weight m/z’s 44, 18, 17, and 16 (since the

latter 3 peaks are related proportionally only to m/z 44 in the

organic “fragmentation table” (Allan et al., 2004) whose in-

clusion therefore gives additional weight to the strong signal

at m/z 44), the error values for each of these m/z’s are all mul-

tiplied by sqrt(4) (N. L. Ng, personal communication, 2008;

see Supp. Info.: http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf). There are two sets

of m/z’s that are directly proportional to only one other m/z

(m/z 48 and m/z 62; m/z 80 and m/z 94), but these signals are

much smaller than those of the m/z 44-group and the effect of

this adjustment is negligible. Note that the order of steps four

and five are arbitrary; even after changing the error estimates

for m/z’s 44, 18, 17, and 16 their SNR’s are approximately 25

and they are not “weak” variables. The downweighting of so

many m/z’s in the datasets lowers the calculated Q-values;

Q/Qexp-values reported in this work have therefore been re-

calculated by undoing this scaling (but still applying the ro-

bust criterion) so that Q/Qexp-values are related to the error

estimated for each point from the data prior to downweight-

ing.
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No adjustments are made to the errors in this analysis to

reflect “model error” that may occur because the true factors

are not constant as assumed by the PMF model. Increasing

the error values to reflect this error may downweight real phe-

nomena that are part of the true data. Note that small negative

values that are the result of differences (caused by noise) be-

tween the beam open and beam closed measurements in the

instrument data are not changed, nor are their corresponding

error values altered.

2.3.2 Synthetic datasets

Each synthetic dataset was created by combining selected

MS and TS into Finput and Ginput matrices, respectively,

which were then multiplied to form an Xinput matrix

(Xinput=Ginput×Finput, the forward calculation of Eq. (1) with

eij =0).

Synthetic noise was added to the difference spectrum syn-

thetic data, such that the noisy synthetic data, x′ were calcu-

lated by

x′
ij = (Poisson(openij ) − Poisson(closedij )) ∗ CF (10)

+Gaussian(0, 0.0002)

where random noise is generated from a Poisson random

number generator (Igor Pro v6.03) with a mean and vari-

ance of the number of ions observed in the open and closed

MS of that point (openij and closedij , respectively), CF is

the conversion factor from ions per m/z per averaging pe-

riod to µg/m3, and electronic noise is estimated from a

normal Gaussian distribution with a standard deviation of

0.0002 µg/m3. The amount of 0.0002 µg/m3 is an estimate

of the electronic noise present during periods of low signal

in several m/z’s>239. Poisson noise is used for ion counting

noise instead of Gaussian noise because many of the small

signals do not have sufficient counts to reach a Gaussian dis-

tribution to a good approximation. The sum of ion counting

and electronic noises represents most of the noise in a Q-

AMS dataset, but does not reflect “particle-counting statis-

tics noise” from events when a large particle is vaporized and

“extra” (much greater than average) signal is detected at only

one m/z during the scanning of the quadrupole across the m/z

range (Zhang et al., 2005a).

The synthetic Poisson-distributed error values for these

datasets were approximated by a method parallel to the

estimation of errors for real data (see description in Ap-

pendix A). The real and synthetic errors are similar, and thus

the synthetic datasets retain the error structure of the real

data. The treatments described in Sect. 2.3.1 (above) for ap-

plying a minimum error threshold, downweighting “weak”

variables, and weighting m/z’s related to m/z 44 were also ap-

plied to the error estimates for the synthetic datasets. No er-

ror propagation for box smoothing is applied to the synthetic

data because these data are not smoothed. The SNR for the

m/z’s in the synthetic datasets are therefore higher by a factor

of ∼sqrt(3), and there are more “weak” variables (84 m/z’s

total) than in the real data. The weak m/z’s in the synthetic

datasets include the same m/z’s as in the real dataset, as well

as m/z’s 150, 185 (2-factor case only), 216, 227, 239 (3-factor

case only), and 250–253.

Two-factor synthetic dataset

A two-factor synthetic base case was created using the HOA

and OOA MS and TS as determined by Zhang et al. (2005a,

c) for the Pittsburgh dataset. Difference spectra may con-

tain negative values for very small signals, akin to below-

detection limit values in other datasets. Zhang et al. (2005a)

allowed their method to fit these small negative values and

the resulting factors include small negative numbers. Neg-

ative values in the Zhang solution were converted to their

absolute value before creating the Finput and Ginput matri-

ces, so that the input has only positive numbers. The resul-

tant increase in signal is much smaller than the residual from

the Zhang factorization and does not affect the results of the

PMF factorization.

Three-factor synthetic datasets

A three-factor synthetic base case was created from the three-

factor PMF solution with FPEAK=0 of the real Pittsburgh

dataset (described below). All factor elements were positive

for this solution, so no treatment of negative values was nec-

essary.

Variations on the three-factor base case were made to ex-

plore the ability of PMF to retrieve factors which have a

small fraction of the total mass. Three-factor synthetic cases

were created by replacing the mass spectrum of the smallest

factor in the previous three-factor synthetic case with refer-

ence mass spectra (see Sect. 2.4.1) of fulvic acid (FA) (Al-

farra, 2004), biomass burning organic aerosol (BBOA, Pal-

metto leaf smoke from the Fire Lab at Montana Experiment

(FLAME-1) in June 2006), or fresh chamber SOA (methy-

lene cyclohexane+O3, Bahreini et al., 2005), each of which

has a different correlation to the other MS in the input. Vari-

ations on this case were made in which the average mass of

this factor was decreased (cases with 11.4%, 5.7%, 2.9%,

1.4%, and 0.7% average mass fraction) and used in a new

Ginput to create a new Xinput.

2.4 Statistical comparisons of mass spectra

2.4.1 Reference spectra

An AMS Spectral Database (Ulbrich et al., 2007) has been

created to collect published AMS spectra for public use.

AMS spectra are similar, but not identical to, spectra from

standard electron-impact databases such as the NIST Chem-

istry WebBook (http://webbook.nist.gov/chemistry/, Stein et

al., 2001), primarily because of thermal decomposition of

molecules during vaporization in the AMS and additional
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thermal energy of the ions leading to increased fragmen-

tation (Alfarra, 2004; Dzepina et al., 2007). Different

AMS instruments operating with the same vaporizer temper-

ature produce similar spectra (Alfarra, 2004; Dzepina et al.,

2007). These reference spectra are used to aid the identi-

fication of spectra in PMF factors. The database contains

spectra for several categories of aerosol, including ambient

aerosol, direct measurements from sources (e.g., vehicles,

biomass burning), laboratory-generated aerosol of chemical

standards, laboratory SOA, laboratory heterogeneously oxi-

dized particles, other laboratory-generated aerosol, and spec-

tra derived from mathematical deconvolutions of ambient

OA. Organic aerosol spectra in the database span a range

of representative hydrocarbon-like (e.g., diesel bus exhaust,

fuel, and lubricating oil) and oxygenated (e.g., various cham-

ber SOA, oxalic acid, and fulvic acid) OA.

