


1 Introduction

There are many contexts in which economists encounter badly measured variables

or are forced to use proxies of one form or another. While a great deal of attention has

been paid to effects of a single mismeasured independent variable in a regression model,

much less is known about the analytics and empirical strategies when more than one

measure or proxy of the independent variable is available. Instead, researchers often

rely on improvised or arbitrary methods. Consider the following strategies culled from

recent studies:

The effect of social capital and bad governance on economic

performance

People’s willingness to engage in civic activities and trust those with whom they in-

teract may lower the cost of exchange and facilitate cooperative solutions, and therefore

increase the economic performance of organizations or whole economies. Bureaucratic

and judicial corruption and inefficiency, and political instability may raise the costs of

exchange and harm growth. Unfortunately, these concepts are not easily measured and

researchers must rely on proxy variables. For example, trust is commonly measured by

responses to the following questions in the General Social Survey: “Generally speaking,

would you say that most people can be trusted or that you can’t be too careful in dealing

with people?” “Do you think most people would try to take advantage of you if they

got the chance, or would they try to be fair?” and “Would you say that most of the

time people try to be helpful, or that they are mostly just looking out for themselves?”

How would one best use these variables to test for an underlying relationship between

trust and economic performance or cooperative behavior? One option would be to enter

the measures one at a time as explanatory variables and see whether any of them have

significant predictive power, though this risks the perception that the researcher picked

certain results to fit a particular story. Another option is to construct an index of

the various proxy measures that might simultaneously utilize all of the information

contained in the three questions. The difficulty here is that if the questions contain

different amounts of information, how should they be aggregated?

Glaeser et al (2000) create an index of trust by standardizing (subtracting the mean



and dividing by the standard deviation) the above variables and then adding them

up. Mauro (1995) uses indices of political and labor stability, “red tape”, corruption,

terrorism, and several other outcomes compiled by Business International, a private

consulting firm, to measure institutional efficiency and corruption. Since he believes

many of these indices measure the same underlying phenomena, he averages the indices

together and uses the average as a regressor in models of growth and investment across

countries.

Permanent income and intergenerational mobility

Estimating the effect of parents’ permanent income on the education, health, and

subsequent earnings of their children has a long history in the social sciences. Perma-

nent income is not observed; instead, observed income in any year includes transitory

components representing luck, measurement error, and other unanticipated shocks to

income. If parents’ investment in their children is a function of permanent income, then

the correlation between observed income and children’s outcomes will understate the

true effect of permanent income on outcomes. A standard approach in the literature has

been to average parents’ income over several years as a measure of permanent income.

See, for example, Solon (1992) and Zimmerman (1992).

Parent’s income is not available at all in the British National Child Development

Survey, an otherwise rich, 30–plus year follow–up survey of nearly every child born in

Britain during the week of March 3, 1958. Instead, data is only available for each par-

ents’ education and social class, a seven–point scale based on occupation. One might

think of alternative ways to use both the education and social class data to best capture

parents’ economic status.

Wealth effects when income and wealth are not observed

The Demographic and Health Surveys are large household datasets with nearly iden-

tical questionnaires in over 40 developing counties. Unfortunately, no information is

available on income, wealth, or consumption. Filmer and Pritchett (2001) propose us-

ing the first principal component from 21 measures of ownership of consumer durables (a

car or television, for example), dwelling characteristics (source of drinking water, toilet
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facilities), and landownership to construct an “asset index,” which they then use to es-

timate the effect of household resources on children’s educational enrollment. The first

principal component is the linear combination of the asset variables that accounts for

the highest proportion of their variance. Subsequent principal components are orthogo-

nal linear combinations that explain the highest proportion of the remaining variation.

Filmer and Pritchett (2001) suggest that a natural interpretation of the first component

is household wealth.

In many of these cases the authors have chosen to summarize the proxies in a single,

new variable. There are several considerations underlying this strategy. Firstly by

taking some linear combination of the proxies, the measurement error problem may be

reduced. As Mauro (1995) notes:

Part of the rationale for aggregating the indices into composite subindices is

that there may be measurement error in each individual index, and averaging

the individual indices may yield a better estimate of the determinants of

investment and growth.

Secondly, we may be better able to interpret the output. Indeed if the unobserved

variable is not of intrinsic interest, but is merely a nuisance variable to be controlled,

then many researchers would not hesitate to simply include all the available proxies in

an attempt to absorb its effect, even if they might not be able to interpret an individual

coefficient (see for example Bertrand and Mullainathan 2001). If, however, the unob-

servable is the key variable of interest then it is not clear how to extract the “wealth”

effect on education, for example, from the reported effects of owning a television or a

radio.

Thirdly, researchers may be worried about multicollinearity. If the different proxies

are in fact all measuring the same underlying phenomenon, then there are no separate

coefficients to be estimated. This will be reflected in many insignificant individual

coefficients.

We will show that all of these concerns are incorrect, but incorrect in interesting

ways. Attenuation bias is in fact maximally reduced when all the proxies are used

separately in a multiple regression. Furthermore there is a way in which the underlying
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coefficient can be extracted after the event. And the fact that the proxies all measure

the same phenomenon does not detract from our ability to estimate that coefficient. In

addition, our procedure has the virtue of being more transparent - its validity is based

on the null hypothesis that there really is a common latent variable. If this hypothesis

is not true, then it does not invalidate the regression, only some of the inference that is

drawn from it. By contrast data manipulations done before the regression can obviously

not be undone by a sceptical reader.

The plan of our discussion is as follows. In the following section we will introduce the

basic problem we wish to investigate and the related literature. The main theoretical

results are in section 3. We provide some simulation evidence in section 4 and then

turn to a discussion of a number of particular examples in section 5. We conclude by

pointing to a number of open questions, and an appendix contains the proofs of our

main results.

2 The basic problem

The circumstances that we wish to investigate can be highlighted by means of the

following equations:

yi = βxi + εi (1a)

x1i = xi + u1i (1b)

x2i = ρ2xi + u2i (1c)

where β, relating yi and xi in equation 1a, is the primary parameter of interest. We

assume that xi is unobserved, but that we have the two proxies x1i and x2i. Furthermore

we will make the assumption that u1i and u2i are independent of xi and εi; that is, the

proxy variables do not have an independent effect on yi.

