
Interpretative Adjoints for Numerical Simulation Codes using MPI∗

Michel Schanen, Uwe Naumann, Laurent Hascoët, Jean Utke a b c

aLuFG Informatik 12: Software and Tools for Computational Engineering, RWTH
Aachen University, Germany, Email: {naumann,schanen}@stce.rwth-aachen.de
bMathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL, USA, Email: utke@mcs.anl.gov

cProjet TROPICS, INRIA Sophia-Antipolis, Valbonne, France, Email:
laurent.hascoet@sophia.inria.fr

An essential performance and correctness factor in numerical simulation and optimiza-
tion is access to exact derivative information. Adjoint derivative models are particularly
useful if a function’s number of inputs far exceeds the number of outputs. The propagation
of adjoints requires the data flow to be reversed, implying the reversal of all communi-
cation in programs that use message-passing. This paper presents recent advances made
in developing the adjoint MPI library AMPI. The described proof of concept aims to
serve as the basis for coupling other overloading AD tools with AMPI. We illustrate its
use in the context of a specific overloading tool for algorithmic differentiation (AD) for
C++ programs. A simplified but representative application problem is discussed as a case
study.

1. Motivation

Automatic (or algorithmic) differentiation (AD) [7] is a technique for transforming im-
plementations of multivariate vector functions y = F (x), where F : IRn → IRm, into
programs that compute directional derivatives ẏ = F ′ · ẋ or adjoints x̄ = (F ′)T · ȳ with
machine accuracy. F ′ = F ′(x) denotes the Jacobian of F at point x. Several AD tools have
been developed over the years (see www.autodiff.org), and numerous successful appli-
cations reported [1–3,5,4]. Adjoint codes generated by reverse mode AD are of particular
interest in the context of large-scale nonlinear optimization (m = 1, n >> 1) as they
allow for gradients of F to be computed at a typically small constant multiple of the cost
of evaluating F itself. The downside of adjoint code is that its efficient implementation
is a highly challenging exercise for most real-world numerical simulation programs.

The given implementation of F is assumed to decompose into a single assignment code
(SAC) at every point of interest as follows:

for j = n + 1, . . . , n + p + m

vj = ϕj(vi)i≺j ,
(1)

∗This work was supported by the Fond National de la Recherche of Luxembourg under grant PHD-09-145.

1

2

where i ≺ j denotes a direct dependence of vj on vi. The result of each elemental function
ϕj is assigned to a unique auxiliary variable vj. The n independent inputs xi = vi, for
i = 1, . . . , n, are mapped onto m dependent outputs yj = vn+p+j, for j = 1, . . . ,m, and
involve the computation of the values of p intermediate variables vk, for k = n+1, . . . , n+p.

For given adjoints of the dependent and independent variables, reverse mode AD prop-
agates adjoints backward through the SAC as follows.

for j = n + 1, . . . , n + p + m for i ≺ j and j = n + p + m, . . . , n + 1 (2)

vj = ϕj(vi)i≺j v̄i = v̄i + v̄j ·
∂ϕj

∂vi

(vk)k≺j .

v3 = v1 · v2

v4 = cos (v3)
v̄3 = − sin (v3) · v̄4

v̄2 = v1 · v̄3

v̄1 = v2 · v̄3

Figure 1: Adjoint code

The variables v̄j are assumed to be initialized to ȳj for
j = n+p+1, . . . , n+p+m and to zero for j = 1, . . . , n+p. A
forward evaluation of the SAC is performed to compute all
intermediate variables whose values are required for the ad-
joint propagation in reverse order. The elemental functions
in the SAC are processed in reverse order in the second part
of Equation (2). See Figure 1 for a simple example. The
two entries of the gradient are computed by setting v̄4 = 1.
The correctness of this approach follows immediately from

the associativity of the chain rule of differential calculus. The problem of performing
this data flow reversal within limited memory as efficiently as possible is known to be
NP-complete [11].

AD tools can be separated into two categories depending on the method of implemen-
tation. Source code transformation parses the given code and produces a semantically
transformed derivative code typically in the same programming language. Alternatively,
operator and function overloading can be used to store an internal representation of the
SAC, followed by the interpretation of this tape to propagate the required adjoints.