2.4.2 Statistics of correlation

Throughout this work we report “uncentered” correlations

between MS and TS as a qualitative metric to support fac-

tor identification and compare factors amongst different PMF

solutions (Paatero, 2008a). The uncentered correlation coef-

ficient (UC) reports the cosine of the angle between a pair of

MS or TS as vectors, such that

UC = cos θ =
x · y

‖x‖ ‖y‖
(11)

where x and y denote a pair of MS or TS as vec-

tors. The uncentered correlation is very similar to the

well-known Pearson R for mass spectra, and quite cor-

related with Pearson’s R for time series (when com-

puted with a large number of different MS and TS; see

Fig. S1, see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf). Correlations between

MS are complicated because the signal values span several

orders of magnitude and a few high intensity masses (gen-

erally all at m/z≤44) can dominate the correlation (Hemann

et al., 2009). For correlations between factor and reference

MS, we also report UC for m/z>44 to remove this bias (Al-

farra et al., 2006, 2007; Lanz et al., 2007). These two statis-

tics represent one way to numerically match factor profiles to

reference profiles for AMS datasets and improve the source

identification process (as suggested by Reff et al., 2007). A

rank-correlation method, Spearman R, in which correlations

are made using the rank order of values (highest=n, low-

est=1) instead of the actual data values (Press et al., 2007b),

was also considered as well as several variations on it (e.g.,

removing ions with low signal in both spectra before calcu-

lation), but this often gave too much weight to small signals

and otherwise did not aid interpretation beyond that provided

by UC for m/z>44. Correlations are presented in the text as

UCTS
HOA in,HOA out, UCMS

HOA in,HOA out, and UC
MS,m/z>44
HOA in,HOA out,

where the superscript describes whether MS or TS are be-

ing compared (using only m/z’s>44 when specified) and the

subscript describes what data are being compared (here, the

input HOA and output HOA for a synthetic dataset). Cor-

relations are calculated using only the points common to

both vectors being correlated; e.g., MS from the AMS Spec-

tral Database may have 300 m/z while factor MS have only

the 268 m/z’s that were retained, thus missing m/z values are

omitted from the vectors before calculating the correlations;

TS from different instruments may be missing different peri-

ods of data, thus only the points when both instruments report

data are included.

3 Results

3.1 Real Pittsburgh data

We explored the effect of data pretreatment (Zhang et al.,

2005a), downweighting of “weak” variables by a factor of 2

(Paatero and Hopke, 2003), and use of the robust mode in

PMF. Differences in the factor MS and TS were minor in

all cases for this dataset. Comparisons of the 3-factor so-

lutions from the robust and non-robust modes are shown in

Fig. S2, see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf. We note, however, that

this dataset has good SNR, that pretreatment aids the analy-

sis by removing spikes whose cause is understood (poor sam-

pling statistics of high-mass, low-number particles mainly in

HOA m/z’s, Zhang et al., 2005a), and that these techniques

can make a bigger difference for a dataset with much lower

signal-to-noise (Canagaratna et al., 2006). We report results

for the case with pretreatment, with downweighting, and in

the robust mode in order to capture the broad characteristics

of the dataset. Throughout this section, a “case” refers to an

input dataset and a “solution” refers to PMF2 results.

3.1.1 Solutions as a function of number of factors

Q-values and maximum value of RotMat for the real Pitts-

burgh dataset for solutions up to 7 factors are shown in

Fig. 3a and mass fractions of these solutions are shown in

Fig. 4a, all for FPEAK=0. There is a large drop in the

Q/Qexp value from one to two factors, and Q/Qexp is 1.9

at 2 factors. Additional factors continue to reduce Q/Qexp

toward 1, but no strong change in slope is observed (largest

steps are 9% from 2–3 factors and 4–5 factors). With seven

factors, Q/Qexp is 1.3. The Q criterion clearly implies that

at least two factors are necessary to explain the data, but

there is no strong indication for choosing another solution.

Max(RotMat) has a distinct maximum at 2 factors and much

smaller values for larger numbers of factors. There is a local

minimum at 3 factors and another at 7 factors (confirmed by

solutions with >7 factors). Based on the trends of Q/Qexp

and the max(RotMat) from Lee et al. (1999), solutions with

2 or more factors would be suitable. SVD analysis of the

data matrix shows that 3 factors are required to explain at

least 99% of the variance (Fig. 3d). We proceed to analyze

www.atmos-chem-phys.net/9/2891/2009/ Atmos. Chem. Phys., 9, 2891–2918, 2009

http://www.atmos-chem-phys.net/9/2891/2009/acp-9-2891-2009-supplement.pdf
http://www.atmos-chem-phys.net/9/2891/2009/acp-9-2891-2009-supplement.pdf
http://www.atmos-chem-phys.net/9/2891/2009/acp-9-2891-2009-supplement.pdf
http://www.atmos-chem-phys.net/9/2891/2009/acp-9-2891-2009-supplement.pdf


2900 I. M. Ulbrich et al.: Organic components from PMF of Q-AMS data

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Q
/Q

e
x
p

7654321

Number of Factors

3.0

2.5

2.0

1.5

1.0

0.5

0.0

m
a
x
(R

o
tM

a
t)Q/Qexp = 1

max(RotMat)

a)

= 75.0

Real Pittsburgh Data
 Q/Qexp

 max(RotMat)

 

2.0

1.5

1.0

0.5

0.0

Q
/Q

e
x
p

7654321

Number of Factors

0.12

0.10

0.08

0.06

0.04

0.02

0.00

m
a
x
(R

o
tM

a
t)

Q/Qexp = 1

b)

2-Factor Synthetic Case
FPEAK = 0

 Q/Qexp

 max(RotMat)

 

2.0

1.5

1.0

0.5

0.0

Q
/Q

e
x
p

7654321

Number of Factors

3.0

2.5

2.0

1.5

1.0

0.5

0.0

m
a
x
(R

o
tM

a
t)

Q/Qexp = 1

c)

3-Factor Synthetic Case
FPEAK = 0

 Q/Qexp

 max(RotMat)

100

80

60

40

20

0

%
 V

a
ri
a
n
c
e
 E

x
p
la

in
e
d

1412108642

Number of Factors Retained

d)

 Pittsburgh real case Full dataset

 Pittsburgh real case 3-factor solution residual

 Synthetic 3-factor case 3-factor solution residual

 

Fig. 3. Values of Q/Qexp and the maximum value of RotMat for (a) the real Pittsburgh case, (b) the two-factor synthetic case, and (c) the
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each solution stepwise and attempt to interpret them based

on correlations with reference MS and tracer TS and use this

interpretability as a guide for choosing the number of factors.

2-factor solution

The MS and TS of the two-factor solution are shown

in Fig. S3a, see http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf. These two factors

reproduce the MS and TS found by Zhang et al. (2005a) for

this dataset using their original 2-component CPCA method

(UCMS
HOA Zhang,HOA PMF=0.98, UCMS

OOA Zhang,OOA PMF>0.99,

UCTS
HOA Zhang,HOA PMF=0.9, UCTS

OOA Zhang,OOA PMF>0.99) at

FPEAK=0. The OOA factor has 12% m/z 44 and the HOA

factor has 3% m/z 44 at FPEAK=0. All interpretations of the

factors made by Zhang et al. (2005a, c) hold for these factors.

3-factor solution

The MS and TS of the three factor solution at

FPEAK=0 are shown in Fig. 5 (correlations between

selected PMF and tracer TS are shown in Table S1,

see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf). The three-factor solu-

tion has HOA and OOA factors very similar to the Zhang

et al. (2005a) HOA and OOA (UCMS
HOA Zhang,HOA PMF=0.97,

UCMS
OOA Zhang,OOA PMF>0.99; UCTS

HOA Zhang,HOA PMF>0.99,

UCTS
OOA Zhang,OOA PMF=0.98) that correlate well with primary

combustion tracers (UCTS
CO,HOA=0.93, UCTS

NOx,HOA=0.95)

and AMS sulfate (UCTS
Sulfate,OOA=0.95), respectively. Note

that HOA likely encompasses both gasoline and diesel

engine emissions, plus other sources of reduced aerosols

such as meat cooking (Mohr et al., 2009). PMF analysis of

molecular markers results in a similar phenomenon in which

the composition of gasoline and diesel emissions are too

similar and a factor representing the sum is often retrieved

(Brinkman et al., 2006).