If we regress y on the first proxy, we have the well–known case of classical measure-

ment error with the attendant attenuation bias. The OLS estimator b of β will converge

asymptotically to

b = β
σ2

x

σ2
x + σ2

1

(2)

where σ2
x = var (x) and σ2

1 = var (u1). The parameter β is not identified. As Aigner,

Hsiao, Kapteyn and Wansbeek (1984) note, we may be able to identify β from higher
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order moments if the latent variable x is not normally distributed.

In order to identify the parameter in general we need one more restriction. If we set

cov (u1, u2) = 0, then we could use x2 as an instrument for x1 in the regression of y on

x1. A different type of restriction is if we are able to measure σ2
1. This is possible, for

instance, if the second “proxy” variable is actually a repeat measurement, carried out

for a sub–set of observations under controlled conditions. In this case we can obviously

also retrieve σ2
x and then correct the OLS estimates. This is the “errors in variables”

estimator (see Fuller 1987).

We might consider whether the relationships between the proxies allow us to identify

the common “factor” x. This is the domain of factor analysis only with even more

stringent assumptions. Not only do we need to impose orthogonality between the error

variances u1 and u2, but we also need to adopt a normalization on the coefficients. The

“factors” so isolated are only identified up to multiplication by an orthogonal matrix.

Principal components analysis achieves a unique decomposition, but does so by the

expedient of identifying the common factor with the linear combination of proxies that

maximizes the combined variance. It is not clear why this concept should correspond

to the structural relationships underlying equations 1a-1c. Indeed, if the assumption

of orthogonality between the error variances fails, then this procedure is guaranteed to

produce a composite of the factor x and the commonality in the variances.

Other identification strategies involve adding equations or specifying the process

which generates the latent variable. In the MIMIC (multiple indicators, multiple causes)

model, for example (see inter alia Aigner et al. 1984, Goldberger 1972, Jöreskog and

Goldberger 1975), it is assumed that there is at least one more relationship available

between an indicator variable and the latent variable, parallel to that in equation 1a.

The latent variable itself is written as a function of a series of observable variables, i.e.

equations 1b and 1c are replaced by

xi = α1x1i + α2x2i + u3

and the proportionality relationships between the different equations are exploited to

achieve identification. We assume that these sorts of strategies are not available for the

cases under consideration.

In particular, we assume that the researcher is not willing to make additional as-
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sumptions beyond those already given for equations 1a through 1c, and the empirical

problem is how to best use the proxy variables to minimize the attenuation bias, if not

eliminate it. The issue therefore is how to make the best of a bad situation. Throughout,

however, we restrict attention to models that are linear in the parameters.

Leamer (1983, pp.314–315) has a discussion of “proxy searches” in which he addresses

precisely this issue. His discussion is, however, exclusively about how to decide which

one of the two (or more) proxies to include in the regression. His advice is to pick the

variable which yields a high R2 and which has a low variance. He does not consider

whether one could do better by combining the information from the proxies.

In order to hone our intuition, let us consider the system in equations 1a-1c with

ρ2 = 1. Let us assume that the covariance matrix of x1 and x2 is given by

ΣXX =



 σ2
x + σ2

1 σ2
x + σ12

σ2
x + σ12 σ2

x + σ2
2





where

ΣUU =



 σ2
1 σ12

σ12 σ2
2





is the covariance matrix of u1 and u2 with σ12 6= 0. By our assumptions cov (y1, x1) =

cov (y1, x2) = βσ2
x and hence the coefficients estimated by from regressing y on proxy 1

or proxy 2 are given asymptotically respectively by

b1 = β
σ2

x

σ2
x + σ2

1

and b2 = β
σ2

x

σ2
x + σ2

2

Since the denominator is just the variance of the proxy variable, it is clear that the

proxy with the smaller variance will give the better results.

What were to happen if we were to take a simple average of the two proxies? In this

case

xi = xi + ui

with var (ui) = 1
4

(
σ2

1 + σ2
2 + 2σ12

)
. There clearly is no necessity that this be smaller

than the minimum of σ2
1 and σ2

2 . In particular, if one proxy is a good one and the

other much worse, simply averaging them out is unlikely to be the optimal strategy.

Other linear combinations of the variables are likely to get a much better reduction
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in the error variance. Indeed let u0 = δ1u1 + δ2u2 be a linear combination such that

δ1 + δ2 = 1, then it is straightforward to show that the choice of δ1 that will minimize

the variance of the weighted average is given by δ1 =
σ2

2
−σ12

σ2

1
−2σ12+σ2

2

. The variance in this

case will be
σ2

2
σ2

1
−σ2

12

σ2

1
−2σ12+σ2

2

, so that the estimate of β with the minimum attenuation bias

is given asymptotically by

b∗ = β
σ2

x

σ2
x +

σ2

2
σ2

1
−σ2

12

σ2

1
−2σ12+σ2

2

(3)

Unfortunately, we do not know the variances and covariance of u1 and u2, and thus

cannot compute this optimally weighted average of the proxies.

What happens if we run the regression of y on both proxies? The multiple regression

coefficients will be given asymptotically by Σ−1
XXΣXy where

ΣXy =



 βσ2
x

βσ2
x





It is straightforward to check that

b1 = β
σ2

x

(
σ2

2 − σ12

)

σ2
xσ2

1 + σ2
xσ2

2 − 2σ2
xσ12 + σ2

1σ
2
2 − σ2

12

(4a)

b2 = β
σ2

x

(
σ2

1 − σ12

)

σ2
xσ2

1 + σ2
xσ2

2 − 2σ2
xσ12 + σ2

1σ
2
2 − σ2

12

(4b)

This does not look very promising, but note that

b1 + b2 = β
σ2

x

(
σ2

1 + σ2
2 − 2σ12

)

σ2
xσ2

1 + σ2
xσ2

2 − 2σ2
xσ12 + σ2

1σ
2
2 − σ2

12

(5)

= b∗

so that adding up the coefficients of the two variables yields (asymptotically) an es-

timate that is precisely equal to the optimal weighting of the proxies. What is even

more remarkable is that we did not need to know anything about the relative magni-

tudes of error variances and covariances in order to achieve this result - the regression

accomplished this by itself.