The reverse propagation of adjoints in the second part of Equation (2) implies the
reversal of any communication in a message-passing setup. If the given implementation
of F uses MPI, then sends must become receives, receives become sends, and so forth.
First foundations for this approach were laid in [13]. The focus of the present paper
is on coupling a further extended version of the adjoint MPI library with an existing
overloading tool for AD (Section 2). The approach is verified with a simplified version
of a real-world case study in Section 3. Conclusions are drawn (Section 4), followed by a
discussion of ongoing and potential future activities.

2. Adjoints by Tape Interpretation

Our AD library dco (derivative code by overloading) uses overloading in C++ based
on a user-defined data type to generate a tape in the form of an array tape of s entries.

1 c l a s s tape ent ry {
2 i n t oc ; // opera t i on code
3 double v ; // func t i on value
4 double a ; // ad j o i n t va lue
5 i n t arg1 ; // f i r s t argument
6 i n t arg2 ; // second argument
7 } ;

3

Function Tape Adjoint
v1 = 1

2 1:[ASG, 1
2,-,-,-]

v2 = π 2:[ASG,π,-,-,-]
v3 = v1 · v2 3:[MUL,π

2 ,-,1,2]
4:[ASG,π

2 ,-,3,-]
v4 = cos (v3) 5:[COS,0,-,4,-]

6:[ASG,0,-,5,-]
set dep(v4) 7:[DEP,0,-,6,-]

7:[DEP,0,1,6,-] v̄4 = 1
6:[ASG,0,1,5,-]
5:[COS,0,1,4,-] v̄3 = − sin (v3) · v̄4 = −1
4:[ASG,π

2 ,-1,3,-]
3:[MUL,π

2 ,-1,1,2] v̄2 = v1 · v̄3 = − 1
2 , v̄1 = v2 · v̄3 = −π

2:[ASG,π,- 1
2,-,-]

1:[ASG, 1
2,-π,-,-]

Figure 2. Tape generation and interpretation

All arithmetic operators and the relevant intrinsic functions of C++ are overloaded for
variables of the user-defined type. The extended semantics of the elemental functions
results in the storage (also recording) of its operation code, the computed value, and the
indexes of its (up to two) arguments. The interpreter propagates the values of the adjoints
backwards through the tape.

1 void i n t e r p r e t t a p e () {
2 f o r (i n t i=s ; i >=0; i−−)
3 switch (tape [i] . oc) {
4 . . .
5 case MUL : {
6 tape [tape [i] . arg1] . a+=
7 tape [tape [i] . arg2] . v∗ tape [i] . a ;
8 tape [tape [i] . arg2] . a+=
9 tape [tape [i] . arg1] . v∗ tape [i] . a ;

10 break ;
11 }
12 case SIN : {
13 tape [tape [i] . arg1] . a+=
14 cos (tape [tape [i] . arg1] . v) ∗ tape [i] . a ;
15 break ;
16 }
17 }
18 }

The taping and interpretation mechanism is illustrated in Figure 2. Each operation is
recorded according to the definition of class tape entry. The last operation of the forward
section is a call of set dep to declare v4 as dependent. Hence, the interpreter is run with
v̄4 = 1. An extension of dco to MPI requires the taping of MPI calls as well as their
correct reversal. A significantly enhanced implementation of the adjoint MPI (AMPI)
library proposed in [13] has been developed. The current state of the AMPI library is
summarized in Table 1. Refer to [13] for details on awaitall. We simplified the listed
MPI calls by omitting parameters that are not relevant for this discussion. From a user
perspective MPI structure and specification should be preserved as much as possible.

4

MPI Routine Forward AMPI Backward AMPI
1 send(V) send(V) recv(V)
2 recv(V) recv(V) send(V)
3 isend(V,r) isend(V,r) wait(V,r)
4 irecv(V,r) irecv(V,r) wait(V,r)
5 wait(r) wait(r) isend(r) || irecv(r)
6 waitall(r[]) waitall(r[]) [isend(r) || irecv(r)]
7 awaitall(r[]) [wait(r)]
8 bcast(V) bcast(V) root: recv(V), not root: send(V)
9 reduce(V) reduce(V) bcast(V)

Table 1
AMPI Library: Implemented and tested routines

AMPI provides for every MPI routine a version to be called in the forward section of the
adjoint code and its matching implementation for the reverse section.