The third factor represents 10% of the OA mass

and has a MS with strong correlation with several

primary, secondary, and biomass burning OA spectra

from the AMS Spectral Database (Figs. 6a, S4a, Ta-

ble S2, see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf). We identify this spec-

trum as a second type of OOA, OOA-2, because of the

strong presence of m/z 44 (high resolution aerosol mass

spectrometer data of ambient aerosols confirm that this is

most likely CO+
2 , DeCarlo et al., 2006; Huffman et al.,

2009), and the correlation with OOA/SOA spectra. The

OOA that accounts for most of the mass is very simi-

lar to that identified by Zhang et al. (2005a) and Lanz et

al. (2007) and is termed OOA-1, following the nomencla-

ture of Lanz et al. (2007). The OOA-2 spectrum lies 23 de-

grees out of the HOA/OOA-1 plane (calculation described

in Supp. Info, see http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf), is clearly not a lin-

ear combination of the HOA and OOA-1 spectra, and is un-

likely to arise due to noise. The lack of significant m/z’s 60

and 73 strongly suggests that this OOA-2 does not arise

from a biomass burning source (Alfarra et al., 2007; Schnei-

der et al., 2006). The OOA-2 time series correlates well

with ammonium nitrate and ammonium chloride from the

AMS, two secondary inorganic species which were not in-

cluded in the PMF analysis (UCTS
Ammonium Nitrate,OOA−2=0.79,

UCTS
Ammonium Chloride,OOA−2=0.82; diurnal cycles are shown

in Fig. S5, see http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf). Note that we can

confirm that nitrate and chloride signals from the AMS in

this study are indeed dominated by the inorganic ammo-

nium salts, not fragments of organic species, based on the

ammonium balance (Zhang et al., 2005b, 2007b). The

OOA-2 factor is less-oxygenated than OOA-1 and more oxy-

genated than HOA (m/z 44 of OOA-1 is 12.5%, of OOA-

2 is 6%, and of HOA is 2.5%). Since both nitrate and

chloride show a semivolatile behavior in Pittsburgh (Zhang

et al., 2005b), these correlations imply that OOA-2 is also

semivolatile. Most likely OOA-2 corresponds to less oxi-

dized, semivolatile SOA, while OOA-1 likely represents a

more aged SOA that is much less volatile. Direct volatil-

ity measurements with a thermal-denuder AMS combina-

tion indeed show that in Mexico City and Riverside, CA,

the less oxygenated OOA-2 component is more volatile than

the OOA-1 component (Huffman et al., 2009). A similar

OOA-2 factor with a less oxidized spectrum and a high cor-

relation with nitrate was reported by Lanz et al. (2007) for

their dataset in Zurich in summer of 2005, though the ra-

tios of OOA-2 to nitrate differ (∼1 in the present work, ∼2

in Zurich). These authors also interpreted OOA-2 as fresh

SOA. No evidence is available to support the identification

of OOA-1 or OOA-2 as either “anthropogenic” or “biogenic”

in origin.

4-factor solution

The TS and MS for the 4-factor solution are shown

in Fig. S3b, see http://www.atmos-chem-phys.net/

9/2891/2009/acp-9-2891-2009-supplement.pdf. The

four-factor solution has clear HOA, OOA-1, and

OOA-2 factors with high similarity to those in the

3-factor case (UCTS
3−factor OOA−1,4−factor OOA−1=0.96,

UCMS
3−factor OOA−1,4−factor OOA−1=0.99;

UCTS
3−factor OOA−2,4−factor OOA−2,

UCMS
3−factor OOA−2,4−factor OOA−2>0.99;

UCTS
3−factor HOA,4−factor HOA,

UCMS
3−factor HOA,4−factor HOA>0.99) which are inter-

preted as in the 3-factor case. The fourth factor corre-

lates well with sulfate (UCTS
Sulphate,4−factor Unnamed=0.84)

and has a similar mass fraction as OOA-1 (39% and

24%, respectively). The MS of the fourth factor has

www.atmos-chem-phys.net/9/2891/2009/ Atmos. Chem. Phys., 9, 2891–2918, 2009
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Fig. 5. Factors from the three-component PMF solution of the real Pittsburgh dataset for FPEAK=0. (a) Mass spectra of the three components.

The fraction of the signal above m/z 100 is 3.4%, 24.3%, and 9.7% for OOA-1, OOA-2, and HOA, respectively. (b) Time series of the three

components and tracers.

UCMS
database spectra,4−factor Unnamed>0.8 with database mass

spectra of the Zhang Pittsburgh OOA, three types of

SOA, and four types of biomass burning (Figs. 6b, S4b,

Table S2, see http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf). However, strong

independent evidence (such as a strong tracer correlation)

for a distinctive, separate component is not present. This

additional component shows many (but not all) of the signs

of the “component splitting” of the solutions of the synthetic

data cases discussed below (Sect. 3.2.1). In addition, the

analysis of the residuals (below) does not suggest that adding

components after the first 3 fits more of the data. Thus in the

Atmos. Chem. Phys., 9, 2891–2918, 2009 www.atmos-chem-phys.net/9/2891/2009/
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Fig. 6. UCMS between representative spectra from the AMS

Mass Spectral Database (http://cires.colorado.edu/jimenez-group/

AMSsd) and (a) the third factor mass spectrum from the 3-factor

PMF solution of the real Pittsburgh dataset, (b) the fourth factor

mass spectrum from the 4-factor PMF solution of the real Pitts-

burgh dataset, and (c) the “mixed” factor mass spectrum from the

3-factor PMF solution of 2-factor base case. Values are given

in Table S1 (see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf). Superscripts denote the source

of the reference spectra as follows: (a) Zhang et al., 2005a; (b)

Canagaratna et al., 2004; (c) Alfarra et al., 2004; (d) Alfarra, 2004;

(e) Bahreini et al., 2005; (f) Sage et al., 2007; (g) I. M. Ulbrich,

J. Kroll, J. A. Huffman, T. Onash, A. Trimborn, J. L. Jimenez, un-

published spectra, FLAME-I, Missoula, MT, 2006; (h) Schneider et

al., 2006.

absence of any supporting evidence, we concluded that this

component represents an artificial “splitting” of the solution

(calling this factor OOA-1a) and that keeping this compo-

nent would be an overinterpretation of the PMF results. In

particular we warn about trying to interpret e.g. one of the

OOA-1’s as “biogenic” and the other as “anthropogenic” or

similar splits, in the absence of strong evidence to support

these assignments.

Five and more factor solutions

The five-factor solution (Fig. S3c, see http:

//www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf) has four factors

that are similar (OOA-1, OOA-1a, OOA-2, HOA)

(UCTS
4−factor,5−factor>0.96, UCMS

4−factor,5−factor>0.90)

to the factors in the 4-factor solution. The fifth

factor (HOA a) is similar to the HOA factor in

this solution (UCMS
5−factor HOA,5−factor HOA a=0.85,

UCTS
5−factor HOA,5−factor HOA a=0.68) and has

UCMS
Database Spectra,5−factor HOA a>0.8 with five types of

SOA and eight types of BBOA, but there is no strong

correlation with any available tracer. The HOA and HOA a

factors have 23% and 15% of the mass, respectively. As

before, we conclude that this “splitting” of the HOA is most

likely a mathematical artifact and not a real component.

Interpretation of factors in the six- and seven-factor solu-

tions becomes more complex and no independent informa-

tion from tracer correlations exists to substantiate the inter-

pretation of these factors. These factors likely arise due to

splitting of the real factors, likely triggered by variations in

the spectra of the real components (discussed below).

Uncertainty of the solutions of real data

In order to explore the possibility of multiple local minima in

the solutions of the dataset and qualitatively assess variability

in the factors, trials with 64 multiple starts were calculated

for the real Pittsburgh case with solutions up to 6 factors.

Local minima can be identified by solutions with different

Q/Qexp values, but this is not a sufficient criterion as it could

be possible for two local minima to have similar Q/Qexp val-

ues with different factors; therefore similarity of the factor

MS and TS is also considered as a criterion for determining

local minima. In the solutions with 2- to 6-factors, no lo-

cal solutions were observed. The 3-factor solutions show the

greatest variation in Q/Qexp values, which however increase

by only 2×10−4 Q/Qexp units above the minimum. There

are two modes of the solutions in this small range, defined

by the ratio of m/z 43: m/z 44 in the MS of the OOA-2 factor,

while the MS of the OOA-1 factor varies little and the MS of

the HOA factor is virtually identical in all solutions. The TS

of all of these solutions are virtually identical (the overlaid

TS and MS of all 64 solutions for the 3–5 factor solutions

are shown in Fig. S6, see http://www.atmos-chem-phys.net/

9/2891/2009/acp-9-2891-2009-supplement.pdf).