We will show in the next section that this result holds true more generally - that the

attenuation bias is always smallest when all the proxies are used in a multiple regression.

We need to proceed with some care, however, particularly in the situation where ρ2 6= 1.

In that case we note that a simple average of the variables is

xi = ρxi + ui
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with ρ = 1+ρ2

2 . To avoid this unknown rescaling of the latent variable x, we will generally

want to take a weighted sum of the individual coefficients from the multiple regression.

3 The general case

We now assume that we have k proxies, with

xj = ρjx + uj (6)

We assume that cov (uj , εj) = 0, cov (uj , xh) = 0 for all j,h but that the covariance

matrix of the error terms is unrestricted, i.e.

ΣUU = E
(
U ′U

)
=





σ2
1 σ12 · · · σ1k

σ12 σ2
2 · · · σ2k

...
...

. . .
...

σ1k σ2k · · · σ2
k





where U =
[

u1 u2 . . . uk

]
.

3.1 Identification

We note that as it stands the ρj terms are not identified. Multiplying all ρs by a

constant would result in the same observations. Consequently we adopt the normaliza-

tion (already used in equation 1b) that ρ1 = 1. This amounts to fixing the scale of the

latent variable x in terms of the observable x1.

The information that is available is contained in the covariance matrix

ΣZZ = E
(
Z ′Z

)
=





β2σ2
x + σ2

ε βσ2
x βρ2σ

2
x · · · βρkσ

2
x

βσ2
x σ2

x + σ2
1 ρ2σ

2
x + σ12 · · · ρkσ

2
x + σ1k

βρ2σ
2
x ρ2σ

2
x + σ12 ρ2

2σ
2
x + σ2

2 · · · ρ2ρkσ
2
x + σ2k

...
...

...
. . .

...

βρkσ
2
x ρkσ

2
x + σ1k ρ2ρkσ

2
x + σ2k · · · ρ2

kσ
2
x + σ2

k





(7)

where Z =
[

y x1 x2 . . . xk

]
.

There are altogether k(k+1)
2 unknown parameters in ΣUU , k− 1 parameters in ρ and

the parameters β, σ2
x and σ2

ε , i.e. there are altogether
(k+1)(k+2)

2 +1 unknown parameters

in ΣZZ , but only (k+1)(k+2)
2 pieces of observable information. We are therefore short of

one restriction in order to identify the parameter β.
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Observe, however, that the vector ρ is identified from the covariances between the

dependent variable y and the proxies:

ρj =
cov (y, xj)

cov (y, x1)
(8)

As noted above there are several ways in which we could achieve identification of

β: any restriction on the covariance matrix of X =
[

x1 x2 . . . xk

]
will do so in

principle. Zero restrictions on any of σ1j would allow us to use xj as an instrument for

x1. More generally, a zero restriction on σjh would allow us to use xh as an instrument

for xj, but the resulting estimate would need to be rescaled to take account of the fact

that xj is not on the same scale as the latent variable x. Since we have an estimator

for ρj this is easily achieved. We have

β =
cov (y, xh)

cov (xj, xh)

cov (y, xj)

cov (y, x1)

The first term is the “instrumental variables” estimator while the second is the GMM

estimator of ρj.

If we know the magnitudes of σ2
x or of any of the error variances or covariances,

we could construct a generalization of the “errors in variables” estimator. As in the

previous section, however, we will assume that we do not have any plausible restrictions.

In this case the issue is how to optimally use the information contained in the proxies

in order to minimize the attenuation bias.

3.2 Minimizing attenuation bias

Let

xδ = Xδ (9)

be any linear combination of the proxy variables where X =
[

x1 x2 . . . xk

]
. By

assumption

X = xρ′ + U

where ρ′ =
[

1 ρ2 . . . ρk

]
. It follows that

xδ = xρ′δ + Uδ

Unless ρ′δ = 1 this will involve a rescaling, so we will want to multiply our final estimates

by ρ′δ to make all results comparable.
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Theorem 1 Let bδ = β̂ (ρ′δ) be the rescaled OLS estimate in the regression of y on xδ,
b be the OLS estimate in the regression of y on X , and ρ̂ be the GMM estimate of ρ.

Then

plim bδ = β

(
1 − δ′ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

)

plim ρ̂′b = β

(
1 − |ΣUU |

|ΣXX |

)
(10)

= β

(

1 − 1

σ2
xρ′Σ−1

UUρ + 1

)

where ΣXX is the covariance matrix of X . Furthermore for every δ 6= 0 we have

1

σ2
xρ′Σ−1

UUρ + 1
≤ δ′ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

Equality holds only if

δ = cΣ−1
UUρ

for some c 6= 0.

This theorem contains the generalization of the discovery we made in the two proxy

case with ρ2 = 1. We note that the appropriate way of aggregating up the coefficients

in the multiple regression is given by the “post hoc” estimator

bp = ρ̂′b =

k∑

j=1

cov (y, xj)

cov (y, x1)
bj (11)

where bj is the coefficient on xj in the multiple regression. We use the term post hoc

both because the estimation happens after the event (the regression), but also because it

can be seen as a rationalization of the data: from the k different regression coefficients

on the proxies, the post hoc estimators gives a way to interpret how changes in the

underlying unobserved variable x effect the dependent variables. The coefficients on

the proxies themselves have the less straightforward interpretation of the effect of a

unit change in the proxy holding all other proxies constant.

The theorem proves that no linear combination of the proxies will achieve a greater

reduction in attenuation bias than our process of post hoc inference. The theorem there-

fore covers all of the procedures outlined in the introduction: averaging, standardizing

and then adding, and construction of the first principal component. In essence the

multiple regression provides the appropriate reweighting of the variables to minimize

the error variance of the aggregate set of proxies.
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We note that the formula in equation 10 provides the natural generalization of equa-

tion 2, with the “generalized variances” |ΣUU | and |ΣXX | replacing σ2
1 and σ2

x respec-

tively (see Dhrymes 1974, p.56).

