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One of the major methods to identify microbial community composition, to unravel

microbial population dynamics, and to explore microbial diversity in environmental

samples is high-throughput DNA- or RNA-based 16S rRNA (gene) amplicon sequencing

in combination with bioinformatics analyses. However, focusing on environmental

samples from contrasting habitats, it was not systematically evaluated (i) which analysis

methods provide results that reflect reality most accurately, (ii) how the interpretations

of microbial community studies are biased by different analysis methods and (iii) if the

most optimal analysis workflow can be implemented in an easy-to-use pipeline. Here,

we compared the performance of 16S rRNA (gene) amplicon sequencing analysis tools

(i.e., Mothur, QIIME1, QIIME2, and MEGAN) using three mock datasets with known

microbial community composition that differed in sequencing quality, species number

and abundance distribution (i.e., even or uneven), and phylogenetic diversity (i.e.,

closely related or well-separated amplicon sequences). Our results showed that QIIME2

outcompeted all other investigated tools in sequence recovery (>10 times fewer false

positives), taxonomic assignments (>22% better F-score) and diversity estimates (>5%

better assessment), suggesting that this approach is able to reflect the in situ microbial

community most accurately. Further analysis of 24 environmental datasets obtained

from four contrasting terrestrial and freshwater sites revealed dramatic differences

in the resulting microbial community composition for all pipelines at genus level.

For instance, at the investigated river water sites Sphaerotilus was only reported

when using QIIME1 (8% abundance) and Agitococcus with QIIME1 or QIIME2 (2 or

3% abundance, respectively), but both genera remained undetected when analyzed

with Mothur or MEGAN. Since these abundant taxa probably have implications for

important biogeochemical cycles (e.g., nitrate and sulfate reduction) at these sites, their

detection and semi-quantitative enumeration is crucial for valid interpretations. A high-

performance computing conformant workflow was constructed to allow FAIR (Findable,

Accessible, Interoperable, and Re-usable) 16S rRNA (gene) amplicon sequence analysis
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starting from raw sequence files, using the most optimal methods identified in our study.

Our presented workflow should be considered for future studies, thereby facilitating

the analysis of high-throughput 16S rRNA (gene) sequencing data substantially, while

maximizing reliability and confidence in microbial community data analysis.

Keywords: 16S rRNA, amplicon sequencing, environmental samples, bioinformatics, nf-core/ampliseq

INTRODUCTION

The ribosomal 16S rRNA gene is a phylogenetic marker that
has been analyzed extensively within the last decade due to
its presence in all microorganisms (Hugenholtz et al., 1998),
and due to a combination of variable regions, influenced by
the evolutionary clock that allow differentiation of taxa, with
conserved regions, for universal priming (Head et al., 1998). Since
the dawn of next-generation sequencing methods, the cost of
nucleotide sequencing has decreased dramatically (Wetterstrand,
2018) and DNA- or RNA-based 16S rRNA (gene) amplicon
sequencing is becoming more and more affordable. Initially,
454 pyrosequencing was employed but, after resolving early
limitations, relatively short Illumina sequencing is currently
dominating (Claesson et al., 2010; D’Amore et al., 2016) because
of higher sequence quality and cost advantages.

16S rRNA (gene) amplicon sequencing analysis pipelines are
required to be user-friendly and to provide the best output
possible. Criteria for optimal results include the recovery of all
16S rRNA (gene) amplicon sequences and taxa (full sensitivity)
with no false positive detection (full specificity). Also, in situ
relative abundances are ideally perfectly represented. However,
all current analysis methods suffer from imperfect recall (not all
sequences or taxa are detected) or imperfect precision (additional
false sequences or taxa are detected) (Callahan et al., 2016)
that originate from a diverse set of frequent shortcomings of
the entire workflow. These include biases in sample preparation
(e.g., DNA extraction, PCR, sequencing library preparation),
suboptimal experimental design (e.g., amplicon and primer
selection), erroneous sequences produced by the sequencing
method and the bioinformatics analysis strategy (Kozich et al.,
2013; Wesolowska-Andersen et al., 2014; de Muinck et al., 2017;
Laursen et al., 2017; Almeida et al., 2018; Nearing et al., 2018).

The scientific literature suggesting software applications for
the analysis of 16S rRNA (gene) sequencing data is continuously
growing and many methods have been proposed. Three major
types of methods can be distinguished: (i) Clustering of
sequencing reads to obtain operational taxonomic units (OTUs),
(ii) generation of amplicon sequence variants (ASVs) using error-
corrected reads, or (iii) direct taxonomic classification of raw
reads. Tools such as UPARSE (Edgar, 2013), Swarm (Mahé et al.,
2015) or VSEARCH (Rognes et al., 2016) cluster sequences with a
given similarity (e.g., ≥97%) into OTUs and are also integrated
in overarching frameworks such as Quantitative Insights Into
Microbial Ecology (QIIME) (Caporaso et al., 2010b), Mothur
(Schloss et al., 2009), USEARCH (Edgar, 2010) or FROGS
(Escudié et al., 2017). Clustering sequences masks biological
variation and was shown to produce artifacts, e.g., QIIME
reportedly produced inflated numbers of OTUs with standard

parameters (Edgar, 2017). More recently developed methods
such as UNOISE (Edgar and Flyvbjerg, 2015), Divisive Amplicon
Denoising Algorithm (DADA2) (Callahan et al., 2016), or Deblur
(Amir et al., 2017) compute ASVs that are generally considered
to be a more detailed view of OTUs as produced by QIIME1
or Mothur (Callahan et al., 2017). Ideally, ASVs represent
actual amplicon sequences with single-nucleotide resolution that
originate from each 16S rRNA gene copy of each species so that
one species might be represented by several ASVs (Větrovský
and Baldrian, 2013). Still, 16S rRNA genes that do not differ in
their amplified sequence cannot be resolved. DADA2 and Deblur
are available in QIIME2 (Bolyen et al., 2019), the successor of
QIIME (called from here on QIIME1). Yet another group of
tools directly classifies sequencing reads into taxonomic bins
without OTU/ASV generation. These tools are typically used
for shotgun metagenomics but sometimes also for amplicon
analysis, e.g., MEGAN (Mitra et al., 2011), Kraken2 (Lu and
Salzberg, 2020) or Centrifuge (Cuscó et al., 2018; Khachatryan
et al., 2020). Recovering representative sequences such as OTUs
or ASVs allows for further analysis like constructing phylogenetic
trees or performing targeted analyses, such as searching for the
same sequence or related sequences in other data sets, that is not
possible when using direct read classification. However, direct
taxonomic classification can be straight forward with functional
gene sequences that do not have elaborate reference databases like
the 16S rRNA gene (DeSantis et al., 2006; Quast et al., 2013), e.g.,
for methane monooxygenase genes (pmoA, mmoX) or methanol
dehydrogenase genes (xoxF4, xoxF5,mxaF) (Taubert et al., 2019).

Various bioinformatics tools complicate the selection and
the choice of the analysis approach. Several studies comparing
different 16S rRNA (gene) amplicon sequencing analysis methods
and pipelines have been published over the years, many of those
by authors of new tools who had to benchmark it against existing
work (e.g., Edgar, 2013; Callahan et al., 2016; Escudié et al.,
2017). Independent studies compared for example amplicon
sequencing to shotgun metagenomics (Tessler et al., 2017), OTU
clustering methods (Kopylova et al., 2016), OTU clustering to
raw read classification (Siegwald et al., 2017), or OTU clustering
to error-correcting ASV methods (Nearing et al., 2018; Prodan
et al., 2020). Interestingly, also a meta-analysis of four published
evaluations of metagenome and amplicon analysis software was
published (Gardner et al., 2019). Some studies are only based
on simplified mock communities and include no diverse samples
(e.g., Gardner et al., 2019; Khachatryan et al., 2020); other
studies test without mock datasets and therefore cannot compare
the results to the underlying truth but focus on differences
caused by the analysis methods (e.g., Sinclair et al., 2015; Tessler
et al., 2017). The combination of independent analysis of mock
and environmental samples from contrasting habitats as well
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as comprehensive comparisons at multiple levels (OTU/ASV,
taxonomy, alpha- and beta diversity) is rare. Additionally,
some of these studies are not addressed to microbiologists
but rather to bioinformaticians or do not include detailed
guidelines. Focusing on environmental samples from contrasting
habitats, it was previously not systematically evaluated (i) what
data analysis tools report the in situ microbial community
composition most accurately, (ii) how the interpretations of
microbial community studies differ among tools and (iii) whether
an easy-to-use pipeline allowing reproducible and reliable results
can be constructed.