Quantitative assessment of the uncertainty of the factors

is made by 100 bootstrapping runs (Norris et al., 2008) of

which 95 reproduce all three factors. The average factor

MS and TS along with 1σ variation bars for each point are

shown in Fig. S7, see http://www.atmos-chem-phys.net/9/

2891/2009/acp-9-2891-2009-supplement.pdf. These results

show that the uncertainty in the TS of the three components

is small, as it is for the MS of HOA and OOA-1. The MS of

OOA-2 shows some uncertainty, which is nevertheless small

compared to the general structure of the spectrum. Thus we

conclude that the results reported here are robust and that

their statistical uncertainties are small.
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Residuals of the PMF solutions

Figure 7 shows the Q/Qexp values for each point in time

and Fig. S8 shows the total residuals (6 residual), total

absolute residuals (6|residual|), and normalized absolute

residuals (6|residual|/6 signal|) for the 3- through 6-

factor solutions for FPEAK=0. Note that Qexp for a

time sample equals the number of m/z’s in the MS (268).

Figure 8 shows a summary distribution of the scaled

residuals for all m/z from the real Pittsburgh data and

Fig. S9 shows the distribution of the scaled residuals for

selected m/z’s (see http://www.atmos-chem-phys.net/9/

2891/2009/acp-9-2891-2009-supplement.pdf); minimiza-

tion of total Q (squared scaled residuals) while meeting

non-negativity constraints drives the solutions of the

PMF algorithm. The contributions to both Q/Qexp and

absolute residual, even after fitting 3 to 6 factors, have

considerable structure (above a background level) that

www.atmos-chem-phys.net/9/2891/2009/ Atmos. Chem. Phys., 9, 2891–2918, 2009
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Fig. 9. Q/Qexp vs. FPEAK for the real Pittsburgh case with 3 fac-

tors, the 2-factor synthetic base case with 2 factors, and the 3-factor

synthetic base case with 3 factors.

is very similar to the OOA-2 time series from the three-

factor solution (UCTS
3−factor Q/Qexp,3−factor OOA−2=0.70,

UCTS
4−factorQ/Qexp,4−factor OOA−2=0.75, and

UCTS
5−factorQ/Qexp,5−factor OOA−2=0.78). Adding more

factors results in only minor changes in the TS of Q/Qexp

contributions and residual, implying that the same data

variation fit by the lower order solution is being refit with

more factors. In fact, the decrease in the TS of Q/Qexp

(improvements in the fit) in solutions with 3 to 6 factors

do not occur during periods of high HOA or OOA-2,

and only occasionally during periods of high OOA-1

(Fig. S10, see http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf). The highest spike

in the residual TS, a short-lived event on the evening of 14

September 2002, is likely due to a specific HOA plume (e.g.,

a specific combustion source) whose spectrum is similar to

but has some differences from the main HOA factor during

the study and shows variation in m/z peaks with higher con-

tribution to HOA than OOA-2. SVD of the unscaled residual

matrix after fitting 3 factors (Fig. 3d) shows that with even

12 more factors, less than 95% of the remaining variance can

be explained (150 factors would be needed to explain 95%

of the variance in the matrix of scaled residuals that was not

downweighted for weak m/z’s or those proportionally related

to m/z 44). The residual at specific m/z’s during periods of

high OOA-2 and high Q/Qexp changes for many significant

OOA-2 m/z’s in modest amounts, fairly continuously, over

periods of 10–20 min. This is likely caused by variations in

the true OOA-2 spectrum (which could occur, e.g., during

condensation or evaporation of SVOCs) that cannot be

represented by the constant-MS factor, nor are constant

enough to become their own factor. These behaviors imply

that three factors have explained as much of the data as is

possible with a bilinear model with constant spectra.

3.1.2 Rotations

The three factor solution, which is the most interpretable

as discussed above, is tested for its rotational ambiguity.

The FPEAK range required for the Q/Qexp=10% criterion

in the real data is −4.2 to +4.4. Solutions with FPEAKs be-

tween −1.6 and +1.0 give an increase of 1% over Q/Qexp

at FPEAK=0 (Fig. 9). MS and TS spanning this range of

solutions are shown in Fig. 10. Note that changing FPEAK

changes both the MS and TS simultaneously. Overall, the

effect of positive FPEAK is to create more near-zero val-

ues in the MS and decrease the number of near-zero values

in the TS. The effect of negative FPEAK is to create more

near-zero values in the TS and decrease the number of near-

zero values in the MS. Note for example that the TS of the

FPEAK=−1.6 solution have periods of zeros that do not cor-

relate with any interpretable events, likely indicating that this

solution represents rotation beyond the range that gives use-

ful insight for this dataset. Changes in TS occur more in

some periods than others. Mass concentration of all factors

remain fairly constant at all FPEAKs during periods in which

at least one factor has a mass concentration near zero, but

periods in which all factors have non-zero mass concentra-

tions show more variation as FPEAK is changed. This is

most dramatic for the OOA-2 events on 13 and 14 Septem-

ber 2002, in which negative FPEAKs give more mass to the

OOA-2 factor and less mass to the OOA-1 factor compared

to solutions with FPEAK≥0. These differences represent one

way of characterizing the uncertainty of the PMF solutions,

since the Q/Qexp values change little between them and all

the TS and MS appear physically plausible. The solutions

from multiple FPEAKS (Fig. 10) show a greater range in

MS than the bootstrapping 1-σ variation bars, while the TS

show a similar range to the bootstrapping 1-σ variation bars

(Fig. S7, see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf).

The MS change with FPEAK is most dramatic in the

OOA-2 MS, while the OOA-1 MS changes very little

with FPEAK. This is not surprising since OOA-2 ac-

counts for a low fraction of the total signal and thus

its spectrum can change more without causing large in-

creases in the residuals. At large negative values of

FPEAK, the OOA-2 factor strongly resembles the HOA fac-

tor (UCMS
OOA−2,HOA at FPEAK=−1.6=0.98). The ratio of m/z 43

to m/z 44 in OOA-2 decreases from 2.1 to 1.1 and 0.55 as

FPEAK increases from −1.6 to 0 and +1.0, respectively. A

sharp decrease in the fraction of signal attributed to m/z 55

relative to a small decrease in m/z 57 (ratios of 0.88, 0.50, and

0 at FPEAKs −1.6, 0, and +1.0, respectively) gives m/z 57

an unusually high fraction of the signal in OOA-2 at large

positive FPEAKs. Positive FPEAK values also reduce the

fraction of m/z 44 (mainly CO+
2 ) attributed to the HOA MS.

Diagnostic graphs of the correlations between each of

the three factors from the real case, and how these cor-

relations change with FPEAK, are shown in Fig. 11a
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Fig. 10. 3-factor solutions of the real Pittsburgh case for selected FPEAK values.
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Fig. 11. Correlations for PMF factors to each other as they change with FPEAK for (a) the real Pittsburgh case and (b) the three-factor

synthetic base case. Traces are colored by FPEAK and numbers denote the FPEAK of each solution. Black dots in (b) indicate the correlation

of the factors in the input. (c) Correlation of the PMF factors to the input factors for the three-factor synthetic case. (d) Expansion of (c).

(Fig. S11a, see http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf). The OOA-2 fac-

tor is highly correlated in MS with both the HOA

and OOA-1 factors at FPEAK=0 (UCMS
OOA−2,HOA=0.81,

UCMS
OOA−2,OOA−1=0.84, respectively), but has a more

correlated time series with HOA than with OOA-1

(UCTS
OOA−2,HOA=0.84, UCTS

OOA−2,OOA−1=0.55). As expected,

the behavior of positive values of FPEAK is to mix the time

series, making them more correlated and the mass spectra

less correlated, moving these solutions toward the upper left

of the graph. Negative values of FPEAK do the opposite.