3.3 Post hoc inference and index construction

Our procedure obviously depends on the validity of the underlying assumptions. If

the proxies belong in the main regression (equation 1a), then clearly the process of

aggregating up the coefficients will not correspond to any parameter of interest. Never-

theless the procedure is more robust to departures from the validity of the underlying

assumptions than index construction prior to estimating the regression will be.

One attractive feature is that it is possible to provide the reader with the estimates

of the ρs and the reader can then assess how plausible the assumption of the “common

factor” is. For example, if the latent variable is “wealth”, it would be strange if the

number of rooms in one’s house did not load strongly on to it. Furthermore, given the

ρs, it is possible to provide different estimates of β, depending on whether particular

proxies are viewed as having independent effects or not.

Strictly speaking our procedure should therefore not be viewed as an estimation but

as an interpretation procedure. Equation 11 tells us how to interpret the coefficients

of a multiple regression under the null hypothesis that there is a common underlying

factor which is generating the separate coefficients.

Another way in which we can interpret the procedure is as a particular way of

constructing a composite index from the separate proxies. Indeed, as Theorem 1 shows,

there will always be one linear combination of the variables that will provide exactly the

same coefficient as the estimator (11). The multiple regression can therefore be viewed

as implicitly constructing an index from the separate proxies. Our procedure provides

the coefficient on this index. Indeed we can make this implicit index explicit post hoc

as well:

xp =
1

bp

k∑

j=1

xjbj (12)

where bj is the j-th regression coefficient. By construction this index is on the same

scale as x1 and will reproduce bp as the coefficient in the regression.1

1We have δ = 1

bp b with b = (X ′X)
−1

X ′y. Consequently δ′ρ = 1 (since bp = b′ρ) and (δ′X ′Xδ)
−1

δ′X ′y = bp.
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We are not proposing this post hoc index as the “magic bullet” for dealing with

proxies, but it has the virtue of allowing us to do various checks on the plausibility of

the procedure. But obviously this index is not a general purpose one - it is that common

factor in the proxies which best explains y. In a different regression, a different index

would be selected by the procedure. One should therefore be cautious in identifying the

index with the underlying latent variable.

If we view the regression as a procedure for implicitly constructing an index, then

the individual regression coefficients have the interpretation as weights. From the final

condition in Theorem 1 it is clear that this reweighting must work so that the weight

is proportional to the correlation with x and (in a sense) inversely proportional to

the error variance. The multiple regression procedure must therefore “parcel out” the

overall regression coefficient bp proportional to ρ and inversely proportional to the error

variance. We can show this somewhat more precisely.

Proposition 2 Let bi be the i-th regression coefficient in the multiple regression of y

on X , i.e.

bi = e′i
(
X ′X

)−1
X ′y

where ei is the unit vector with one in the i-th position. Then

plimn→∞bi = β
σ2

x

∣∣∣Σρ(i)
UU

∣∣∣
|ΣXX | (13)

where Σ
ρ(i)
UU is the matrix obtained by deleting row i of ΣUU and replacing it with the

vector ρ′.

In the special case where ΣUU is the diagonal matrix, it follows that

plim
bi

bj
=

ρi

∏
k 6=i σ2

k

ρj

∏
k 6=j σ2

k

=
ρiσ

2
j

ρjσ
2
i

Several additional points follow from this result. Firstly, if β = 0, then every single

proxy coefficient must be zero. This means that the hypothesis that β = 0 is testable

as a joint hypothesis on all the proxies. Indeed, it is also testable on the sum of the

proxies.

Secondly, it follows from our proof about the bias in ρ′b that

|ΣXX | =

k∑

i=1

ρiσ
2
x

∣∣∣Σρ(i)
UU

∣∣∣+ |ΣUU |
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There are therefore k + 1 terms in the denominator of equation 13. If the proxies are

all of similar quality, i.e. if the ρs and error variances are not vastly dissimilar, then the

individual coefficients should be of the order of β
k
, i.e. as more proxies are added, the

individual coefficients should tend to zero. It is this feature that possibly accounts for

researchers apprehension in adding multiple noisy measures of the same variable into a

regression. It should be clear, however, that this is not the appropriate metric in which

to think about the size of the coefficient. It is not the individual contributions that

matter, but the aggregate one.

3.4 The impact of other covariates

It is well–known that the attenuation bias in the OLS coefficient on a mismeasured

variable is increased when correctly measured variables are also included in the model,

provided that these variables are not correlated with the measurement error (Griliches

1986). Furthermore the bias is transmitted to the coefficients of the correctly measured

variables, generally with the opposite sign. Both of these results also apply to the bias

in the post hoc estimator when multiple proxies for an unobserved variable are included

in the regression. The coefficients on the covariates will be biased as well, the magnitude

of which depends on the covariances between the covariates, the unobserved variable,

and the measurement error components in the proxies (uj above).

In this case, however, it is particularly important to be concerned about the correla-

tion between the measurement error component and the covariates. Adding in proxies

that absorb the effects of the covariates instead of proxying for the latent variable would

be particularly damaging. An important trade–off exists, therefore, in adding additional

proxies that may add little information about the underlying unobserved variable, but

affect the accuracy with which we measure the coefficients on correctly measured vari-

ables in the model. The post hoc interpretation procedure should therefore not be taken

as licence to throw any and all variables into the regression. Ideally, the proxies should

be correlated with x and their measurement error components should be orthogonal to

the other explanatory variables in the regression.
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3.5 Biased instrumental variables estimation

The results above indicate that our post hoc approach is superior to the ad hoc

index construction approaches seen in the literature. Nevertheless it is not clear that it

is the best approach possible. For instance, if the error components in the proxies are

mutually independent, then instrumental variables will deliver an unbiased estimate of

the structural parameter. One might speculate, therefore, that biased IV estimation in

cases where the errors in the proxies are only weakly correlated might still do better

than the post hoc approach. Indeed we can investigate under which circumstances this

is likely to be the case.