Let us extend our simple example such that v3 = v1 ·v2 is computed by one process and
v4 = cos(v3) by a second one. Assume blocking communication for exchanging the value
of v3. New opcodes are provided within dco to represent AMPI calls by tape entries.

Figure 3 shows the tape generation and interpretation phases for the two processes.
Each process has its own tape. The interpretation is similar to the serial case; the only
difference is in the SEND and RECV entries. Passing v3 from process 1 to process 2 yields
the communication of v̄3 from process 2 to process 1 during the interpretation of the tape.
The corresponding AMPI routines are called by the interpreter.

A fundamental difference exists between MPI routines and the elemental operations:
MPI uses requests to link variables with their communication. Consequently, an AMPI request
contains memory for the function value, adjoint value, operation code, destination, com-
municator, and request. As an example we consider a nonblocking communication using
isend, irecv, and wait. For the sake of brevity, we restrict the AMPI request data to the
operation code and the communicated value (double precision) in addition to the original
MPI Request.

1 typede f s t r u c t AMPI Request {
2 MPI Request r ;
3 i n t oc ;
4 double v ;
5 . . .
6 } AMPI Request ;

A tape-specific dco extension of AMPI request is used to link wait operations to their
respective nonblocking communication.

1 typede f s t r u c t AMPI dco Request {
2 AMPI Request r ;
3 i n t a ;
4 . . .
5 } AMPI dco Request ;

This mechanism is explained best with the help of an example. Consider Figure 4. We
use a flattened notation to access the relevant entries within AMPI dco Request (r.oc,
r.v, r.a). The first four tape entries are generated by process 1 as in Figure 3. The isend
operation is recorded next, together with the value to be communicated (π

2
), the point of

5

Process 1 Process 2
Code Tape Code Tape

v1 = 1
2 1:[ASG, 1

2,-,-,-]
v2 = π 2:[ASG,π,-,-,-]
v3 = v1 · v2 3:[MUL,π

2 ,-,1,2]
4:[ASG,π

2 ,-,3,-]
send(v3) 5:[SEND,π

2 ,-,4,-] recv(v3) 1:[RECV,π
2 ,-,-,-]

v4 = cos (v3) 2:[COS,0,-,1,-]
3:[ASG,0,-,2,-]

set dep(v4) 4:[DEP,0,-,3,-]
v̄4 = 1 4:[DEP,0,1,3,-]

3:[ASG,0,1,2,-]
v̄3 = − sin (v3) · v̄4 2:[COS,0,1,1,-]

= −1
recv(v̄3) 5:[SEND,π

2 ,-1,4,-] send(v̄3) 1:[RECV,π
2 ,-1,-,-]

4:[ASG,π
2 ,-1,3,-]

v̄2 = v1 · v̄3 = − 1
2 3:[MUL,π

2 ,-1,1,2]
v̄1 = v2 · v̄3 = −π

2:[ASG,π,− 1
2,-,-]

1:[ASG, 1
2,−π,-,-]

Figure 3. dco and AMPI

its definition (tape entry 4), and the AMPI dco Request r, whose value is set to r.v = π
2

and r.a = 5 in order for the upcoming wait to be able to link with the current isend.
W.l.o.g., we omit any additional computation between the isend/irecv - wait pairs. The
tape entry for the wait operation contains the value r.v and the tape index r.a = 5 of the
corresponding isend retrieved from the associated AMPI dco Request r.

Process 2 receives the value π
2

and sets the AMPI dco Request r correspondingly; that
is, r.v = π

2
and r.a = 1. This information is used to generate the tape entry for the

associated wait operation; that is, the value is set to r.v = π
2
, and the index of its sole

argument becomes r.a = 1. The cosine of π
2

obtained from tape entry 2 is found to be
zero and is recorded correspondingly. This step completes the tape generation.