Note that this type of graph is very sensitive to small changes

in the solution TS and MS. We find no evidence that solutions

with FPEAKs away from zero are preferable.

3.2 Synthetic AMS data

It is clear from the analysis of this ambient dataset that there

is significant ambiguity in the “correct” choice of the number

of factors and rotations of the solutions. In this section we

seek to evaluate the behavior of PMF2 and the appearance of

its solutions for AMS synthetic datasets for which the true

solution is known and for which well-specified and realistic

noise is the only additional content in the data matrix. This

type of analysis will help in the interpretation of the solutions

from real cases.

3.2.1 Solutions of synthetic data base cases

Solutions as a function of number of factors

As AMS organic datasets have a specific structure with

strong interrelation across m/z’s and auto- and cross-

correlation time scales of the order of hours to days for most

components and datasets, it is of interest to examine what

PMF2 reports when too few or too many factors are requested

by the user when the correct number of factors is known.

Q/Qexp-values and maximum value of RotMat for the

two- (and 3-) factor synthetic base case for solutions up to

7 factors are shown in Fig. 3b (3c) for FPEAK=0. Q/Qexp

is ≫1 for the one-factor solution and is ≈1 for all solutions

of 2 (3) or more factors. This is the expected behavior; one

factor should not fully explain the data and a high residual

is reasonable. With the addition of a second (third) fac-

tor, most of the dataset is explained and the residual is on

the order of the noise. As the simulated noise has a large
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number of degrees of freedom, solutions with more than two

(three) factors are not able to explain more of the data and

Q/Qexp is approximately constant. Max(RotMat) does not

show a clear trend with number of factors. The maximum

is at three (two) factors and a local minimum occurs at six

(four) factors. No criterion for choosing the correct number

of factors from max(RotMat) can be determined from these

cases.

Mass spectra and time series for the 2- to 5-factor solu-

tions of the 2- and 3-factor synthetic base cases are shown

in Figs. S12 and S13, see http://www.atmos-chem-phys.

net/9/2891/2009/acp-9-2891-2009-supplement.pdf. Mass

fractions of the 2- to 7-factor solutions of the 2- and

3-factor synthetic base cases for FPEAK=0 are shown in

Figs. 4b and c. The correct number of factors (2 or 3)

reproduces the input factors (UCMS
2−factor Input,2−factor Output,

UCTS
2−factor Input,2−factor Output, UCMS

3−factor Input,3−factor Output,

UCTS
3−factor Input,3−factor Output>0.99) very well. When

more factors are calculated, factors highly similar to the

input factors are retained and the additional factors have

strong resemblance to one of these factors. For example,

the 4-factor solution of the 3-factor base case has HOA

and OOA-2 factors highly similar to the input for these

factors (UCMS
HOA input,HOA output, UCMS

OOA−2input,OOA−2 output,

UCTS
HOA input,HOA output, UCTS

OOA−2 input,OOA−2 output>0.99)

but two OOA-1 factors appear (UCMS
OOA−1 input,OOA−1 output,

UCMS
OOA−1 input,OOA−1a Output>0.99;

UCTS
OOA−1 input,OOA−1 output>0.99,

UCTS
OOA−1 input,OOA−1a Output=0.97) with 42 and 20% of

the fit mass, respectively. The OOA-1 factor has been “split”

into two. This behavior continues with more factors in both

base cases. Split factors have very similar MS and TS to

each other and to the same factor in the p−1 factor solution

with approximately equal splitting of the mass between the

like factors.

The 3-factor solution of the 2-factor base case

shows another interesting behavior (Fig. S12b,

see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf). One factor is very

similar to the HOA input factor (UCMS
HOA Input,3−factor HOA,

UCTS
HOA Input,3−factor HOA>0.99) and one factor very sim-

ilar to the OOA input factor (UCMS
OOA Input,3−factor OOA,

UCTS
OOA Input,3−factor OOA>0.99). The third factor’s spec-

trum includes high-signal peaks from both the HOA and

OOA spectra. It is highly correlated with both the input

HOA and OOA spectra (UCMS
HOA Input,3−factor Mixed=0.78,

UCMS
OOA Input,3−factor Mixed=0.91, whereas the corre-

lation between the input HOA and OOA spectra

(UCMS
HOA Input,OOA Input) is only 0.43). This third factor

lies 3.1◦ out of the plane of the HOA and OOA spectra. A

true linear combination would be in the HOA/OOA plane

(0◦); in two-factor synthetic cases without added Poisson

and electronic noise, the third factor is a true linear combi-

nation of the HOA and OOA spectra and lies in the plane

of the HOA and OOA factors. Thus it is the presence of the

noise that allows the third factor to be slightly outside the 2-

component plane. This factor represents a “mix” of the true

HOA and OOA spectra, especially because of the increased

fraction of m/z 44 compared to the input HOA (<1% in the

HOA input, 7% in the mixed factor). We therefore choose

to call it a “mixed” HOA/OOA factor. This “mixed” factor,

however, has a time series that is similar to the HOA time se-

ries (UCTS
HOA Input,3−factor Mixed=0.97) and it takes 11% of the

total mass, taking more from HOA than OOA mass. Because

we created a 2-factor input, we know that this is not a true

factor. Nevertheless, the profile of this “mixed” factor is very

similar (UCMS
Mixed Factor,Database Spectra>0.9) to multiple mass

spectra from the AMS Spectral Database as shown in Fig. 6c

(Fig. S4c, Table S2, see http://www.atmos-chem-phys.net/

9/2891/2009/acp-9-2891-2009-supplement.pdf), including

SOA from chamber reactions (e.g., β-caryophyllene+O3,

α-terpinene+O3), and particles from combustion of biomass

or biomass components (e.g., ceanothus, juniper). In fact,

this “mixed” spectrum has higher correlation with many

of the SOA and BBOA spectra than the OOA-2 spectrum

from the real Pittsburgh case (Fig. 6a). No mixed factors

are observed in the 3-factor base case, indicating that the

tendency of PMF to “mix” or “split” factors in its solutions

(when too many factors are requested) is not easily predicted

and can shift with relatively small changes in the input

matrix (such as the addition of an OOA-2 input factor with

10% of the mass here).

Uncertainty of the solutions of synthetic data

In order to explore the possibility of multiple local minima

in the solutions and the repeatability of the splitting behav-

ior of the synthetic datasets, as well as to qualitatively assess

variability in the factors, trials with 64 multiple starts were

calculated for the 2-factor and 3-factor synthetic cases with

solutions up to 6 factors. Similar to the real case, the range

of Q/Qexp values across the seeds was quite small, with

the greatest difference in the 2- (3)-factor case of 2×10−4

(1×10−6) Q/Qexp units above the minimum. No local min-

ima were identified in the 3-factor synthetic cases. In the

2-factor synthetic cases, local minima are identified in solu-

tions with 3 or more factors. The solutions fall into groups

in which one factor represents the input OOA, one factor the

input HOA, and the other factors show various degrees of

mixing of the HOA and OOA factors, as was described in

Eqs. (5, 6). The three-factor solution of the 2-factor syn-

thetic case shown in Fig. S12b is representative of the most

common type of solution identified. Bootstrapping analysis

of the synthetic cases with the correct number of factors re-

sults in 1-σ variation bars of the same order or smaller than

in the real case.
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Rotations of the 3-factor synthetic base case solution

In this section we examine the range of “rotatability” of the

solutions. The FPEAK values required for the Q/Qexp in-

crease from its minimum by e.g. 10% in synthetic data can

be quite large; FPEAK=±3.0 for the 2-factor case gives an

increase in Q/Qexp of only about 4%, but an FPEAK range of

−1.0 to +1.0 in the 3-factor case gives an increase in Q/Qexp

of 1% (Fig. 9). MS and TS spanning this range of solutions

are shown in Fig. S14, see http://www.atmos-chem-phys.net/

9/2891/2009/acp-9-2891-2009-supplement.pdf. Changes in

the MS and TS are similar to those in the real Pittsburgh case.