In the two variable case given in equations 1a-1c, if we use x2 as an instrument for

x1, then asymptotically

biv =
cov (x2, y)

cov (x2, x1)

= β
σ2

x

σ2
x + σ12

ρ2

(14)

It is obvious that the smaller the covariance between u1 and u2 is, the smaller the

asymptotic bias. Unlike in the least squares case, however, the direction of the bias

depends on the sign of σ12. There is no longer a guarantee that the estimate is a lower

bound on the true value.

If we let ρ2 = 1 we can compare the absolute value of the IV bias to the bias in the

estimate of b∗ (equation 3). Instrumental variables will yield a smaller absolute bias if,

and only if

|σ12| ≤
σ2

2σ2
1 − σ2

12

σ2
1 − 2σ12 + σ2

2

If σ12 > 0 we get the condition

0 ≤ σ2
2σ2

1 −
(
σ2

1 + σ2
2

)
σ12 + σ2

12

This quadratic in σ12 is guaranteed to have real roots. The condition will be satisfied

if, and only if

0 ≤ σ12 ≤ min
(
σ2

1, σ
2
2

)
or σ12 ≥ max

(
σ2

1, σ
2
2

)
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The latter condition is irrelevant, since the positive definiteness of ΣUU implies that

σ12 ≤ σ2

1
+σ2

2

2 . The condition therefore simplifies to

σ12 ≤ min
(
σ2

1, σ
2
2

)

It follows that if the error variances are positively correlated, biased IV will be superior

provided the error variances are of similar magnitudes

If σ12 < 0 we get the condition

3σ2
12 −

(
σ2

1 + σ2
2

)
σ12 − σ2

2σ2
1 ≤ 0

which gives

σ2
1 + σ2

2

6
−
√

σ4
1 + 14σ2

1σ
2
2 + σ4

2

6
≤ σ12 ≤ 0

In the particular case where the error variances are equal, this condition is equivalent

to σ12 ≥ −1
3

(
σ2

u

)
where σ2

u is the common error variance.

Combining the two cases we find that biased IV is superior if, and only if,

σ2
1 + σ2

2

6
−
√

σ4
1 + 14σ2

1σ
2
2 + σ4

2

6
≤ σ12 ≤ min

(
σ2

1 , σ2
2

)
(15)

It is evident that in many situations biased IV will improve on ordinary least squares.

If we have more than two proxies, there is yet further scope for improvement. In this

case, however, the problem is to find the linear combination of proxies where the error is

least correlated with the error in x1. The conventional two-stage least squares estimate

(using all the proxies as instruments for x1) will definitely fare badly in this regard,

since they will seek to explain not only the part of x1 which is correlated with x, but

also the error term u1.

We can put the problem more formally as follows: let γ = [0, γ2, . . . , γk]
′ be a column

vector of real numbers with γ1 = 0, so that Xγ is an arbitrary linear combination of

x2 . . . xk. Using Xγ as an instrument for x1 yields asymptotically

b
γ
iv = β

σ2
xρ′γ

σ2
xρ′γ +

∑k
i=2 γiσ1i

= β
σ2

x

σ2
x + 1

ρ′γ

∑k
i=2 γiσ1i

The “best” instrument is that linear combination which yields the smallest absolute

value of 1
ρ′γ

∑k
i=2 γiσ1i. We can rewrite this expression as

∑k
i=2 ωi

σ1i

ρi
, where ωi = ρiγiP

ρiγi
,
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so that we are looking for a “weighted average” of the terms σ1i

ρi
. Unfortunately neither

the weights nor the terms need to be positive, so there is insufficient information for

the empirical researcher to gauge how to construct such an instrument. Even if such an

instrument could be constructed, it would yield a smaller absolute bias only if
∣∣∣∣∣

1

ρ′γ

k∑

i=2

γiσ1i

∣∣∣∣∣ ≤
1

ρ′Σ−1
UUρ

(16)

With the information available to an empirical researcher it is impossible to construct

the appropriate instrument, ascertain whether the condition above is satisfied, or what

the direction of the bias is. Consequently reporting the post hoc least squares estimates

jointly with any IV estimates is likely to be a preferred strategy.

4 Monte Carlo simulations

The results above are all asymptotic. In finite samples we are faced by a number of

problems. Firstly, we need to estimate the ρs, and this will increase the noise in our

procedure. Secondly, there are trade-offs between degrees of freedom lost from including

too many proxies and the increased precision gained by putting them all in.

To investigate these issues we run a Monte Carlo simulation. While the relative

performance of different estimators will depend on the parameters we set for the simu-

lations, by knowing the true data generating process we are able to assess the overall bias

in all estimates. In section 5 we take a different approach and compare the estimators

using actual datasets.

For each of 100 runs, we draw 100 independent observations on x and ε from N(0, 2),

and then create y equal to 10+ 100∗ x + ε. We generate 20 proxy variables for x deter-

mined by xj = ρjx + uj with the properties that each proxy has a different correlation

(ρj) with the unobserved factor x, has a different error variance (uj), and the error com-

ponents are correlated with each other. Specifically, ρ1 ≡ 1, and for j = 2 to 20, ρj is

randomly drawn from U(0, 2). Var(uj) = 1.1j−1 and E(ujuk) = 0.5k−jσjσk for j 6= k. ρ

and the covariance structure of the ujs are fixed for the 100 runs. We randomly reorder

the proxies before each run to avoid systematically changing the quality of the proxies

as we successively add them to the model. To ensure that our inferences about different

estimators are not driven by the particular ρ vector we drew, the 100 simulations are

repeated ten times with ten different draws of ρ, and the results averaged together.
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Table 1 displays the mean and standard deviation of five estimators. Each row

indicates the number of proxies used in the model. The mean square errors of the final

model, which uses all 20 proxies, is given at the bottom of the table. The first column

shows results when y is regressed on all of the proxies and the coefficients are averaged

together weighted by the true value of ρ. In the second column the coefficients are

weighted by an estimate of ρ, ρ̂j =
cov(y,xj )
cov(y,x1) . Since ρ1 ≡ 1 the estimates with only one

proxy are identical, 66.77, which is biased downwards by 33 percent. As more proxies

are added, the estimates based on the true ρ and the estimated ρ remain very close to

each other; with 10 proxies the bias is about 10 percent in each and with 20 proxies

it 5.7 and 4 percent. Since ρ can be consistently estimated, the only cost in having to

do so is the additional imprecision in the estimate. With 20 proxies the standard error

rises from 2.8 to 7.2 as a result of having to estimate ρ. Note that the bias is slightly

smaller in the second column than in the first.