The relevant part of the interpretation starts with process 2. The r.v field is now used
to convey the adjoint value. In order to compute the desired gradient, the adjoint field of
the tape entry corresponding to the dependent variable v4 is set to one. Interpretation of
the COS entry yields v̄3 = − sin(v3) · v̄4 = −1 · 1 = −1, which is stored in the adjoint field
of the WAIT entry. Interpretation of the latter amounts to sending the adjoint value to
process 1. The associated irecv becomes a wait for the completion of this communication.
Process 1 receives the adjoint v̄3 = r.v = −1. The corresponding wait is followed by the
remaining interpretation of the MUL entry to get v̄1 and v̄2.

3. Case Study: Heat Equation

We consider a simple data assimilation problem involving the one-dimensional heat
equation. A bar of given length is heated on one side for some time. The simulated

6

Process 1 Process 2
Code Tape Code Tape

v1 = 1
2 1:[ASG, 1

2,-,-,-]
v2 = π 2:[ASG,π,-,-,-]
v3 = v1 · v2 3:[MUL,π

2 ,-,1,2]
4:[ASG,π

2 ,-,3,0]
r.v = v3, r.a = 5 5:[ISEND,π

2 ,-,4,-,r] irecv(r.v, r) 1:[IRECV,-,-,-,-,r]
r.oc = isend r.oc = irecv
isend(r.v, r) r.a = 1
wait(r) 6:[WAIT,r.v,-,r.a,-,r] wait(r) 2:[WAIT,r.v,-,r.a,-,r]

≡ [WAIT,π
2 ,-,5,-,r] v3 = r.v = π

2 ≡ [WAIT,π
2 ,-,1,-,r]

v4 = cos (v3) 3:[COS,0,-,2,-]
4:[ASG,0,-,3,-]

set dep(v4) 5:[DEP,0,-,4,-]
v̄4 = 1 5:[DEP,0,-,4,-]

4:[ASG,0,1,3,-]
v̄3 = −1 = 3:[COS,0,1,2,-]
− sin (v3) · v̄4

r.v = v̄3 2:[WAIT,0,-1,1,-,r]
irecv(r.v, r) 6:[WAIT,π

2 ,0,5,-,r] isend(r.v, r)
wait(r) 5:[ISEND,π

2 ,r.v,4,-,r] wait(r) 1:[IRECV,-,-,-,-,r]
v̄3 = r.v ≡ [ISEND,π

2 ,-1,4,-,r]
4:[ASG,π

2 ,-1,3,-]
v̄2 = − 1

2 3:[MUL,π
2 ,-1,1,2]

v̄1 = −π
2:[ASG,π,− 1

2,-,-]
1:[ASG, 1

2,−π,-,-]

Figure 4. Tape generation and interpretation with AMPI Request

temperature distribution is compared with available measurements at a number of discrete
points. The initial temperature distribution within the bar is to be estimated such that
the discrepancy between simulated and measured values is minimized. This case study
has been designed to illustrate the use of the AMPI library with dco. We do not report on
the runtime statistics of the parallel version, nor do we discuss any numerical properties
of this problem in detail.

We aim to solve the optimization problem minIR f, where

f =
nx∑
i=0

(
T (1, xi)− T̃i

)2

such that

Tt = c · Txx for 0 ≤ x, t ≤ 1

7

Figure 5. Synchronization

and where

xi =
i

nx

for i = 0, . . . , nx

T = T (t, x) : IR2 → IR

T̃ ∈ IRnx (observations)

T 0 = T (0, x) = f(x) for 0 < x < 1 (initial condition)

T (t, 0) = α for 0 ≤ t ≤ 1 (left boundary condition)

T (t, 1) = β for 0 ≤ t ≤ 1 (right boundary condition).

Discretization in space is done by centered finite differences with step size δx. Explicit
Euler is used for time integration with time step

δt ≤ (δx)2

2 · c
to ensure stability [8] and to get

T k+1
j − T k

j

δt
= c ·

T k
j+1 − 2 · T k

j + T k
j−1

(δx)2

and hence

T k+1
j = T k

j + c · δt

(δx)2
· (T k

j+1 − 2 · T k
j + T k

j−1)

= T k
j + c · n2

x

nt

· (T k
j+1 − 2 · T k

j + T k
j−1),

where nx = (δx)−1 and nt = (δt)−1.
The cost function is implemented in C++ as shown in Listing 1. For parallelization

the bar is decomposed into numprocs elements (lines 3-6). Each process computes one
time step on its element (lines 8-10), followed by a synchronization with the neighbor-
ing elements (lines 11-33). This simple setup is illustrated in Figure 5. The individual
contributions mpicost to the overall costs are finally reduced to cost (lines 34-38).