In the TS, mass concentrations during periods in which all

factors have non-zero mass concentration show more varia-

tion as FPEAK is changed and remain approximately con-

stant in periods in which at least one factor has near-zero

mass concentration. The MS change with FPEAK is most

dramatic in the OOA-2 MS, while the HOA and OOA-1 MS

change very little with FPEAK. The changes of the OOA-2

MS with FPEAK are similar to those of the real Pittsburgh

case, with a strong resemblance to the HOA factor at nega-

tive FPEAK values (UCMS
HOA,OOA−2 at FPEAK≤−1, >0.95) and

change of its fraction of m/z 44 with increasing FPEAK val-

ues, from 6% at FPEAK 0 to 8% at FPEAK 1.0.

A graphical diagnostic of the correlations of each

of the three factors versus each other and how they

change with FPEAK is shown in Fig. 11b (Fig. S11b,

see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf). The input factors

are reproduced best near 0 FPEAK values (Figs. 11c, d,

S11c, d). The effect of FPEAK on the correlation of the

factors is extremely similar to that in the real Pittsburgh

case, with positive values of FPEAK making them more

correlated and the mass spectra less correlated and negative

values of FPEAK doing the opposite, making the time series

less correlated and the mass spectra more correlated. The

length of the segment between adjacent FPEAK solutions

indicates the relative amount of change between the factors.

Residuals in the 3-factor synthetic base case

The Q/Qexp contribution as a function of time for the 1-, 2-,

and 3-factor solutions of the 3-factor base case are shown in

Fig. 7c. The 1- and 2-factor solutions have distinct struc-

ture which indicates that all of the variation in the data

has not been fit. In the three-factor solution, which repro-

duces the three input factors very well (UCMS
Input,3−factor Output,

UCTS
Input,3−factor Output>0.99 for all three factors), the Q/Qexp

contribution has no visible structure. SVD of the unscaled

residual matrix (Fig. 3d) shows that even with 15 more fac-

tors, only about 75% of the remaining variance can be ex-

plained. These observations indicate that only random noise

remains.

3.2.2 Separation of correlated factors

Another important question when analyzing PMF results is:

how similar (correlated) can the factors be (in MS, TS, or

both) and still be correctly retrieved by PMF? In one extreme

case, two different sources that are completely correlated in

time (UCTS∼1) cannot be separated by PMF or any other

factorization method, as there is no information for their sep-

aration. Even if their MS are very different, only the sum of

the two sources can be retrieved. Similarly, two sources with

very highly correlated MS (UCMS∼1) cannot be retrieved

separately, irrespective of how different their time series are;

again, only their sum can be retrieved. If the correlation be-

tween the input factors is plotted in a graph with UCMS as the

x-coordinate and UCTS as the y-coordinate (as in Fig. 11a,

b), the “irretrievable” regions include the edges of the plot

near UCTS
Factor k,Factor j or UCMS

Factor i,Factor j =1. It would be

of interest to evaluate how far two factors have to be from

those edges to be retrievable with some accuracy by PMF,

and how the rotational uncertainty changes as the factors are

closer or farther from those edges. Likely this “distance”

from the edges will not be an absolute criterion, but will de-

pend on the fraction of the mass accounted by each factor,

i.e. a small factor may be harder to retrieve in this situation

since its variance is smaller compared to noise and potential

variations in the spectra of the larger components. This is a

complex mathematical problem, complicated by the need to

understand and maintain the number and placement of “near-

zero” values in the factor MS and TS while changing the cor-

relations between the input factors (Paatero, 2008a; Ulbrich

et al., 2008). In the present work, only the retrieval of factors

with a given correlation and varying fractions of the mass is

explored.

Separation of small factors: three-factor synthetic cases

The correlations between the factors in the variations

on the 3-factor synthetic base case (described above

in Sect. 2.3) are shown in Fig. 12a (Fig. S15a, Ta-

ble S3, see http://www.atmos-chem-phys.net/9/2891/2009/

acp-9-2891-2009-supplement.pdf). Replacing the OOA-

2 MS with one of three database spectra (BBOA, SOA,

or fulvic acid (FA) MS) gives a broad range of correla-

tions of the third factor with HOA (UCMS
HOA,BBOA=0.88,

UCMS
HOA,OOA−2=0.81, UCMS

HOA,SOA=0.76, UCMS
HOA,FA=0.39)

and a narrower range of correlations between OOA-

1 and the third factor (from UCMS
OOA=1,BBOA=0.81 to

UCMS
OOA−1,FA=0.89). We now consider how well PMF can

retrieve these factors with average mass fractions between

0.7% and 11.4%.

The ability to retrieve the small factor is assessed by

correlation with the input factor (Figs. 12b, S15b). For

mass fractions of 11.4%, the small factor was retrieved well

at FPEAK=0 with UCMS
Small Factor Input,Small Factor Output>0.99,
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UCTS
Small Factor Input,Small Factor Output>0.97. As the average

mass fraction of the small factor is decreased, the small

factor is not retrieved as accurately in some cases. Both

the MS and TS of the small factor can be retrieved

with UCMS
Small Factor Input,Small Factor Output>0.97 (except for

the SOA case) and UCTS
Small Factor Input,Small Factor Output>0.99

when the small factor has at least 5% of the average mass.

As the average mass fraction of the small factor decreases,

the third factor may have greater similarity to HOA or OOA-

1 in MS or TS than to the input factor. These behaviors

have elements similar to the splitting behavior observed in

the synthetic base cases when too many factors were cho-

sen. Although the mass spectrum of the third factor input

does not change as the mass is reduced, the ability of PMF

to retrieve both the mass spectrum and time series decreases

as the fraction of the mass decreases. Based on this case

study, we conclude that in Q-AMS datasets with only Pois-

son ion noise and Gaussian electronic noise, factors with a

mass fraction of at least 5% are likely to be retrievable with

sufficient accuracy for reliable interpretation. This should

be a lower limit for real cases in which the noise may have

additional structure. However if the small factor has a very

different time series from those of the main factors (e.g. if it

is a spiky local source or has a distinctive MS) factors with

smaller mass fractions may still be reliable retrieved (Huff-

man et al., 2009).

4 Discussion

In the ambient and synthetic data we compared various cri-

teria for determining number of factors. The criterion for

choosing the number of factors based on the behavior of

Q/Qexp vs. number of factors has the expected behavior for

the synthetic datasets but does not lead to a strong conclusion

for the real data case (Fig. 3). The Q/Qexp of the real dataset

has a steep decrease from 1 to 2 factors, but a steady de-

crease with more factors does not point to a particular choice

for number of factors. Our choice of a three-factor solution

for the real case is justified by tracer correlations, spectral

comparisons and interpretation (e.g., m/z 44 as a surrogate

for O:C ratio), and residual analysis, and is a good physical

explanation of the data. We conclude that a criterion based

on a significant decrease in Q/Qexp as the number of factors

is increased is not sufficient to determine the correct number

of factors in AMS datasets.

The criteria of the smallest maximum value of RotMat for

the best solution proposed by Lee et al. (1999) is not met

by any of the datasets. There is no theoretical reason to

support the use of the max(Rotmat) criterion to determine

the number of factors. The use of the max(Rotmat) crite-

rion appears to be based in the assumption that true data

should not have rotational ambiguity, and use of this criterion

may favor the wrong number of factors if the data do have
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2912 I. M. Ulbrich et al.: Organic components from PMF of Q-AMS data

significant rotational ambiguity (Paatero, 2008b). In the syn-

thetic datasets, max(RotMat) gives no indication about the

correct number of factors. Since the criterion is not met for

synthetic datasets, we draw no conclusion from this statistic

for real datasets and do not recommend this as a basis for

choosing the correct number of factors in AMS data. RotMat

values are larger in the real case than for the synthetic case,

suggesting additional rotatability in the real case.