The third through fifth columns implement alternative estimators that have appeared

in the literature. In these we regress y on the unweighted average of the proxies, on the

average of proxies after they have been standardized to have a mean of zero and unit

variance, and on the first principal component of the proxies. We rescale the results

for these estimators as appropriate to be comparable to those in the first two columns.

All three of these estimator perform considerably poorer than the post hoc estimators

in the first two columns. Although additional proxies improve each estimator, with

20 variables the bias in each is 18.5, 20.6, and 14.5 percent respectively. Since these

estimates do not require the additional estimation of the weights placed on each proxy,

there is a small gain in the precision of the estimates, but as the last row shows, the

mean squared error is still between 3.5 and seven times as large as the that in second

column. We conclude from these simulations that in situations where one cannot be

confident that the proxies are of similar quality (i.e. similar ρs and error variances), the

reduction in bias from aggregating the coefficients on the proxies can be considerable,

compared to entering a single, essentially arbitrary combination of the proxies in the

regression.
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5 Applications to existing research

We illustrate the procedure with two empirical examples. Though we do not know

the true data generating process, and thus cannot compare the alternative estimators

against the true parameter values, the use of actual data allows us to assess whether

the alternative estimators themselves produce qualitatively different results. In the first

example we are interested in estimating the effect of a family’s permanent income on

their children’s performance on a reading comprehension test. Permanent income is

not observed, and we instead use panel data with up to nine years of annual income as

alternative noisy measures of permanent income. In the second example we use data

on assets and housing conditions from the Demographic and Health Survey of India as

proxies for household wealth in a model linking wealth and school attendance. Filmer

and Pritchett (2001) use the first principal component of the asset variables as their

measure of wealth.

A standard model of (log) permanent income specifies observed income in year t

as being composed of unobserved permanent and transitory or luck components: yt =

yp +ut. If parents’ investment in their children is a function of their permanent income,

then the correlation between observed income understate the true correlation in the

permanent incomes of parents and their children. To circumvent this problem, a general

practice in the literature has been to average annual income over several years. See, for

example, Blau (1999), Case et al (2001), Mayer (1997), Solon (1992), and Zimmerman

(1992).

Using data from the National Longitudinal Survey of Youth (NLSY), we examine

the relationship between family income and children’s percentile score on the Peabody

Individual Achievement Test in reading comprehension. The NLSY began in 1979 with

a sample of 12,686 individuals aged 14 to 21. Interviews were conducted annually

between 1979 and 1994, and biennially since then. In 1986 a separate biennial survey of

the children of the women from the 1979 cohort began (called the NLSY–Children). Our

sample contains 5232 children–year observations of those aged six to fourteen who have

nonmissing data on current and nine lags of family income. The model also includes

controls for the log of family size, the child’s sex, age, and race, the mother’s age and

education, whether the mother’s spouse is present, and if so, his age and education, year
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effects, and the mother’s age–adjusted AFQT score (a test of reading and math skills

that was administered to the mother in 1980). We drop children who have missing data

for any of these controls.

Figure 1 plots the results from different models of children’s test scores. Following the

common practice in the literature, our first measure of permanent income is to average

log income over several time periods. The line in the figure labeled “Using average

income” indicates the coefficients on this term when it contains current and from zero

to nine lags of income. The coefficient rises from 0.339 when only current income is

used to 1.183 when current income and four lagged values are average together. The

coefficient continues to rise by small amounts as additional lags beyond the fourth are

introduced.

Next we include current and lagged values of family income in the regression sepa-

rately, and average the coefficients first unweighted, and second weighted by the GMM

estimate of ρ. The estimates of ρ are also given in the table and they show a small

rise from the first to the fourth income lag, going from 1.0 to 1.15, after which there

is a slight decrease back to one. The unweighted average of the regression coefficients

assumes that the correlation between the test score and current and each lag of in-

come are equal, a restriction the data in fact reject. These estimates nearly match the

estimated effect when the income data are averaged together prior to the regression.

The only difference between these estimates is caused by differences in the variance of

the transitory income component across different lags, which does not seem to be an

important feature of this data. When the income lags are optimally weighted, the total

effect of permanent income grows by 17 to 19 percent compared to unweighted average

effect. The estimated effect of permanent income when current and all nine lags of an-

nual income are used is 1.613, implying that a 50 percent rise in income leads to about

a 0.8 percentile points higher reading score.

Our second empirical application reexamines Filmer and Pritchett’s attempt to es-

timate the effect of household wealth on Indian children’s propensity to be enrolled in

school. The catch is that the Demographic and Health Survey of India does not contain

any income or wealth data, but it does contain many questions on asset holdings and

dwelling quality. Filmer and Pritchett propose to use the first principal component of

19



these asset variables as their measure of wealth.

We use data on 109,973 children aged 4 to 16 with nonmissing data for all variables.

The dependent variable in the regression is an indicator that the child is enrolled in

school. The asset variables are the number of rooms in the house, indicators for whether

the household has a refrigerator, clock or watch, sewing machine, VCR, radio, television,

fan, bicycle, car, motorcycle, electric lighting, a flush toilet or latrine, livestock; whether

the kitchen is in a separate room in the house, whether the primary cooking fuel is wood,

cow dung, or coal, and whether the drinking and nondrinking water comes from a pump

or an open source (as opposed to being piped into the home).

The first column of Table 2 displays ρ, the ratios of the bivariate correlations between

each asset and the school enrollment indicator, to the correlation between the number

of rooms in the house and the indicator. Thus the units of our unobserved “wealth”

index is the number of rooms in the dwelling. Assets that are more likely among

poorer households, such as those who obtain water from pumps or an open source, use

wood, cow dung, or coal as cooking fuel, or own livestock, have negative correlations

with children’s school enrollment. The number of rooms in the house has the largest

correlation; The assets one would associate with the relatively best–off in the data –

having a car, VCR, or refrigerator – are are only owned by a small proportion of the

household, and thus do very poorly in accounting for enrollment rates among the whole

population.