Two adjustments must be made to the original dco code. All variables of type active
must have their types changed to AMPI dco double, and the names of all MPI ∗ routines
must become AMPI ∗.

8

1 AMPI double co s t (i n t& nx , i n t& nt , AMPI double& de l t a t , AMPI double& c , AMPI double∗
temp , AMPI double∗ temp obs) {

2 AMPI double buf [4] ; AMPI double mpi cost = 0 ; AMPI Request r eque s t [4] ; AMPI Status
s t a tu s [4] ;

3 AMPI double co s t =0;
4 i n t mpi j=(id ∗ (nx/numprocs))+1;
5 i n t mpi nx=((id+1) ∗ (nx/numprocs))+1;
6 i f (id == numprocs −1)
7 mpi nx−−;
8 f o r (i n t i=0 ; i <= nt ; i++){
9 f o r (i n t j=mpi j ; j<mpi nx) ; j++) {

10 temp [j] = temp [j]∗ c∗nx∗ d e l t a t ∗(temp [j +1]−2∗temp [j]+temp [j −1]) ;
11 }
12 // r e c i e v e from r i gh t & send to r i g h t
13 i f (id != numprocs − 1) {
14 buf [2]= temp [mpi nx −1] ;
15 AMPI Isend(&buf [2] , 1 ,MPI DOUBLE, id +1 ,0 ,AMPICOMMWORLD,& reques t [2]) ;
16 AMPI Irecv(&buf [1] , 1 ,MPI DOUBLE, id +1 ,0 ,AMPICOMMWORLD,& reques t [1]) ;
17 }
18 // r e c i e v e from l e f t & send to l e f t
19 i f (id != 0) {
20 buf [0]= temp [mpi j] ;
21 AMPI Isend(&buf [0] , 1 ,MPI DOUBLE, id −1 ,0 ,AMPICOMMWORLD,& reques t [0]) ;
22 AMPI Irecv(&buf [3] , 1 ,MPI DOUBLE, id −1 ,0 ,AMPICOMMWORLD,& reques t [3]) ;
23 }
24 i f (id != numprocs−1) {
25 AMPI Wait(&reques t [1] ,& s t a tu s [1]) ;
26 AMPI Wait(&reques t [2] ,& s t a tu s [2]) ;
27 temp [mpi nx] = buf [1] ;
28 }
29 i f (id != 0) {
30 AMPI Wait(&reques t [0] ,& s t a tu s [0]) ;
31 AMPI Wait(&reques t [3] ,& s t a tu s [3]) ;
32 temp [mpi j −1] = buf [3] ;
33 }
34 }
35 f o r (i n t j=mpi j ; j<mpi nx ; j++) {
36 mpi cost = mpi cost +(temp [j] − temp obs [j]) ∗ (temp [j]− temp obs [j]) ;
37 }
38 AMPI Reduce(&mpi cost , &cost , 1 , AMPI DOUBLE, MPI SUM, 0 , MPICOMMWORLD) ;
39 r e turn co s t ;
40 }

Listing 1: heat

We consider the case c = 103, nx = 200, nt = 1000, α = 2, β = 0, and f(xi) = 2 − i
100

for
i = 0, . . . , nx. The results are plotted in Figure 6. The substantial discrepancy between
the originally simulated and the observed temperature distributions is reduced by applying
a simple steepest descent method. Starting from an initial cost of 227 for T 0 = 0, the
algorithm performs 401 iterations (taking ∼70 seconds on our PC in the serial case and
∼35 seconds when using 4 processes) to decrease the norm of the gradient to a value less
than 10−3.

4. Conclusion and Outlook

Although the AMPI library is still under development, we have been able to verify its
current version as robust and user-friendly in the context of both source transformation
[13] and overloading tools for automatic differentiation in adjoint mode. Ongoing efforts
focus on rigorous testing by application to a number of large-scale numerical simulation
codes from the Earth and atmospheric sciences.