The splitting and mixing behavior seen in the synthetic

datasets when too many factors were requested presents a

clear warning that when evaluating a real dataset, the re-

searcher must be careful about overinterpreting solutions

with multiple factors, even though it may be tempting

to “identify” additional sources and give them physical-

sounding names. The characterized splitting behavior in

which each split factor has comparable fractions of the mass

of the original factor may be specific to the PMF2 algorithm,

as other algorithms such as MCA (Zhang et al., 2007a) tend

to split a factor into a dominant factor (in terms of mass)

and a small factor. In particular, care must be taken because

the spurious factors obtained due to “splitting” or “mixing”

behavior have realistic-looking mass spectra and time series

and could easily be interpreted by the unsuspecting user as a

real factor, though we know that in the synthetic cases these

factors must be mathematical artifacts. In cases where mix-

ing behavior occurs, non-existent factors could be retained.

Thus, it is critical to use external tracers to confirm the in-

terpretation. In the absence of these tracers, the lower or-

der solution may be the best choice. In our ambient case,

for example, factors 3–6 are mathematically good solutions.

The fourth factor in the 4-factor solution of the real Pitts-

burgh dataset exhibits some of the behavior characterized

by the splitting observed in the synthetic cases. The TS

of this factor is very similar to the TS of the OOA-1 fac-

tor (Fig. S3b, see http://www.atmos-chem-phys.net/9/2891/

2009/acp-9-2891-2009-supplement.pdf) and these two fac-

tors share approximately equal portions of the mass (Fig. 4a).

The MS correlates well with many types of OA measured by

the AMS (Fig. 6b). While this factor may reflect true vari-

ability in OOA-1, we do not have an independent tracer to

support this interpretation and prefer the 3-factor solution as

the safest choice to avoid overinterpretation.

A key concern in having ambiguity in number of factors is

whether the mass fraction of total OOA and HOA (and other

major components such as BBOA) determined from a given

PMF analysis depends on the number of factors that is used.

The mass fraction of total HOA and OOA varies by approx-

imately ±10% in the real case and in the three-factor syn-

thetic case and could be over- or underestimated depending

on the choice of number of factors (Fig. 4). This determina-

tion is more complex in the two-factor synthetic case and de-

pends strongly on whether the “mixed” factor is attributed to

HOA or OOA, or to a new type of source. For solutions with

more than 2 factors, both total HOA and total OOA could be

underestimated while the mixed factor spuriously accounts

for 9–26% of the mass. In the real case, the 2-factor solu-

tion slightly underestimates OOA. This behavior is counter

to that seen by Lanz et al. (2007), where they observed that a

2-factor solution significantly overestimated OOA in Zurich

in the summer. Nemitz et al. (2008) found that the 2-factor

solution significantly underestimated OOA by 17% in their

case. Thus the tendency for a 2-factor solution to over- or

underestimate the OOA/HOA ratio is most likely dependent

on the structure of a particular AMS dataset and no general

trend is apparent.

In the ambient and synthetic cases we explored the use of

FPEAK to explore rotations of the solutions. A 1Q/Qexp

over the minimum Q/Qexp of ∼1% (rather than 10%,

P. K. Hopke, personal communication, 2007) seems to give a

more appropriate range of FPEAKs for this Q-AMS dataset.

Positive values of FPEAK mix the TS, making them more

correlated and the MS less correlated, while negative values

of FPEAK mix the MS, making them more correlated and the

TS less correlated (Fig. 11). Choice of a particular FPEAK

solution is complex. Mathematically, values of zero in the

true factors (in MS or TS) help to constrain the rotation, but

they must be known a priori to justify a particular FPEAK

solution (Paatero et al., 2002, 2005). We have no such a pri-

ori information in the Pittsburgh case to constrain any values

in the TS or MS to zero, and so have no mathematical way

to choose a particular value of FPEAK. We have followed

the guidance of Paatero et al. (2002) and present a range of

solutions for our dataset to describe the degree of rotational

ambiguity (Fig. 10).

Is it possible, then, to support the choice of any particu-

lar rotation? Paatero et al. (2005) suggest use of a graphical

method for choosing a rotation such that the source contribu-

tion factors (TS) show weak statistical independence near the

x- and y-axes when contributions for pairs of factors are plot-

ted in scatter plots. In AMS data, this usually requires less-

correlated TS, i.e., negative FPEAKs. Based on our interpre-

tation of the factors as primary OA, fresher SOA, and aged

SOA, the concentrations of the factors may not be indepen-

dent but may be linked by increases and decreases in regional

dispersion and photochemistry, and such a rotation may not

be warranted. FPEAKs from −1.2 to −1.6 give third factors

(OOA-2 in solutions with FPEAKs >−1.2) that exhibit some

of the behaviors of splitting (they are similar to HOA, i.e., too

close to the right edge of Fig. 11a), but this may not be suf-

ficient for rejecting them. The solutions from these FPEAKs

create zeros in the TS that do not correspond to interpretable

events (Fig. 10), and this may be sufficient qualitative justi-

fication for rejecting these solutions. No behaviors are ob-

served in the solutions at large positive FPEAKs to support

exclusion of these solutions.

A possible way to choose a rotation would be to maxi-

mize the correlation of the factor TS with external tracers.

Though this has no mathematical basis, it could be justi-

fied when the researcher is confident of his/her interpreta-

tion of the factors. Note, however, that the interdependence
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of MS and TS during rotations strongly suggests that the

change in MS with FPEAK also be considered. Fig-

ure 13 (Fig. S16, see http://www.atmos-chem-phys.net/

9/2891/2009/acp-9-2891-2009-supplement.pdf) shows the

correlation between each factor MS and TS with selected

reference spectra and tracer species, respectively, versus

FPEAK. While correlations with TS could support the choice

of a positive FPEAK, correlations with the MS suggest that

extreme FPEAKs distort the MS and FPEAKs closer to 0 ap-

pear more reasonable. Though this is not a very strong crite-

rion for this dataset, we believe that the FPEAK=0 solution is

the best representation of the retrievable factors for this case.

Separation of highly-correlated factors is a potential lim-

itation of this technique with Q-AMS data. HR-ToF-AMS

datasets contain more chemical information at each nomi-

nal m/z with both oxygenated and non-oxygenated ions (e.g.,

C2H3O+ and C3H+
7 at m/z 43) that will reduce the UCMS

between true high-resolution components, increasing the re-

trievability of factors in those datasets (Aiken et al., 2009).

Use of diagnostic plots such as those in Fig. 11 in Q-AMS

and HR-ToF-AMS factorization is encouraged. We feel that

great care must be taken when interpreting solutions in which

output factors have MS and/or TS with UC>0.9, especially

if they exhibit some characteristics of splitting or mixing be-

havior.

Studies with 3-factor synthetic cases demonstrate that fac-

tors with a small average mass fraction may not be accurately

retrieved. Factors with at least 5% of the mass were retrieved

well in all cases studied. Factors with smaller mass frac-

tions were often poorly retrieved, with their mass spectra not

found and instead a 3rd component appeared due to behavior

similar to “splitting” or “mixing” of the 2 dominant factors

(Fig. 12). The inability to retrieve factors with a smaller frac-

tion of the mass is a likely limitation of this technique with

Q-AMS data.

It is important to note that we do not assign the factors

of the AMS data to specific sources. For example, the cal-

culated HOA spectrum is likely a linear combination of the

HOA sources sampled across the study (encompassing both

the range of MS of the sources and their relative mass frac-

tions). For example, separating factors for diesel and gaso-

line vehicle emissions is very challenging in this analysis be-

cause the MS as measured in the AMS are extremely similar

and a single HOA MS can represent both sources (and others

with similar unit-resolution MS, Mohr et al., 2008). There-

fore reported HOAs may vary between studies depending on

the specific mix of sources measured during each study. Sim-

ilarly, the types of OOAs reported in each study relate to

the distribution of precursors and photochemical ages that

happen to be sampled in that particular study. The MS of

the OOA-1 and OOA-2 factors are likely interpolants of the

key variations in sources and/or age that cause spectral vari-

ation in a particular study. Therefore the OOA-1’s and OOA-

2’s reported in different studies should not be expected to

be identical, reflecting differences in meteorology, transport

time, and the mix of sources and precursors. Even for studies

at the same location during different periods, these changes

could lead to variations in the factor spectra.