The next six columns show results when all or some of the asset variables are entered

separately into the regression. The model also controls for the child’s sex and age, the

head of the household’s sex, age, and education, and the log family size. Nearly all of

the asset variables are statistically significant, although some, such as refrigerator, car,

and VCR ownership, and using wood, dung, or coal as cooking fuel, have a different

sign than their raw correlation with school enrollment. One might be tempted to drop

these variables from the model, thinking they are capturing something other than the

effect of wealth on school enrollment. As illustrated in equation 4, a proxy that is highly

correlated with another, better measured proxy may well have a different sign than the

true effect to be measured.

When all 18 asset variables are used, the estimated effect of the assets is 0.170.2 To

2Although there are 21 separate variables, we label the two indicating toilet types, and the sources of drinking
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see how sensitive the estimate is to using less proxies, in the next five columns we break

the 18 proxies into two groups of nine, and then three groups of six. When nine are

used, the effects are 0.136 and 0.132; when six are used the effects are 0.129, 0.105, and

0.116. The attenuation bias in the estimates clearly increases as less proxies are used.

The estimates with the same number of proxies are remarkably close to each other,

suggesting the assumption of a single unobserved factor is plausible.

The last column of Table 2 displays the scoring vector used to weight the asset

variables for the first principal component. These have been divided by the weight

for the number of rooms in the house, so their magnitudes are comparable to the ρ’s

estimated below. The coefficient on the principal component asset index is 0.050. We

rescale this coefficient by multiplying it by ρ′δ
σpc

to make it comparable to the estimates

where the assets are entered separately. In this formula ρ is the bivariate correlations

between each asset and school enrollment, δ are the scoring factors, and σpc is a vector

of the standard deviations of the asset variables. The adjusted coefficient on the asset

index is 0.098, over 40 percent smaller than the effect estimated when all the proxies are

entered separately and their coefficients recombined. Indeed, the estimate of the first

principal component from all 18 asset variables has more attenuation bias than any of

the post hoc estimators that use only six of the assets.

6 Conclusion

We have proposed a new estimator for the case where the researcher has multiple

proxies for a single, unobservable independent variable. Numerous previous studies

have dealt with the problem either by using the proxies one at a time, or by averag-

ing or otherwise aggregating the proxies together and using that single measure as an

independent variable. We show that attenuation bias is maximally reduced when the

proxies are entered simultaneously in a multiple regression, and the coefficients on them

optimally combined after the fact to yield an estimate of the effect of the unobserved

variable. To optimally weight the proxies prior to the regression requires knowing the

variances and covariances between the error components in the proxies, information

that is simply unavailable to the researcher. The improved performance of the post

and nondrinking water as each being one, rather than two, proxies.
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hoc estimator is due to the fact that the regression coefficients on the proxies precisely

reflect this unknown information, leaving the researcher only to combine coefficients.

This method is also more transparent than ad hoc index construction because a reader

who believes some proxies have independent effects on the dependent variable has the

information available to create alternative estimates based on a subset of the proxies.

We have put off discussion of the asymptotic or finite–sample distribution of the

estimators compared in this paper. The need to estimate ρ, the covariances between

the proxies and the unobserved factor, introduces additional noise into the estimates

that is not present in an ad hoc index variable. The Monte Carlo simulation presented

in Section 4 suggest that this source of variance may not be particularly large, and is

outweighed by the large reduction in bias in the estimates themselves. More generally,

the analytic distribution of the estimators is quite difficult to compute and researchers

are probably better off using bootstrap methods to calculate the standard error of their

estimates.
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A Proofs

Lemma A.1 |AB + Im| = |BA + In| where A is m × n and B is n × m. (Sydsaeter,

Strom and Berck 1999, p.133, result 20.14)

Proof of Theorem 1.

plimβ̂ =

(
plim

1

n

(
xδ′xδ

))−1 (
plim

1

n
xδ′y

)

Now

plim
1

n

(
xδ′xδ

)
= σ2

x

(
ρ′δ
)2

+ δ′ΣUUδ

and

plim
1

n
xδ′y = βδ′ρσ2

x

Consequently

plimβ̂ = β
σ2

xδ′ρ

σ2
x (δ′ρ)2 + δ′ΣUUδ

=
β

δ′ρ

(
1 − δ′ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

)

i.e.

bδ = β

(
1− δ′ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

)

By contrast

plimρ̂′b = (plimρ̂)′
(

plim
1

n
X ′X

)−1 (
plim

1

n
X ′y

)

= ρ′ (ΣXX)−1 ρβσ2
x

Now

ρ′ (ΣXX)−1 ρσ2
x − 1 =

∣∣∣σ2
xρ′ (ΣXX)−1 ρ − 1

∣∣∣ (determinant of a 1 × 1 matrix)

=
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∣∣∣ (By lemma A.1)
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i.e.

ρ′ (ΣXX)−1 ρσ2
x = 1 − |ΣUU |

|ΣXX |

Hence

plimρ̂′b = β

(
1 − |ΣUU |

|ΣXX |

)

Now

|ΣXX | =
∣∣σ2

xρρ′ + ΣUU

∣∣

= |ΣUU |
∣∣σ2

xΣ−1
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∣∣

= |ΣUU |
∣∣σ2

xρ′Σ−1
UUρ + 1

∣∣ (by lemma A.1)

= |ΣUU |
(
σ2

xρ
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UUρ + 1
)

(17)

hence

|ΣUU |
|ΣXX | =

1

σ2
xρ′Σ−1

UUρ + 1

We want to compare 1
σ2

xρ′Σ−1

UUρ+1
and δ′ΣUU δ

σ2
x(δ′ρ)2+δ′ΣUU δ

, but

δ′ΣUUδ

σ2
x (δ′ρ)2 + δ′ΣUUδ

=
1

σ2
x

(δ′ρ)2

δ′ΣUU δ + 1

so we need to show that

ρ′Σ−1
UUρ ≥ (δ′ρ)2

δ′ΣUUδ

for any non-zero choices of ρ and δ.