Second-order methods for nonlinear optimization require second derivatives in the form

9

(a) Discrepancy between original simulation of
heat distribution starting from T 0 = 0 and ob-
served values

(b) Simulation of heat distribution with opti-
mized initial values

Figure 6. Results

of Hessians or projections thereof. For example, a single iteration is performed to push
the value of the gradient of f below 10−9, as

f(x0) =
nx∑
i=0

(
T nt(x0

i)− T̃i

)2

is quadratic and

T 0
j = 0

T k+1
j = T k

j + c · n2
x

nt

· (T k
j+1 − 2 · T k

j + T k
j−1)

for j = 1, . . . , nx−1 and k = 0, . . . , nt−1. Consequently, its gradient ∇f is linear, yielding
a constant Hessian ∇2f. With x0 = 0 we get the solution x = xj+1 = xj for j = 1, . . .
from the linear system

∇2f(x0) · x = −∇f(x0)

(e.g., by Gauss), since according to Newton’s algorithm (see, e.g., [10])

x = x0 −
(
∇2f(x0)

)−1 · ∇f(x0) .

Unfortunately, the inverse heat propagation problem is ill-posed, leading to a largely
meaningless solution unless regularization [12] is applied. Consequently we solve the
regularized problem

(∇2f(x0) + α · Inx) · x = −∇f(x0)

with an appropriately chosen regularization parameter α > 0, yielding an acceptable loss
in accuracy. While the accumulation of the (dense but constant) Hessian dominates the
computation, the overall serial runtime of approximately 45 seconds significantly under-
cuts that of the corresponding steepest descent algorithm. The latter takes several hours
to reduce the residual below 10−9.

10

The efficient computation of second derivatives of MPI codes requires further extension
of the AMPI library in order to be able to communicate second-order adjoint information.
Refer to [9] for further details on the computation of directional derivatives for message-
passing programs. Feasibility studies are under way. The coupling of the AMPI library
with the popular overloading AD tool for C++ ADOL-C [6] is planned.

REFERENCES

1. M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differen-
tiation: Techniques, Applications, and Tools, Proceedings Series, Philadelphia, 1996.
SIAM.

2. C. Bischof, M. Bücker, P. Hovland, U. Naumann, and J. Utke, editors. Advances in
Automatic Differentiation, number 64 in LNCSE, Berlin, 2008. Springer.

3. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors. Automatic
Differentiation: Applications, Theory, and Tools, number 50 in Lecture Notes in Com-
putational Science and Engineering, Berlin, 2005. Springer.

4. G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Automatic
Differentiation of Algorithms – From Simulation to Optimization, New York, 2002.
Springer.

5. G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implemen-
tation, and Application, Proceedings Series, Philadelphia, 1991. SIAM.

6. A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A package for the
automatic differentiation of algorithms written in C/C++. ACM Transactions on
Mathematical Software, 22(2):131–167, 1996.

7. A. Griewank and A. Walter. Evaluating Derivatives. Principles and Techniques of
Algorithmic Differentiation (2nd Edition). SIAM, Philadelphia, 2008.

8. M. Heath. Scientific Computing. An Introductory Survey. McGraw-Hill, New York,
1998.

9. P. Hovland and C. Bischof. Automatic Differentiation for Message-Passing Parallel
Programs. In IPPS ’98: Proceedings of the 12th. International Parallel Processing
Symposium on International Parallel Processing Symposium, Washington, DC, USA,
1998. IEEE Computer Society.

10. C. T. Kelley. Solving Nonlinear Equations with Newton’s Methods. SIAM, Philadel-
phia, 2003.

11. U. Naumann. DAG reversal is NP-complete. J. Discr. Alg., 2008. To appear. Ap-
peared online on Elsevier’s ScienceDirect as doi:10.1016/j.jda.2008.09.008.

12. A. Tikhonov. On the stability of inverse problems. Dokl. Akad. Nauk SSSR,
39(5):195–198, 1943.

13. J. Utke, L. Hascoët, P. Heimbach, C. Hill, P. Hovland, and U. Naumann. Toward
Adjoinable MPI. In Proceedings of the 23rd IEEE International Parallel & Distributed
Processing Symposium, Washington, DC, USA, 2009. IEEE Computer Society.