The residual in the real dataset has considerable structure

that changes very little with the addition of more factors, in

stark contrast to the residual of the synthetic datasets, where

the residual reflects only the noise added to the dataset when

enough factors are chosen (Figs. 7, S8). Similar results are

reported in other component analyses of AMS data (Zhang et

al., 2005a; Lanz et al., 2007), so none of these studies is fit-

ting all of the real structure in the dataset. This distinct struc-

ture in Q/Qexp in the real dataset may imply that, though

three factors have explained as much of the data as is pos-

sible with a bilinear model, something is changing during

these periods of high residual and rotatability of the factors

(Fig. 10). We hypothesize that aerosol partitioning or pro-

cessing results in continuously, non-linearly varying spectra

that cannot be fit well with the bilinear model. Evaporation

and condensation of the semi-volatile OOA-2 component of

the organic aerosol may lead to slight changes in composition

that cannot be fit well with a constant mass spectrum. These

changes in spectra, especially when fresh SOA/OOA is im-

portant in a dataset, may be a key limitation of the retriev-

ability of the components in Q-AMS spectra. This should be

a topic of further research.
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5 Conclusions

An organic mass spectral dataset from Pittsburgh in 2002 was

analyzed by PMF. The behavior of PMF solutions with AMS

data was characterized using several 2- and 3-factor synthetic

datasets with realistic noise. Three factors are identified from

the Pittsburgh data. Two factors (HOA and OOA-1) are

similar to the factors identified by Zhang et al. (2005a). A

third factor was identified as OOA-2, a semi-volatile, less-

oxidized OOA whose time series correlates strongly with

those of ammonium nitrate and ammonium chloride. The

solutions are repeatable at different random starts and boot-

strapping analysis supports the robustness of the solution.

Researchers are urged to make these analyses, as well as to

make other appropriate comparisons, such as between the re-

sults from robust and non-robust modeling. There is no clear

support for justifying solutions with more than three factors

for this dataset. Note that this does not mean that there are

only three sources, but rather that sources with very similar

spectra (e.g., gasoline and diesel engine emissions) cannot

be separated in this analysis with UMR data. Any sources

that can be approximated by linear combinations of the PMF

factors are likely partitioning among the retrieved factors and

are not retrievable separately. Solutions with more than 3 fac-

tors appear to “split” the existing factors, a characteristic ob-

served in synthetic datasets when more factors were calcu-

lated than existed in the input. Additional factors make mi-

nor changes in the residual of the Pittsburgh case, but appear

to primarily refit the same variation in the data. We hypothe-

size that the structure in the residual reflects continuous, non-

linear changes in the OOA-2 spectra as the aerosols partition

or age, which cannot be fit by the bilinear model.

While the determination of a “best” solution is subjec-

tive and challenging in a real dataset, measures can be taken

to make this process more quantitative. Correct specifica-

tion of estimated error values,σij for the dataset help prevent

nonsensical factors (e.g., MS with one dominant fragment,

TS that oscillate between zero and several µg/m3 over short

time intervals). Real and synthetic data indicate that plots

of Q/Qexp vs. number of factors give a good indication of

the minimum number of factors, but are not a sufficient cri-

terion for choosing the best number of factors. Multiple ran-

dom seeds should be tested to explore the possibility of local

minima in the Q space, and bootstrapping should be used

to evaluate the statistical uncertainty of the candidate solu-

tions. Max(RotMat) does not give any useful indication of

the best number of factors. Interpretation of the PMF solu-

tions should start with the factor profiles (here, mass spectra).

We have created a public, web-accessible database of AMS

spectra which can be compared to spectra from PMF results

to help identify and name the factors. Spectral similarity is

not sufficient for naming factors, as “mixed” or “split” factors

can have high similarity with many spectra in the database.

Thus, correlations of time series with species not included in

the PMF analysis are critical to give additional evidentiary
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Fig. A1. Schematic diagram for calculation of error matrices for

real (black path) and synthetic (blue path) AMS data.

support to a selected solution and interpretation. Best iden-

tification is made from supporting evidence for both mass

spectra and correlation with tracer time series. It is imper-

ative that both mass spectra and time series for each factor

be presented because they are interdependent. Use of diag-

nostic plots showing the correlation between the factors in

each solution is encouraged. It is unlikely that components

with 5% or less of the mass are meaningful for Q-AMS data.

Solutions with two factors may over- or underestimate the

fraction of OOA, and this behavior appears to be dependent

on the structure of the dataset. There is generally not a math-

ematical basis for choosing a particular rotation (using the

parameter FPEAK), though correlation with external tracers

and reference mass spectra may be used to narrow the set

of plausible rotations. Presentation of solutions for several

representative FPEAKs will allow readers to understand the

rotational behavior and variability of the factors. A 1Q/Qexp

over the minimum Q/Qexpof ∼1% seems to give appropriate

range of FPEAKs for Q-AMS datasets.

Appendix A

Calculation of error values for synthetic datasets

The calculation of error values for real and synthetic data is

described schematically in Fig. A1. In real datasets, the er-

ror, σ diff, for the total difference signal (open beam – closed

beam) at each point is estimated by

σdiff = α

√

Io + Ic

ts
(A1)
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Fig. A2. Comparison of errors calculated for the Pittsburgh dataset

(y-axis) and the synthetic two-factor dataset (x-axis). Markers are

labeled by their m/z and colored by time during the campaign (be-

ginning is red, end is blue). The black line is a 1:1 line. Outlying

red points are from the first sample (row of the matrix), made over

less than the standard 5-min averaging time, decreasing the error

from these points when using the longer campaign-averaged sam-

ple time. The large band of green outlying points is mainly from

m/z 41, which had much higher than average background levels in

the instrument during two events during the campaign.

where α is a factor of 1.2 applied to account for the random

variation of the areas of single-ion signals, Io and Ic repre-

sent the signal, in ion Hz, of the open and closed beams, re-

spectively, and ts is the time, in seconds, spent sampling each

m/z (Allan et al., 2003). The error for a particular species

(e.g., organics), σ species, is calculated by propagating the ap-

plication of a “fragmentation matrix” (Allan et al., 2004) to

the total difference error σ diff, such that

σspecies,ij =

√

√

√

√

n
∑

k=1

(

σ 2
diff,ik × Fragmentation Matrix2

kj

)

. (A2)

Note that in the synthetic case, neither the open beam nor

closed beam values are known, so σ diff and σ species cannot

be calculated directly. We therefore proceed through the fol-

lowing steps to estimate errors for synthetic data. The syn-

thetic organics matrix, Xinput, is converted from µg/m3 to

Hz using the campaign-averaged conversion factor from the

real Pittsburgh dataset. The matrices of inorganic species

and air (in Hz) are added to the organics matrix to give

a total estimated difference matrix. The calculation of the

σ diff matrix (Eq. A1) requires an estimated closed beam sig-

nal matrix, the estimated open beam signal, and the sam-

ple time per m/z. The closed signal is estimated as the

campaign-averaged closed mass spectrum. The open signal

is estimated as the estimated total difference matrix (repre-

senting open – closed) plus the campaign-averaged closed

mass spectrum. The sample time per m/z is estimated as the

campaign-averaged sample time. Calculation of σ diff for the

synthetic case uses α=1.2. The calculation of the σ organic

matrix (Eq. A2) uses the organics fragmentation matrix from

the Pittsburgh dataset. The σ organic matrix is then converted

from Hz back to µg/m3 using the inverse of the campaign-

averaged conversion factor used above. Comparison of the

magnitude of the errors of the real dataset and the synthetic

dataset is shown in Fig. A2, indicating that this procedure

results in noise estimates very similar to those from the real

dataset.
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