In this study, we therefore aimed at identifying most suitable
bioinformatics methods to examine microbial communities
based on 16S rRNA (gene) amplicon sequencing data, while
revealing differences caused by these methods with a focus on
taxonomic identification and microbial diversity analysis. We
subsequently aimed at implementing our findings into an open-
access pipeline. Key elements for our comparisons included
the accuracy of recovered 16S rRNA gene amplicon sequences,
their taxonomic classification and their relative abundances. All
these elements are essential for exploring microbial communities,
predicting ecological relevance, identifying microbial key players
involved in biochemical cycles or drawing conclusions about
differences between communities. Here, we compared common
tools that produce OTUs or ASVs, or directly classify reads
taxonomically. Since a comparison of all existing tools is not
realistic, one of our most important criteria for our tool selection
was the adherence to the open source and permissive licensing
models. We consider this important for the implementation
of FAIR (Findable, Accessible, Interoperable, and Re-usable)
(Wilkinson et al., 2016) and reproducible processing pipelines.
While USEARCH (with UPARSE and UNOISE) is widespread,
it is not open source software and has furthermore limitations for
the software redistribution. Therefore, we chose OTU-clustering
Mothur and QIIME1, ASV-producing QIIME2 (with DADA2 or
Deblur) andMEGAN that was the first tool among read classifiers
that was adopted to analyze amplicon data. We compared
these tools with three mock datasets and 24 environmental
samples. Additionally, we implemented our findings as an nf-core
workflow (Ewels et al., 2019; Straub and Peltzer, 2019) to allow
for execution in highly parallelized computing infrastructures,
such as high-performance computing environments or compute
clouds. Nf-core workflows strictly follow the FAIR principle
(Wilkinson et al., 2016), come with high quality standards, and
are fully based on open source software (Ewels et al., 2019).

MATERIALS AND METHODS

Mock Test Datasets
To compare the performance of Mothur, QIIME1, QIIME2, and
MEGAN, three mock datasets differing in microbial community
composition, abundance distribution, and data quality were
selected. All three datasets investigated the V4 region of the
16S rRNA gene and were sequenced by Illumina MiSeq.
The “Balanced” dataset consisted of 57 bacteria and archaea
from a broad range of habitats at even amounts of purified

genomic DNA (Schirmer et al., 2015). The “Extreme” community
contained 27 human gastrointestinal tract bacterial isolates at
frequencies spanning six orders of magnitude and differing by
as little as one nucleotide, for which 16S rRNA gene amplicons
of individual cultures were quantified and pooled (Callahan
et al., 2016). The “HMP” (Human Microbiome Project) dataset
contained 21 well-separated strains in the human body with
equimolar concentrations of 16S rRNA gene copies per genome
(Kozich et al., 2013); the sequence quality was the lowest of the
three mock datasets.

The Balanced dataset was retrieved from the European
Nucleotide Archive (ENA), study PRJEB6244 sample M35
(SAMEA3298272) (Schirmer et al., 2015), the Extreme dataset
SRR2990088 (Callahan et al., 2016) was downloaded from the
Sequence Read Archive (SRA), and the HMP dataset, alias
Mock1, was downloaded at mothur.org in set “130403” (Kozich
et al., 2013). For the Balanced and HMP datasets, primers were
removed from raw sequences and untrimmed sequences were
discarded with Cutadapt v1.14 (Parada et al., 2016) wrapped by
Trim Galore! v0.4.5 (Felix Krueger)1.

For the Extreme and HMP datasets, reference sequences
were obtained from the Supplementary File “Supplementary
Software” from Callahan et al. (2016). For the Balanced dataset,
reference sequences for each species were retrieved from the
“ribosomal RNA operon copy number database” (rrnDB) v5.4
(Stoddard et al., 2015). For QIIME2 in combination with Deblur,
all recovered amplicon sequences had equal lengths determined
by an input parameter and, therefore, reference sequences were
truncated to the same length.

Further details on mock datasets and trimmed primers can be
found in the Supplementary Table 1.

Sample Collection and DNA Extraction
Groundwater, soil, river sediment, and river water were each
sampled in triplicate at two sites.

Groundwater

Groundwater was collected from the monitoring well in Haslach
(sampling site 1) using a submersible pump operating at the top
of the screened section in 70 m depth below the well head (47.7 m
below the water table) with a flow rate of about 0.1 L/s. Prior
to sample collection the water column was exchanged 2.5 times.
Pumped groundwater was collected in sterile 10 L Nalgene R©

containers in triplicates and transported back to the laboratory
for immediate filtration. Sampling site 2 is a drinking water
supply well in Entringen with a permanent pumping system,
where a tap at the well head was used for sampling. Prior to
sampling, the production well was operated for at least 1 h
to maintain steady state conditions. Samples were collected in
triplicates in sterile 10 L Nalgene R© containers, transported back
to the laboratory and immediately filtered. In the laboratory,
groundwater samples were filtered sequentially through 8 µm
(Millipore, TETP04700), 0.4 µm (Millipore, HTTP04700), and
0.2 µm (Millipore, GTTP04700) polycarbonate filters. The
filters were frozen at −20◦C until further analysis. DNA was

1https://www.bioinformatics.babraham.ac.uk
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extracted from the 0.2 µm filters using the FastDNA spin kit
(MP Biomedicals, Santa Ana, CA, United States) according to the
manufacturer’s instructions.

Soil

Topsoil (0–10 cm depth) was collected using a sterile ethanol-
washed spatula into sterile CorningTM Falcon 50 mL Conical
Tubes. Samples were transported at ambient temperature back
to the laboratory (within 2 h) and frozen at −80◦C. DNA was
extracted according to Lueders et al. (2004).

Sediment

Sediment was collected using a sterile ethanol-washed stainless
steel corer with an inner diameter of 4 cm. Subsamples from
5 cm depth were removed carefully from the core using a
sterile autoclaved stainless-steel spatula and placed into sterile
CorningTM Falcon 50 mL Conical Tubes before being frozen
immediately on dry ice in the field. DNAwas extracted from 0.5 g
(wet weight) according to Lueders et al. (2004).

River Water

River water samples were collected in triplicates into sterile
10 L Nalgene R© canisters. Sample containers were held below the
water surface (at ∼20 cm depth) and transported back to the
laboratory for immediate filtering (i.e., within maximum 8 h
after retrieval) through a 0.2 µm polyethersulfone filter (Steritop;
EMD Millipore). Filters were frozen at −20◦C until DNA
extraction. DNAwas extracted from the filters using the FastDNA
spin kit (MP Biomedicals, Santa Ana, CA, United States)
according to the manufacturer’s instructions.

Further details such as sample names, sampling coordinates,
and sampling dates can be found in the Supplementary Table 2.

16S rRNA Gene Amplicon Sequencing
Bacterial and archaeal 16S rRNA genes were amplified using
universal primers 515F: GTGYCAGCMGCCGCGGTAA (Parada
et al., 2016) and 806R: GGACTACNVGGGTWTCTAAT (Apprill
et al., 2015) fused to Illumina adapters. PCR mixtures for
amplification contained (per 25 µl reaction): 0.5 µl of each
primer (515F and 806R with Illumina tags; 10 µM stock
concentration), 12.5 µl of 2× KAPA HiFi Hotstart Readymix
(Kapa Biosystems, Inc., Wilmington, MA, United States), 0.5 µl
BSA (10% stock solution), 10 µl of RNAse/DNAse-free water
and 1 µl of template. The thermal profile used was: 3 min at
95◦C, 27 cycles of 95◦C 30 s, 55◦C 30 s, 72◦C 30 s and 5 min at
72◦C. Subsequent library preparation steps (Nextera, Illumina)
and 250 bp paired-end sequencing with MiSeq (Illumina, San
Diego, CA, United States) using v2 chemistry were performed
by Microsynth AG (Balgach, Switzerland) and between 40,000 to
132,000 read pairs per sample were obtained totaling to 2,368,742
read pairs with 1,166,187,315 nucleotides. Primers were removed
from raw sequences and untrimmed sequences were discarded
with Cutadapt v1.14 (Parada et al., 2016) wrapped by Trim
Galore! v0.4.5 (Felix Krueger)1.

16S rRNA Gene Amplicon Sequencing
Analysis Software
The mock and environmental datasets were analyzed without
(Extreme dataset) or with (all other datasets) primer trimming
with Mothur, QIIME1, QIIME2, MEGAN as described below.
The choice of customized parameters is explained in the
Supplementary Material.