Since ΣUU is a non-singular covariance matrix, by the spectral theorem for symmetric

matrices it can be decomposed as

ΣUU = PDP ′

where P is an orthogonal matrix of eigenvectors

P =
[

p1 p2 . . . pk

]

and D = diag (λ1, . . . , λk) is the matrix of eigenvalues, with λi > 0, ∀i. This is equiva-

lent to writing

ΣUU = λ1p1p
′
1 + . . . + λkpkp

′
k
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and it follows that
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Hence
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Now let p′iρ = wi and p′iδ = vi. Correspondingly define the vectors w and v as
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Note that
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(since P is orthogonal), i.e.
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(Cauchy-Schwarz inequality)
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Equality holds only if

√
λivi =

c√
λi

wi

for some real number c, i.e.

λivi = cwi

DP ′δ = cP ′ρ

δ = cPD−1P ′ρ

= cΣ−1
UUρ
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Proof of proposition 2.
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Substituting the expression for |ΣXX | in equation 17 into the numerator and simplifying,

we get
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The term
∑

j Sijρj, however, is identical to the value of the determinant if row i of

matrix ΣUU were replaced by ρ′, i.e.

∑

j

Sijρj =
∣∣∣Σρ(i)

UU

∣∣∣

Consequently

e′i (ΣXX)−1 ρβσ2
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UU
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|ΣXX |
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Average of 

Number of    true   estimated Average of standardized First principal 

proxies p's p's proxies proxies component

1 66.77 66.77 66.77 66.77 66.77

(4.69) (4.69) (4.69) (4.69) (4.69)

2 73.14 73.52 62.62 63.71 63.45

(7.26) (7.88) (16.00) (16.19) (16.65)

3 77.67 78.37 66.26 66.12 69.72

(7.39) (8.40) (14.96) (15.01) (15.10)

4 80.95 81.85 69.57 68.74 73.48

(6.91) (8.27) (13.70) (13.73) (12.98)

5 83.37 84.40 71.97 70.58 75.94

(6.18) (8.06) (12.12) (12.36) (11.14)

10 89.58 91.10 77.56 75.57 81.78

(4.21) (7.29) (8.37) (8.68) (7.09)

15 92.53 94.18 80.16 78.00 84.23

(3.26) (7.21) (6.71) (7.13) (5.50)

20 94.26 96.00 81.46 79.36 85.47

(2.76) (7.18) (5.99) (6.35) (4.89)

MSE [40.57] [67.55] [379.75] [466.25] [235.08]

Table 1: Monte Carlo Simulation Results

Note: The table shows the mean and standard deviation of each estimator. The 

mean square error for the models with 20 proxies are given in the last line. See 

text for details.

Post hoc estimator



Principal components

Rho 1 2 3 4 5 6 relative weights

# Rooms in house 1.000 0.009 0.011 0.013 1.000

(0.001) (0.001) (0.001)

Refrigerator 0.121 -0.035 -0.035 -0.029 0.546

(0.006) (0.006) (0.005)

Clock or watch 0.452 0.089 0.123 0.132 0.429

(0.003) (0.003) (0.003)

Type of toilet

    Flush 0.275 0.046 0.074 0.113 0.077

(0.004) (0.004) (0.004)

   Latrine 0.091 0.052 0.069 0.094 1.007

(0.004) (0.004) (0.004)

Sewing machine 0.291 0.039 0.067 0.098 0.922

(0.003) (0.003) (0.003)

VCR 0.038 -0.014 -0.033 -0.025 0.662

(0.008) (0.008) (0.008)

Radio 0.353 0.034 0.054 0.084 1.249

(0.003) (0.003) (0.003)

Drinking water from

   Pump -0.226 0.002 -0.032 -0.028 -0.154

(0.011) (0.004) (0.004)

   Open source -0.001 0.023 0.010 0.025 -0.694

(0.012) (0.005) (0.005)

Cooking fuel is wood/ -0.243 0.004 -0.008 -0.017 -1.097

   dung/coal (0.004) (0.004) (0.004)

Television 0.332 0.005 0.034 0.038 0.962

(0.004) (0.004) (0.004)

Non-drinking water from

   Pump -0.203 -0.014 -0.023 -0.038 -0.283

(0.011) (0.004) (0.004)

   Open source -0.028 0.021 0.029 0.007 1.099

(0.012) (0.005) (0.005)

Fan 0.414 0.022 0.053 0.097 1.216

(0.004) (0.004) (0.003)

Bicycle 0.188 0.019 0.036 0.046 0.934

(0.003) (0.003) (0.003)

Car 0.019 -0.062 -0.064 -0.062 -0.839

(0.010) (0.010) (0.010)

Kitchen in separate room 0.311 0.064 0.085 0.097 0.666

(0.003) (0.003) (0.003)

Motorcycle 0.129 -0.004 0.000 0.013 1.055

(0.005) (0.005) (0.005)

Electric lighting 0.447 0.114 0.137 0.162 0.616

(0.003) (0.003) (0.003)

Livestock -0.179 -0.007 -0.009 -0.006 -0.573

(0.003) (0.003) (0.003)

Number of proxies 18 9 9 6 6 6 18

Estimated "wealth" effect 0.170 0.136 0.132 0.129 0.105 0.116 0.098

Table 2: Measuring the Effect of Wealth on Children's School Attendance In India

Note: Data is from the Demographic and Health Survey of India. Sample size is 109,973. The dependent variable is an 

indicator that the child is enrolled in school. The model also controls for the child's sex and age, the head of household's 

sex, age and education, and the log family size. 

Proxy set 



Note: Data is from the NLSY-Children, 1979-1998. All models also include controls for the log family size, the child's sex, age, and race, the mother's age and 

education, whether the mother's spouse is present, and if so, his age and education, year effects, and the mother's AFQT score. 

Figure 1: The Effect of Family Income on Children's Reading Comprehension Score
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