For Mothur analysis, Mothur v1.40.5 (Schloss et al., 2009)
was used with standard settings following the MiSeqSOP (Kozich
et al., 2013), except adjusting the cutoff of the reference alignment
to the majority of aligned reads. Briefly, paired-end sequences
were merged and only those with maximum eight homopolymers
and maximum 275 bp were retained. SILVA v132 alignment was
cut to the amplified region (position 11894–25319), and unique
merged sequences were aligned to the cut SILVA alignment. The
alignment region was refined (Balanced: position 1968–11546, all
other: position 1968–11550) and only sequences aligned in that
region were retained. Next, unique sequences were pre-clustered
allowing for up to 2 nucleotide differences between sequences.
Chimeras were removed by VSEARCH. Uncorrected pairwise
distances were calculated and finally the sequences were clustered
to OTUs at 0.03 (97% similarity) or 0.01 (99% similarity) cutoff
and the consensus taxonomy for each OTU was retrieved.

For QIIME1 analysis, QIIME v1.9.1 was applied (Caporaso
et al., 2010b) using fastq-join v1.3.1 (Aronesty, 2013) for read
merging, PyNAST v1.2.2 (Caporaso et al., 2010a) for alignments,
VSEARCH v2.3.4 (Rognes et al., 2016) for OTU picking and
chimera detection, uclust v1.2.22 (Edgar, 2010) for taxonomy
assignments with python v2.7.13 (van Rossum, 1995) and
matplotlib v1.4.3 (Hunter, 2007).

For QIIME2 analysis, primer-free sequences were imported
into QIIME2 q2cli v2018.06 (Bolyen et al., 2019), visually
inspected with demux2, and processed with DADA2 (Callahan
et al., 2016) to remove PhiX contamination, trim reads, correct
errors, merge read pairs and remove PCR chimeras, or merged
with VSEARCH (Rognes et al., 2016) followed by removal of PCR
chimeras and Deblur (Amir et al., 2017) to obtain representative
ASV sequences. Representative sequences and their abundances
were extracted by feature-table (McDonald et al., 2012). A Naive
Bayes classifier (Pedregosa et al., 2011) was fitted with 16S
rRNA gene sequences extracted from SILVA v132 (Quast et al.,
2013) using the PCR primers of the investigated dataset. The
representative sequences were classified by taxon using the
fitted classifier3. QIIME2 plugins were executed with standard
parameters, withDADA2 quality settings “--p-trunc-len-f” and “-
-p-trunc-len-r” for Extreme dataset 160 and 120 or for HMP and
Balanced datasets with 200 and 120 or for environmental samples
with 180 and 180 or with Deblur parameter “- -p-trim-length”
250 for Balanced dataset or 252 for Extreme and HMP datasets.
Sequencing data from environmental samples originated from
three MiSeq runs that were independently processed by DADA2
and subsequently merged in QIIME2.

For MEGAN analysis, reads were merged using
ClipAndMerge v1.7.4 (Peltzer et al., 2016) and merged reads

2https://github.com/qiime2/q2-demux
3https://github.com/qiime2/q2-feature-classifier
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were aligned to SILVA using MALT v0.4.0 (Herbig et al., 2016)
with parameters “--mode BlastN --alignment Type SemiGlobal -
-sparseSAM”. MEGAN v6.10.2 (Huson et al., 2016) assigned
taxonomy (taxon path at genus level, all leaves) and abundances
(assigned counts) based on MALT alignments.

To facilitate reproducibility and to disseminate bioinformatics
applications according to the FAIR principle (Wilkinson et al.,
2016) all analysis software for the benchmarks was bundled in
containers, using Singularity v2.4.1 (Kurtzer et al., 2017) with
Ubuntu 16.04.3 LTS and Conda/Bioconda 4.0.5 (Continuum
Analytics, Inc.)4 and are publicly accessible. Information how to
access these is available in the Supplementary Table 3.

The pipeline nf-core/ampliseq v1.1.0 (Straub and Peltzer,
2019) was executed on environmental data sets using nextflow
v19.10.0.5170, Java v1.8.0_112, and singularity v3.0.1 with
optional parameters “- -multiple Sequencing Runs” (because the
sequencing data originated from three MiSeq runs), “--trunclenf
180”, “--trunclenr 180” (to resemble truncation values of QIIME2
with DADA2), “- -classifier_removeHash” (because hash sign in
some taxa names lets QIIME2 v2018.6 fail), and a metadata sheet
was specified as indicated by the documentation.

Reference Database
The SILVA v132 database (Quast et al., 2013) of 16S rRNA gene
sequences, clustered at 99% similarity, was used as reference
database. The used analysis software required specialized files that
are indicated in the Supplementary Table 4.

Statistical Analysis
The F-score was calculated as in Kopylova et al. (2016):

Fscore = 2∗precision∗recall/(precision + recall)
where precision = (TP)/(TP + FP) and recall = (TP)/(TP + FN),
with TP = true positive, FP = false positive, FN = false negative.

On the sequence level, only perfect matches and those with
one mismatch to a reference sequence were counted as true
positives. However, in the case where multiple ASVs/OTUs
matched one reference sequence, only one was counted as
expected and all others as unexpected (false positives).

One-way ANOVA followed by Tukey’s multiple comparisons
of means was performed in R base v3.4.4 (R Core Team, 2018).

Plotting
All representative sequences were aligned to reference sequences
with blastn v2.2.31+ and a jitter plot based on relative sequence
abundances was produced by ggplot2 v2.2.1 (Wickham, 2009)
in R v3.4.4 (R Core Team, 2018). The heatmap was done with
pheatmap v1.0.8 (Kolde, 2015), the upset plot with UpSetR v1.4.0
(Conway et al., 2017) and the Venn diagram with gplots v3.0.1
(Warnes et al., 2009) in R.

Diversity Indices and Distances
ASV/OTU sequences were subsequently aligned with Mafft
v7.310 (Katoh and Standley, 2013), highly variable positions
were masked, an unrooted phylogenetic tree was constructed
with FastTree v2.1.10 (Price et al., 2010) and finally rooted

4www.anaconda.com

by the midpoint of the longest tip-to-tip distance in QIIME2.
Shannon’s Diversity Index, Unweighted UniFrac and Bray-
Curtis dissimilarity were calculated with the R-package
phyloseq v1.22.3 (McMurdie and Holmes, 2013) with the
“estimate_richness” or “distance” function using ape v5.1
(Paradis et al., 2004). The Faith’s PD index was calculated
with picante v1.7 (Kembel et al., 2010) in R v3.4.4 (R Core
Team, 2018). For mock samples, expected alpha-diversity was
calculated based on expected sequences and abundances. For
environmental samples, Bray-Curtis dissimilarity or Unweighted
UniFrac distances were subjected to NMDS (Non-metric
Multidimensional Scaling) ordination and combined by
Generalized Procrustes Analysis using plyr v1.8.4 (Wickham,
2011) and FactoMineR v1.41 (Husson et al., 2008) and Procrustes
Similarity Indices were extracted.

RESULTS

Mock Datasets Showed Highest
Sensitivity With QIIME1 but Highest
Specificity With QIIME2
To evaluate the performance of the 16S rRNA (gene) amplicon
sequencing analysis tools, three mock datasets (i.e., Balanced,
Extreme, and Human Microbiome Project; HMP) based on
samples with known composition were analyzed with Mothur,
QIIME1, QIIME2, and MEGAN. First, the number of recovered
16S rRNA gene amplicon sequences (i.e., OTUs or ASVs)
were compared to the expected numbers, determined based
on the reference sequences and abundances, and used as the
basis for subsequent analyses. Only QIIME1, Mothur, and
QIIME2 generated sequences that could be compared to defined
mock communities. MEGAN did not generate sequences and,
therefore, did not allow this comparison. The number of OTUs or
ASVs generally overestimated the number of expected unique 16S
rRNA gene amplicons for all three datasets (Table 1). Mothur and
QIIME1 in particular calculated 10- to 200-fold more sequences
than expected (Table 1), with 97% clustering similarity being at
the lower end and 99% at the upper threshold. The number of
sequences was much better estimated by QIIME2 in combination
with DADA2 or with Deblur, however, Deblur underestimated
the number of sequences for the Extreme dataset by almost 50%.

The accuracy of recovered 16S rRNA (gene) sequences
and the relative sequence abundance is of particular interest
for subsequent taxonomic classification or phylogenetic tree
construction as well as for a realistic representation of
microbial community composition. In the three mock datasets,
QIIME1 showed highest sensitivity and recovered 83 to 94%
of the reference sequences, closely followed by QIIME2 using
DADA2 with 71 to 95% recovered sequences (Figure 1 and
Supplementary Table 5). The lowest sensitivity with only
43% (15 of 35 total; Supplementary Table 5) recovered
sequences was found for QIIME2 using Deblur while processing
the Extreme dataset, where mainly low abundant sequences
failed to be recovered (Figure 1B). QIIME2 in combination
with Deblur was most specific for all datasets with only
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TABLE 1 | Generated sequences (i.e., OTUs or ASVs) for each analysis pipeline

(Mothur, QIIME1, and QIIME2) and mock dataset (Balanced, Extreme, HMP).

Balanced Extreme HMP

Species 57a 27 21

Unique amplicons 62 35 25

Mothur 99b 1681 8009 1556

97b 527 367 546

QIIME1 99b 1474 5545 4161

97b 1002 1411 2826

QIIME2 DADA2c 89 50 73

Deblurc 74 18 35

a57 species but only 52 distinguishable with the sequenced amplicon. bSimilarity

(%) at which sequences are clustered into operational taxonomic units (OTUs).
cASV calling software.

3 to 18 unexpected sequences, followed by QIIME2 in
combination with DADA2 that produced 25 to 50 sequences
that did not perfectly match to a reference sequence. However,
of the 30 unexpected sequences found by QIIME2 with
DADA2 in the Balanced dataset (Figure 1 and Supplementary

Table 5), 13 were reported by all pipelines, 10 were detected
by all but one pipeline, and only three sequences were
found exclusively by QIIME2 with DADA2 and no other
pipeline. QIIME1 and Mothur detected at least 10 times
more unexpected sequences than QIIME2 (Figure 1 and
Supplementary Table 5). Using a 99% similarity threshold for
OTUs with Mothur or QIIME1 did not improve sensitivity
compared to the 97% similarity threshold but was highly
detrimental to specificity by increasing the number of unexpected
sequences by 50 to 2,000% (Figure 1 and Supplementary

Table 5). At the time of conducting this study, Mothur’s MiSeq
Standard Operating Procedure (SOP) advertised the possibility
to produce ASVs before clustering into OTUs (but after pre-
clustering with 2 bp distance). Because increasing the sequence
similarity threshold from 97 to 99% nucleotide identity for
clustering decreased performance, excluding clustering (i.e.,
100% clustering similarity threshold) to produce ASVs was
expected to under perform and was therefore omitted for the
analysis with Mothur.

The F-score (Kopylova et al., 2016), that is the harmonic
mean of precision (detected reference sequences to all predicted
sequences) and recall (detected reference sequences to all
reference sequences), was much higher (i.e., better) for QIIME2
than for all other pipelines (excludingMEGAN) (Supplementary

Table 5). The F-score was mostly driven by the precision,
unexpected sequences (false positives) mostly occurred below
1% relative sequence abundance, but the majority of unexpected
sequences occurred below 0.001% to 0.1% abundance, depending
on the pipeline (with QIIME1 at the higher end) and the dataset.
For example, the Balanced dataset analyzed with QIIME1 had the
majority of non-perfect matching sequences present at less than
0.01% relative sequence abundance but the Extreme dataset at less
than 0.1% relative sequence abundance (Figure 1). Concordantly,
the F-score substantially improved for Mothur and QIIME1
results when applying relative abundance cutoffs, but increased
much less for QIIME2 (Supplementary Figure 1).

Taxonomic Representation of the Mock
Datasets Was Best Resembled by
QIIME2
To assess the accuracy of the workflows until taxonomic
classification (i.e., including errors from OTU/ASV generation),
the F-score was calculated for several taxonomic levels (i.e.,
class, order, family, genus and species). Taxonomic classification
varied substantially among pipelines, for instance using the
HMP dataset, F-scores from 0.2 (Mothur) to 0.8 (QIIME2
in combination with Deblur) were generated at genus level
(Figure 2). Generally, QIIME2 had either close to the highest or
the highest F-score of all four analysis pipelines in all datasets
(Figure 2), meaning that the compromise between precision and
recall was best for QIIME2. Among all investigated pipelines,
F-scores were similar for the Balanced dataset, but QIIME1
and QIIME2 achieved best results (i.e., highest F-scores) for the
Extreme datasets and QIIME2 for the HMP dataset above species
level, i.e., genus level and higher. This difference was mainly
driven by the superior precision of QIIME2 that was determined
for all investigated datasets and for all taxonomic levels above
species level. QIIME2’s Deblur outperformed DADA2 slightly
on the Balanced dataset and more pronounced with the HMP
dataset but had a lower F-score on family and genus level with the
Extreme dataset due to Deblur’s higher precision but lower recall.

Mothur and MEGAN achieved the lowest F-score for
all taxonomic levels. In order to optimize the taxonomic
classification with MEGAN, its 16S Percent Identity Filter
was enabled and taxonomic assignments were projected to
respective ranks, however, this did not improve taxonomic
classification substantially compared to default settings. In fact,
until genus level, the F-score for all three mock datasets were
almost identical to those calculated with default settings but
the species classifications were improved to the best values
among all pipelines for Balanced and Extreme datasets, however,
worsened for HMP data.

Generally, F-scores at species level were very low compared
to higher taxonomic ranks. Mothur did not attempt to annotate
the species rank at all unlike QIIME1, QIIME2, and MEGAN.
Overall, the HMP dataset had the highest species annotation
score of the three datasets with very similar values for all four
analysis pipelines that annotated species (Figure 2).

The impact of relative abundance cutoffs on the F-score
at genus level was investigated exemplary for all taxa levels
(Figure 2, bottom panels). Genus level was chosen because it
was the lowest taxonomic level that produced reasonable results
(i.e., species level had much lower F-score) and is also often
the taxonomic level of choice when microbial communities are
investigated with amplicon sequencing. The relative abundance
cutoffs were either applied to the OTU/ASV table (Mothur,
QIIME1 and QIIME2) or to the taxonomic classification
(MEGAN). Relative abundance cutoffs had very different effects
on the F-score for the three mock communities. The F-score of
all methods slightly increased until ca. 0.1% abundance cutoff
for the Balanced dataset but decreased afterward because of the
loss of true positive genera. For the Extreme dataset, the F-score
improved for the OTU-producing methods Mothur and QIIME1
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FIGURE 1 | Distribution of relative abundance of sequences (i.e., OTUs or ASVs) and their distance to reference sequences for each pipeline and dataset [(A):

Balanced, (B): Extreme, (C): HMP]. Distribution of sequences with perfect match to a reference sequence are depicted in green, with one mismatch in blue and with

more than one mismatch in black. In this Violin plot, the width (x-axis) of the shapes corresponds to the fraction of sequences within that distribution, i.e., the thicker

the line the more sequences were recovered at a particular relative abundance.

with a very low abundance cutoff (0.00025%) but then steadily
decreased for all methods due to the low abundance of some
expected genera that were lost (i.e., increasing false negatives).
The maximum F-score of 0.68 was reached by QIIME2 with
DADA2 with no abundance cutoff. The F-score for the HMP
dataset substantially increased for all methods with increasing
relative abundance cutoff (i.e., up to 0.97) due to improving
precision (all methods had a relatively high false positive rate) and
because all expected genera were at high abundance (>0.5%).

Alpha-Diversity Indices of the Mock
Datasets Were Approximated Most
Closely by QIIME2
The Shannon index (Shannon, 1948) that determines how
many different types of species or sequences (i.e., OTUs or
ASVs) are present in a sample (richness) and how evenly
these are distributed (evenness) followed the expected trend
for Mothur and QIIME2, i.e., the diversity decreased from
Balanced (expected: 3.79) to HMP (expected: 3.09) to Extreme
datasets (expected: 1.98). However, QIIME1 surprisingly led to
a higher Shannon index for the HMP dataset (4.04) than for
the Balanced dataset (3.90). The Shannon index of the Balanced
dataset was relatively independent of the analysis pipeline and
varied only slightly from 3.68 (Mothur 97%) to 3.93 (QIIME1
99%) when excluding the outlier MEGAN (3.06). But, for the
HMP and Extreme datasets the pipelines came to different
results with 2.42 (MEGAN) to 4.04 (QIIME1 99%) for the
HMP dataset and 1.01 (MEGAN) to 2.98 (QIIME1 99%) for the
Extreme dataset. Generally, QIIME1 overestimated the Shannon
index for all mock datasets, while QIIME2 and Mothur slightly
underestimated the values and MEGAN heavily underestimated
the diversity in all datasets by 20 to 60% (Figure 3). Enabling
MEGAN’s 16S Percent Identity Filter shifted the calculated
Shannon index closer to the expected values for Extreme data
but further away for the other two datasets compared to default

settings. However, the expected Shannon indices were calculated
on sequence level and MEGAN used genera abundance estimates
instead of fine-grained OTU or ASV sequences and therefore was
not able to closely resemble the expected numbers.

Overall, Shannon alpha diversity indices were most accurately
reproduced by QIIME2 in combination with DADA2 though this
method underestimated Shannon diversity on average by 6% (0.3
to 10% for the three datasets).

Faith’s Phylodiversity (PD) index (Faith, 1992) that is a
qualitative measure of the sum of the phylogenetic branch lengths
covered by a sample was also best resembled by QIIME2 with
almost 2-fold overestimation on average (1.3- to 2.7-fold for
the three datasets) but strongly overestimated by QIIME1 (2- to

FIGURE 2 | Upper panels: F-score at several taxonomic levels (i.e., class,

order, family, genus and species) for Balanced (A), Extreme (B), and HMP (C)

mock datasets. Lower panels: F-score at genus level dependent on a relative

abundance cutoff (up to 1%).
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FIGURE 3 | Alpha diversity indices dependent on a relative abundance cutoff

(up to 1%). Upper panels: Shannon index, lower panels: Faith’s Phylodiversity;

note the logarithmic x-axis and for Faith’s PD of the Extreme dataset the

logarithmic y-axis.

18-fold) and Mothur (3.5- to 29-fold). The estimates improved
with increasing relative abundance cutoff and resembled the
expected values very closely, ranging from 0.9- to 1.2-fold of the
expected values when only sequences above 0.1% abundance were
considered (Figure 3).

Poor Agreement in Recovery of 16S
rRNA Gene Amplicon Sequences and
Taxa of Environmental Samples Between
Analysis Methods
Environmental samples typically have a more complex microbial
community than mock datasets and, therefore, we selected 24
samples from diverse habitats (groundwater, soil, river sediment,
and river water) for analysis using 16S rRNA gene sequencing
to investigate whether results differed between the investigated
pipelines. First, the numbers of reported sequences (i.e., OTUs
and ASVs) and unique genera for each analysis pipeline were
compared to investigate whether the trend observed in the
mock datasets was also evident in the environmental samples,
since measures such as estimates of community diversity or
clustering distance strongly depend on sequence or taxa count.
Total sequence numbers, e.g., OTUs or ASVs, across all samples
varied from 11,747 with QIIME2 and Deblur to 79,326 with
Mothur. This was a similar trend compared to the analysis of
the mock datasets, where QIIME2 with Deblur and DADA2
produced the lowest amount of sequences (ASVs) while QIIME1
and Mothur counted the highest number of sequences (OTUs).
Most sequences (10,214 ASVs) computed by Deblur (87%) or
DADA2 (55%) were identical (Figure 4A). In addition, there was
relatively large overlap between Mothur, QIIME1, and QIIME2
with 6,426 (only 6% of total, but 35% of QIIME2 with DADA2)
identical sequences (Figure 4B), whereas 62,755 sequences (55%)
were shared by at least two but not all pipelines and 44,702
sequences (39%) were not shared at all. 17,482 and 8,948 OTU

sequences overlapped within Mothur or QIIME1 with varying
similarity cutoffs (i.e., 97 or 99%), respectively, and both analysis
pipelines produced 1.3- to 2-fold more OTU sequences with the
99% similarity cutoff than with 97%, in line with the findings of
the mock community analysis that produced 1.5- to 22-fold more
OTUs with 99% similarity cutoff.

Reported genera derived from the up to 8-fold different
sequence counts (11,747 to 79,326, Figure 5A) varied much less,
from around 2,200 using Mothur or QIIME2 with Deblur to
almost 3,100 using QIIME1 or QIIME2 with DADA2. MEGAN
reported 961 genera, which was by far the lowest number
(Figure 5B). All pipelines recovered the highest number of
sequences from sediment site 1 (26 to 44% of total) and least
sequences in groundwater site 1 (QIIME1: 10 to 12% and
QIIME2: 11%) or site 2 (Mothur: 9 to 13%). Most genera,
however, were found in sediment site 2 (Mothur: 69 to 71% and
QIIME2: 42 to 53%) or river water site 1 (QIIME1: 64 to 66%
and MEGAN: 61%). But generally, all pipelines identified more
sequences and genera in sediment and river samples than in
groundwater and soil samples (Figure 5).

QIIME2 with DADA2 found on average the same number
of ASVs per sampling site as QIIME2 with Deblur. However,
QIIME2 with DADA2 found almost twice the number of ASVs
overall compared to QIIME2 with Deblur (Figure 5A). Thus,
more unique sequences were found per sampling site with
DADA2 while Deblur found the same ASVs at multiple sampling
sites (Figures 5A,B). The same was also observed at genus level
(Figures 5C,D).

To see how the analysis methods differed in the resulting
microbial community composition, the relative abundance at
phylum and genus level was compared. Generally, at phylum
level the community composition at each individual site was
very similar regardless of the pipeline with one exception;
at groundwater site 1, the community composition showed
large differences between all tested pipelines at phylum level
(Figure 6A and Supplementary Figure 2). At genus level,
however, dramatic differences in the resulting community
composition were observed for all pipelines. For example, while
the community composition at phylum level at river water
site 2 was fairly consistent between all pipelines, the results at
genus level were substantially different to the extent that the
most abundant genera were not detected across all pipelines
(Figure 6B and Supplementary Figure 3). Some similarities were
observed betweenMothur and QIIME pipelines, for example, the
community composition at genus level in soil site 1 differed only
slightly. In contrast, the differences between MEGAN and other
pipelines varied substantially.

Because dominant microbial taxa might have important
functions at specific sites, the five most abundant taxa at genus
level were compared for each sampling site and analysis method.
QIIME1 with 99% or 97% similarity threshold identified always
the exact same four most abundant taxa but differed twice in
the fifth most abundant taxa (soil site 2 and sediment site 1).
QIIME2 using DADA2 agreed almost perfectly with QIIME2
using Deblur, differing only in two sampling sites: sediment site 2
with DADA2, unclassified member of Acidobacteria subgroup 6,
vs. with Deblur, unclassified Nitrososphaeraceae; river water site
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FIGURE 4 | Overlap diagrams for ASV or OTU sequences. (A) Venn diagram for QIIME2 with DADA2 and Deblur sequences that were trimmed to 250 bp for

comparison. (B) Horizontal bar plot (bottom, left panel) represents the number of sequences reported for each method (from top to bottom: Mothur 99%, Mothur

97%, QIIME1 99%, QIIME1 97%, QIIME 2 with DADA2) and matrix (bottom, right panel) indicates methods that are part of an intersection with (connected) black

filled circles. The vertical bar graph (top, right panel) represents the number of shared sequences (intersection size) for each intersection. In the vertical bar graph, the

number of sequences calculated by all methods are highlighted in red and sequences only found within QIIME1 or Mothur in green. QIIME2 with Deblur was

excluded in this figure because its ASVs have a different length (250 bp) than that expected of OTUs/ASVs of all other methods (>98% above 250 bp).

FIGURE 5 | Total number of recovered sequences (OTUs or ASVs) (A) and genera (C), for each pipeline and percentage of total sequences (B) and genera (D)

detected at each sampling site. For each habitat (groundwater, soil, sediment or river water), two sampling sites (1, 2) were investigated.
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FIGURE 6 | Bar plots showing relative taxa abundance averaged over triplicates at (A) phylum or (B) genus level for all habitat sampling sites and analysis methods.

Genera or phyla are shown in the same colors throughout the figure. Gray are taxa <1% abundance. GW, groundwater; Sed., sediment; RW, river water; 1 and 2

indicate sampling sites.

2 with DADA2, Hydrogenophaga, vs. with Deblur, Pseudomonas
(Supplementary Table 6). Very little difference between the
similarity thresholds of 99% and 97% was observed for Mothur
which had on average more than four identical taxa in the top
five most abundant ones across sampling sites (Figure 7 and
Supplementary Table 6). MEGAN had lowest agreement with
all other methods and none or maximum two reported genera
per sampling site matched those found using the three other
methods (Figure 7 and Supplementary Table 6). On average, up
to two overlapping taxa were observed by Mothur compared to
QIIME1, 2.6 taxa were shared by QIIME1 and QIIME2, and 2.7
overlapping taxa were found by Mothur compared to QIIME2.

Differences were also observed in the consistency of the five
most abundant genera between analyses depending on sampling
site. For example, at soil site 1, the average number of overlapping
most abundant genera was 3.0. Conversely, sediment site 1
had the lowest average number of overlapping genera with
1.2, showing a clear difference in the community composition
results, depending on the analysis method (Supplementary

Table 6). However, across all samples, even when the same
genera were found, the abundance and the order of abundance
varied with the analysis method. For example, river water
site 2 analyses showed that (except for MEGAN) Rhodoferax,
Malikia and Flavobacterium were consistently present in the

top five most abundant genera. However, of these three taxa,
according to Mothur with 97% similarity threshold, Malikia
had highest abundance (9%) and Rhodoferax the lowest (3%),
while according to all other methods Rhodoferax had the highest
abundance (10–12%) and Flavobacterium the lowest (3–4%).
Additionally, the relative abundance for Malikia varied from
4% (QIIME1) to 9% (Mothur). On the other hand, most
analyses agreed about the order of abundance of the three
most abundant taxa at groundwater site 2 which was dominated
by Gallionellaceae (Mothur) or Sideroxydans (QIIME1 and 2),
belonging to the family Gallionellaceae, followed by Polaromonas
and Acinetobacter (when disregarding the unassigned sequences
in QIIME1). In contrast to all other analyses, MEGAN
reported an unclassified taxon, Acinetobacter, and Candidatus
Omnitrophica as the three most abundant taxa at groundwater
site 2 (Supplementary Table 6).

The difference of reported abundant taxa probably has
implications for the interpretation of important biogeochemical
cycles. For instance, two of the dominating genera at the
investigated river water sites, Sphaerotilus and Agitococcus, were
only reported when using QIIME1 or QIIME2 (Supplementary

Table 6). At river water site 2, Sphaerotilus, potentially involved in
dissimilatory nitrate reduction to ammonium (DNRA) or partial
denitrification (nitrate reduction to nitrous oxide) (Kanehisa
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FIGURE 7 | Heatmap and number of shared taxa among the top five most

abundant genera for each pipeline averaged across sampling sites. Genus

names and their relative abundance can be found in Supplementary Table 6.

and Goto, 2000; Gridneva et al., 2011), was reported at 8%
by QIIME1 but remained undetected when analyzed with
QIIME2, Mothur, or MEGAN. At river water site 1, Agitococcus
lubricus, potentially involved in nitrite ammonification and
sulfate reduction (Franzmann and Skerman, 1981; Chen et al.,
2018), was reported by QIIME1 and QIIME2 at 2 to 3% but
not by Mothur and MEGAN. However, it remains uncertain
which results present reality more accurately. It is, however,
more plausible to follow the results of QIIME1 with its highest
sensitivity but also high proportion of false detections or QIIME2
with its highest accuracy in mock datasets than to pursue what
Mothur or MEGAN could not detect.

Diversity Estimates in Environmental
Samples Varied Among Tools
Differences in diversity estimates between methods might be
caused by the substantial differences of the number of OTUs
and ASVs, their sequences, and taxonomic classifications (even of
high abundant taxa). To investigate the comparability of within-
sample diversity measures (alpha-diversity), the Shannon index
was calculated for results of each analysis pipeline. Generally,
across all samples, QIIME2 with DADA2 and with Deblur
reported similar values (±1%) to Mothur with 97% similarity
threshold for the Shannon index. In comparison, QIIME1 and
Mothur with 99% similarity threshold had 13 and 9% higher
values, respectively, while MEGAN calculated 20% lower values
(Figure 8A). The trend seemed very similar among all analysis
pipelines except for MEGAN (Figures 8B–E), with descending
diversity from sediment, to soil, to groundwater, and river water,

although there were differences in absolute Shannon diversities.
In contrast, MEGAN reported river water having the highest
Shannon diversity followed by all other habitats (Figure 8E). One
exception was groundwater sampling site 2 (GW 2, Figures 8B–
D) that had a similar Shannon index to both soil sampling sites
in the analysis with Mothur (Figure 8B), but was significantly
different to soil with QIIME1 and QIIME2. GW 2 had a similar
Shannon index to river water (RW 2) with QIIME1 (Figure 8C),
but was significantly different to river water sampling sites with
QIIME2 (Figure 8D).

To investigate if each pipeline allowed similar sample
groupings, distances based on OTUs (Mothur and QIIME1),
ASVs (QIIME2) or taxa (MEGAN) abundance between samples
(beta-diversity) were measured. Overall, distances and groupings
were similar across pipelines and all of them allowed the
separation of habitats except MEGAN, where it was not
possible to distinguish between samples from river water and
groundwater as clearly as for other pipelines (Figure 9A, arrow
1). Also, the two groundwater sites clustered separately by all
pipelines (Figure 9).

In terms of consistency between pipelines, QIIME2 with
Deblur exchanged placement of sediment and soil samples
on the Bray-Curtis (Bray and Curtis, 1957) dissimilarity
plot compared to other pipelines but cluster separation of
these two habitats remained stable (Figure 9A, arrow 2).
QIIME2 with Deblur and MEGAN had on average the
lowest Procrustes Similarity Indices (Sibson, 1978) with 0.88
and 0.90, respectively, compared to other methods (>0.96;
Supplementary Figure 4A) meaning that their plots were less
similar. Calculation of Unweighted UniFrac (Lozupone et al.,
2007) requires sequences (i.e., ASVs or OTUs) so that MEGAN
was excluded from the following comparison: QIIME1 with
99% similarity threshold placed the samples from a river site
and the sediment samples differently (Figure 9B, arrow 3),
while QIIME2 in combination with DADA2 had slightly shifted
placement for river and soil samples, resulting in a slightly
rearranged plot for both methods compared to all other pipelines
(Figure 9B), corroborated also by the Procrustes Similarity
Indices (on average, QIIME1 with 99% similarity threshold:
0.90, QIIME2 with DADA: 0.91, all other methods: >0.95;
Supplementary Figure 4B).

The Reproducible and Easy-to-Use
Pipeline nf-core/ampliseq Wraps QIIME2
With DADA2
Finally, we implemented a high throughput pipeline named “nf-
core/ampliseq” (DOI: 10.5281/zenodo.1493841) using QIIME2
with DADA2 as center piece for reproducible analysis of 16S
rRNA (gene) amplicon sequencing data and applied it to
the environmental samples. Overall, nf-core/ampliseq produced
very similar results to QIIME2 with DADA2 and reported
identical ASV numbers and sequences. Subsequently, 244 ASVs
annotated as mitochondria or chloroplasts were removed by nf-
core/ampliseq because these sequences are typically considered
unwanted. Filtering these ASVs in nf-core/ampliseq is default but
can be adjusted or even omitted.
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FIGURE 8 | Comparison of alpha-diversity indices for environmental samples. For each analysis pipeline, Shannon indices were calculated either on all samples

combined (A) or each sampling site separately (B–E): GW, groundwater; Sed., sediment; RW, river water; 1 and 2 indicate sampling sites. Significance of differences

between samples (One-way ANOVA followed by Tukey multiple comparisons of means, p < 0.05) is marked by lowercase letters so that samples that share at least

one letter are not significant different (e.g., “a” and “ab”) but samples that do not share a letter are significant different (e.g., “a” and “b”).

FIGURE 9 | Comparison of beta-diversity plots for environmental samples. For each analysis pipeline, (A) Bray-Curtis dissimilarity (quantitative) or (B) Unweighted

UniFrac distances (qualitative and phylogenetic) were subjected to NMDS (Non-metric Multidimensional Scaling) ordination and combined by Generalized Procrustes

Analysis (NMDS stress values <0.06, Supplementary Table 7). Gray shading marks sampling sites, e.g., all three replicates analyzed by the different pipelines from

one sampling site are connected by gray background. Black arrows highlight differences discussed in the text.

Using nf-core/ampliseq, the five most abundant genera were
in all sampling sites identical to those found using QIIME2
with DADA2 and relative abundances deviated by less than
0.1 percentage point. Shannon’s Diversity Indices reported
by nf-core/ampliseq followed the same order compared to
that calculated with R package phyloseq based on abundance
tables by QIIME2 with DADA2 (Figure 8) but was 40%
higher (sediment 10.2, soil 9.2, river water 7.6, groundwater
7.9) because nf-core/ampliseq calculated the values using
logarithmic base 2 (QIIME2 implementation with scikit-bio)
(The scikit-bio development team, 2020), while phyloseq (calling
R package vegan’s diversity function) was using the natural
logarithm (base e) (Oksanen et al., 2018). The logarithmic

base for Shannon’s Diversity Index is not fixed in the
original publication and there is no canonical way to calculate
it (Shannon, 1948). Community differences visualized with
beta-diversity distances (unweighted UniFrac, Bray-Curtis) in
the nf-core/ampliseq showed that habitats were separated
significantly (BH-corrected pairwise PERMANOVA with 999
permutations, q ≤ 0.01) but differences between sampling sites
had a higher uncertainty (0.11 < q < 0.13), very similar to
findings with QIIME2 with DADA2 (Figure 9). In summary,
the differences between nf-core/ampliseq and QIIME2 with
DADA2 are only marginal and are caused by improved data
handling by nf-core/ampliseq or different (however, neither
better nor worse) tools.
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DISCUSSION

Here we compared 16S rRNA (gene) sequence analysis pipelines
and aim at identifying the best suited bioinformatics method
to date to analyze environmental microbial communities based
on high-throughput DNA- or RNA-based 16S rRNA (gene)
amplicon sequencing data. Therefore, mock communities and
environmental samples from a range of contrasting habitats
with differing geochemical conditions (e.g., redox and nitrate
concentrations) were analyzed with popular analysis pipelines,
i.e., Mothur, QIIME (version 1 and 2) and MEGAN. We found
that (i) QIIME2 results reflected reality most accurately using
mock communities, that (ii) interpretations of microbial studies
were biased by the analysis method regarding sequence recovery,
taxonomic identification and diversity measures and (iii) we
implemented a high-quality analysis workflow using the lessons
learned in this study.

The Best Compromise of Sensitivity and
Specificity by QIIME2
Generally, Mothur and QIIME1 recovered almost all 16S
rRNA gene amplicon sequences and genera but the number
and abundance of false positives was relatively high, so that
sometimes the true positive sequences were buried underneath
false positives. Removing sequences with low relative abundance,
e.g., <0.1%, improved the results for QIIME1 and Mothur
but had the adverse effect of removing low abundant,
expected sequences. Additionally, there was no general advisable
abundance cutoff for Mothur or QIIME1 and different datasets
had the optimal balance of precision and recall (i.e., F-score) at
different relative abundance cutoffs, probably due to data quality.
Therefore, it seemed not practical to choose a general abundance
cutoff for these tools when analyzing non-mock samples. Low
abundant sequences and taxa might be interesting in some
studies, e.g., when a group of low abundant microorganisms is
performing a crucial step in the biogeochemical cycle, such as
carbon and nitrogen cycling or sulfate reduction (Musat et al.,
2008; Pester et al., 2010; Jousset et al., 2017), and therefore
removing them might be undesirable. QIIME2 using Deblur
suffered from relatively low recall (several sequences or taxa
were not detected) but had highest precision (a low number
of additional false sequences or taxa was detected) which was
similar to findings observed by Nearing et al. (2018). A recent
study found that DADA2 had difficulties finding low abundant
variants and produced few but high abundant false positives
(Hathaway et al., 2017), although we did not observe this finding.
On the contrary, QIIME2 using DADA2 showed high recall and
high precision. However, in the Balanced mock dataset QIIME2
found highly abundant, unexpected sequences, but because these
were in the majority (23 of 30 total) also found by all or all
but one other method, we assumed these were true sequences
not present in the reference database. Essentially, perfect results
were not obtained by any method but DADA2 in combination
with QIIME2 seemed the best compromise of sensitivity and
specificity (Table 2).

Taxonomic annotation depends on the amplicon region
(Kozich et al., 2013), reference database, and the classifier
(Almeida et al., 2018). The reference database used in this study
was SILVA v132 with 16S rRNA gene sequences dereplicated
at 99% similarity, meaning it contained combined taxa with
≥99% similar 16S rRNA gene sequences and thereby reduced
the computational requirements. However, it also decreased
taxonomic resolution. The mock datasets used here contained
sequences of the 16S rRNA gene V4 region with a length of
250 to 254 bp. The choice of the amplified region also restricts
taxonomic resolution, e.g., the Enterobacteriaceae family and the
Clostridiales order are known to be poorly resolved using these
short V4 amplicons (Jovel et al., 2016) and the resolution at
phylum level is lower than sequencing the whole 16S rRNA
gene (Yang et al., 2016). But even when using full-length 16S
rRNA gene analysis, some related but distinct microorganisms
can remain unresolved. For instance, five Streptomyces species
with identical 16S rRNA gene sequences were shown to
have phenotypic, microscopic, genetic and genomic differences
(Antony-Babu et al., 2017). Overall, our study showed that species
level seemed too biased to be trusted for taxonomic classification.
This is in agreement with earlier studies that found species
classification unreliable especially for uncharacterized species
(Bokulich et al., 2018; Edgar, 2018) but taxonomic classification
at genus level was more accurate.

The Choice of the Analysis Pipeline
Affects the Outcomes of Studies
The difference in the number and the quality of recovered 16S
rRNA gene amplicon sequences and their further taxonomic
classification among pipelines also caused deviations in data
interpretation. For instance, the sampling site with the highest
microbial diversity among the investigated environmental
samples (i.e., groundwater, soil, sediment or river water sites)
differed depending on the analysis pipeline. Additionally,
differences in microbial diversity estimates led to dissimilar
interpretations depending on the analysis pipeline. The choice of
the analysis pipeline affected the outcome of our study including
interpretations of taxa involved in certain biogeochemical cycles
and, thus, special care needs to be taken when interpreting results,
particularly when dealing with highly diverse environments.

Sequence Recovery
Overall, the accuracy of sequence recovery of QIIME2 indicated
that this pipeline was the best basis for further downstream
analysis and data interpretation. This was due to denoising (i.e.,
DADA2, Deblur) that performed better than OTU clustering (i.e.,
Mothur, QIIME1), in line with other studies (Callahan et al.,
2017; Nearing et al., 2018). In contrast to Deblur, which uses a
static error model to correct raw sequences, DADA2 computes
an error model for each sequencing run based on potentially all
samples (up to 1 million reads), requiring a re-analysis when only
a subset of the initial samples is used in the final reporting. As
a consequence, DADA2 requires much more computing time.
However, Deblur will miss all amplicons that fall below a required
length truncation threshold (e.g., 250 bp in this study) because all
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TABLE 2 | Summary of strengths and weaknesses of tested pipelines. All values are means (± standard deviation) of the analyses of three mock datasets.

Mothur QIIME1 QIIME2 MEGAN

99a 97a 99a 97a DADA2b Deblurb

Precision (%) 1 ± 1 6 ± 3 2 ± 2 3 ± 3 49 ± 18 72 ± 13 n.d.

Sensitivity (%) 69 ± 7 72 ± 11 87 ± 6 87 ± 6 85 ± 12 71 ± 25 n.d.

Taxonomyc 49 ± 23 49 ± 22 63 ± 18 63 ± 19 77 ± 8 80 ± 9 44 ± 27

Shannon indexd -11 ± 12 -16 ± 19 28 ± 23 28 ± 23 -6 ± 5 -13 ± 13 -30 ± 17

n.d., not determined by this method. aSimilarity (%) at which sequences were clustered into operational taxonomic units (OTUs). bASV calling software. cF-score on

family level in percent. d In % deviation; negative numbers mean underestimation, positive numbers mean overestimation. Colors denote what methods performed best,

i.e. green means best, yellow intermediate, and red worst.

shorter amplicons are discarded, thus 1.36% of all sequences in
the SILVA v132 database are ignored (Supplementary Figure 5).
Furthermore, all amplicons that are longer than the length
threshold of 250 bp are cut and therefore essential data is lost.
For example, 70% of all sequences in SILVA v132 (99% identity
clustered and V4 region extracted) are 253 bp long and are
therefore cut by 3 bp, losing >1% of data (Supplementary

Figure 5). On the other hand, DADA2 requires choosing read-
trimming cutoffs according to data quality, however, there are
no defined rules for selecting these cutoffs and, without having
a clear expectation of the result, it appears impossible to find
the optimal solution. Essentially, operating Deblur seemed riskier
than DADA2 because sequences that are below a chosen cutoff
can be lost and overlooked using Deblur. Another advantage
of DADA2 in our study was the high proportion of recovered
sequences and taxa that were specific for each environmental
sampling site. Nearing et al. (2018) observed the same trend
and suspected that this was due to DADA2’s unique way to
create pooled error profiles followed by sample-by-sample ASV
picking. This implies that DADA2 might be better in separating
similar sequences from different samples than methods that pick
sequences from pooled samples (e.g., Deblur, QIIME1, Mothur),
however, it is not possible to test this hypothesis with the
investigated datasets in the present study.

Taxonomic Identification

At genus level, there were substantial differences in the taxonomic
overview (presented as bar plots), particularly for the top five
most abundant genera, that each method provided. While mock
datasets are often analyzed at lower phylogenetic levels, e.g.,
genus (Almeida et al., 2018; Nearing et al., 2018), environmental
datasets are also often shown at higher levels, e.g., phylum
(de Voogd et al., 2015; Oliveira et al., 2017). This might be
due to the increasing complexity of graphs with increasing
microbial diversity. For example, genera below one percent
abundance accounted for 75% of the total abundance in the
highly diverse soil and sediment samples, investigated in this
study, and were better represented by higher taxonomic levels
such as phylum, where less than 10% abundance was accounted
for when summing up all taxa with less than 1% abundance.
However, in lower diversity habitats, i.e., groundwater and river
water, the majority of genera were present at above one percent
abundance and were reasonably well represented in stacked bar
graphs at genus level. Of great concern is the low reproducibility

among methods at genus level compared to phylum level.
Showing low taxonomy levels down to genus (but not species)
was only acceptable when using denoisers, i.e., QIIME2 with
DADA2 or Deblur, and should be approached with caution
when using OTU picking methods, i.e., Mothur and QIIME1, or
taxonomic binning by MEGAN. This is because OTU methods
and taxonomic binning performed worse on mock datasets
than denoisers, and denoisers reported very similar genera for
individual environmental samples. Relative abundance cutoffs
were recommended for OTU methods (Bokulich et al., 2013)
but these were dependent on the studied samples (i.e., different
optimal cutoffs for different methods and mock datasets) and
also removed low abundance taxa that might be important (Sogin
et al., 2006; Pester et al., 2010; Jousset et al., 2017). The accuracy
of the taxonomic representation decreased with decreasing
taxonomic ranks and was best for QIIME2 until genus level but
was unreliable at species level for all methods. Better taxonomic
resolution and classification might be achieved by investigating
a larger fraction of the genome such as the full 16S rRNA gene.
The V4 sub-region is a good choice because it allows complete
overlap of paired-end sequences, thus reducing sequencing errors
(Kozich et al., 2013), and it closely resembles the phylogenetic
signal of the whole 16S rRNA gene (Yang et al., 2016). The V4
sub-region was therefore also the focus of this study. Compared
to sequencing a short region of the 16S rRNA gene with Illumina
technology, whole 16S rRNA gene sequencing with Pacific
Biosciences (PacBio) technology generates better results in terms
of taxonomic resolution (Schloss et al., 2016). PacBio circular
consensus sequences (CCS) are produced by reading a circular
short sequence (1 to 20 kb), such as the full 16S rRNA gene
sequence, several times, thus achieving comparably low error
rates similar to Illumina sequencing (Singer et al., 2016). High
quality analysis is promised through DADA2 that was recently
adapted to be able to denoise PacBio CCS (Callahan et al., 2019).
However, PacBio CCS technology is currently not competitive
in terms of sequencing depth, price, or availability. Targeting
the even longer 16S-ITS-23S sequences of the rrn operon with
Oxford Nanopore Technologies (ONT) sequencing allowed a
high resolution at species level in a recent study (Cuscó et al.,
2018). ONT sequencing is continuously improving and, similar
to PacBio’s CCS technology, consensus reads are enhancing the
accuracy of amplicon sequencing by a large margin, however,
ONT’s sequencing accuracy is currently still considered inferior
compared to Illumina or PacBio (Calus et al., 2018).
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Alpha-Diversity

Shannon’s Diversity Index is relatively insensitive to low
abundant features (i.e., OTUs, ASVs or taxa) because it uses
quantitative information (Shannon, 1948) and the best possible
estimates of Shannon’s Diversity Indices were calculated based
on QIIME2 using DADA2. The closest resemblance of Faith’s PD
required filtering for above 0.01% relative abundance for QIIME2
using Deblur or above 0.1% for QIIME2 using DADA2. Faith’s
PD is a qualitative measure (Faith, 1992) and therefore sensitive
to the number of features irrespective of their abundance.
Qualitative measures are better estimated on high confidence
(e.g., high abundant) features, especially for error-prone OTU
methods (Bokulich et al., 2013). Taking into account the high
number of low-abundance, false-positive sequences in our study,
quantitative diversity indices should always perform better on
unfiltered data than qualitative measures, a finding that was also
earlier reported (Haegeman et al., 2013). An unsuitable approach
was to simply count OTUs/ASVs as diversity estimator because
this resulted in an overestimation (QIIME1, Mothur, QIIME2
using DADA2) or in an underestimation for low abundant
expected taxa (QIIME2 using Deblur).

Beta-Diversity

Similar to alpha diversity measures, quantitative beta diversity
methods are expected to perform better than qualitative ones,
when expecting inaccurate, low abundant features (Lozupone
et al., 2007). However, in this study quantitative Bray-Curtis
dissimilarity showed a similar sample discrimination as the
qualitative Unweighted UniFrac distances. Unweighted UniFrac
ignores relative abundances but takes phylogenetic distances into
account and, thus, interprets phylogenetically similar sequences
between samples as a smaller beta-diversity distance compared to
phylogenetically distant sequences.

Beta-diversity distances were relatively similar between
analysis methods despite the high variability in taxonomic
classification. Bray-Curtis dissimilarity has been also shown
to be robust for OTUs or ASVs produced by UPARSE
(Glassman and Martiny, 2018). The underlying data structure
(i.e., raw sequencing reads, OTU or ASV) for calculating beta-
diversity distances is generally similar but mapping sequences
to taxonomies performed differently. This is because the
methods use very different approaches to resolve taxonomic
classification (Almeida et al., 2018). These differences in
taxonomic classification are expected to be larger for complex
communities with sequences that are poorly represented
in databases such as environmental samples and smaller
for well-characterized communities such as those stemming
from the human gut.

The nf-core/ampliseq Pipeline Eases 16S
rRNA (Gene) Amplicon Analysis
Considerably
The pipeline nf-core/ampliseq was implemented following the
best analysis method identified here, QIIME2 with DADA2, is
independently citable using a Zenodo DOI (Straub and Peltzer,

2019), and can be found in the nf-core collection5 (Ewels et al.,
2019) to support data analysis that follows FAIR principles
(Wilkinson et al., 2016). We opted for nf-core due its strong focus
on reproducibility, its strong focus on best practices for scientific
software and the unlimited scalability options coming with an nf-
core workflow. We argue (in line with the nf-core community)
being able to reproduce scientific results is of utmost importance
for computational approaches in biosciences. However, it is still
notoriously challenging to develop analysis pipelines that are
fully reproducible and interoperable across multiple systems and
institutions – primarily due to differences in hardware, operating
systems and software versions. This is the gap that our pipeline
implementation fills for 16S data analysis.

The pipeline nf-core/ampliseq has extensive documentation
and excels in reliability, simplicity of usage, reproducibility and
efficiency. nf-core/ampliseq will prove valuable because it has
minimal software requirements (nextflow, Java, Unix), is easy
to use (minimal parameter input: folder containing raw data
and primer sequences), and uses computational infrastructure
optimally (e.g., hpc job schedulers or cloud computing). All
required software dependencies are bundled in containers
and are automatically used by this workflow whenever an
analysis is performed with a pipeline release. The addition of
metadata allows for group comparisons and statistical analysis.
Additionally, unwanted sequences can be removed by taxa
(default are mitochondria and chloroplast), prevalence or count
cutoffs. The output ranges from quality checks (e.g., raw read
data, denoising success, alpha-rarefaction) to interactive bar
plots, analysis of composition of microbiomes (alpha- and beta-
diversity, ordination plots, differential abundant taxa including
statistical tests), and tables in text format for further analysis with
additional software such as R (R Core Team, 2018).

Currently, nf-core/ampliseq supports solely Illumina-based
sequencing analysis but it is planned to allow for (nearly) full
length 16S rRNA (gene) amplicon sequencing analysis with
PacBio technology using a recent implementation of DADA2
(Callahan et al., 2019). Unfortunately, ONT long reads have
currently a too high error rate for ASV tools such as DADA2
but read clustering is an option (Calus et al., 2018) and might be
integrated in the future. While any kind of QIIME2 pre-trained
database for taxonomic classification is theoretically possible
to use with nf-core/ampliseq, only the most updated SILVA
database (v132) is currently supported in all detail but more
choice is desirable, e.g., UNITE for fungal ITS (Nilsson et al.,
2019) is going to be implemented. The aim is to make nf-
core/ampliseq the optimal choice not only for Illumina-based
16S rRNA (gene) amplicon sequencing but to expand it to
other sequencing methods and to additional phylogenetic or
functional gene analysis.
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