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This paper extends the biplot technique to canonical correlation analysis and redundancy 
analysis. The plot of structure correlations is shown to be optimal for displaying the pairwise 
correlations between the variables of the one set and those of the second. The link between 
multivariate regression and canonical correlation analysis/redundancy analysis is exploited for 
producing an optimal biplot that displays a matrix of regression coefficients. This plot can be 
made from the canonical weights of the predictors and the structure correlations of the criterion 
variables. An example is used to show how the proposed biplots may be interpreted. 
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Introduction 

Despite its elegant theory, canonical correlation analysis has yielded few useful 
applications (Kendall, 1975; Thompson, 1984). The reason for this are reviewed in 
depth by Thorndike and Weiss (1973) and Israels (1987). One major reason is the 
difficulty of interpretation of the canonical variates. Should the interpretation be based 
on the canonical weights or on the structure correlations? (Structure correlations are 
the correlations of the original variables with the canonical variates.) Meredith (1964), 
and many textbooks thereafter, found the structure correlations "very enlightening", 
but more recently Rencher (1988) argued that they are "not useful" and "redundant" 
because they "merely reproduce univariate statistics". This paper abstains from inter
preting the canonical variates. Instead, they are used as a means to produce graphical 
displays of the relationships between the two sets of variables. Plots of the structure 
correlations have been proposed (Caillez & Pages, 1976; Israels, 1987; van der Geer, 
1986) and have been used now and then (e.g., van der Burg & de Leeuw, 1983), but it 
has not fully been explained how to read the plot and what its optimality properties are. 
By using a matrix approximation approach (Corsten, 1976; Rao, 1980) in conjunction 
with the biplot technique (Gabriel, 1971, 1982), we show that the plot yields (by way of 
scalar inner products) approximate values of the correlations between the variables of 
the one set and those of the other set, and that the approximation is best in a weighted 
least-squares sense. The optimality of the plot of structure correlations relates to the 
factorization of the between-set correlation matrix proposed earlier by McKeon (1966, 
p. 7) and Rao (1975, p. 585) and to interbattery factor analysis (Browne, 1979). In an 
example, we give explicit and easy-to-use rules for reading the plot. 

The case where two sets of variables should be treated symmetrically is rare in 
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practice (Gifi, 1981; Israels, 1987). Often, one set contains criterion variables to be 
predicted by the second. Multivariate regression is then an apt tool yielding a matrix of 
regression coefficients and a matrix of fitted values for the criterion variables. Rather 
than inspecting the full numerical output of such an analysis, one may want to display 
the main patterns in a graph. We show that a joint plot of the weights of the predictor 
variables and the structure correlations of criterion variables is useful for this; this plot 
displays the approximate values of the (standardized) regression coefficients by way of 
scalar innerproducts. The plot is, again, optimal in a weighted least-squares sense and 
can even be enriched to display the approximate significance of the regression coeffi
cients. The fitted values for the criterion variables can also optimally be displayed by 
adding the canonical variate scores for the predictor set to the plot. This plot has its 
basis in the asymmetric interpretation of canonical correlation analysis as investigated 
under the name of reduced-rank regression by Anderson (1951, 1984), Izenman (1975), 
Tso (1981), and Velu, Reinsel and Wichern (1986). Redundancy analysis (van den 
Wollenberg, 1977) is thus not the only multivariate technique allowing an asymmetric 
treatment of the sets! We point out the distinction between these techniques and pro
pose an intermediate technique that differs from the intermediate proposal by DeSarbo 
(1981). 

With the graphical potential of canonical techniques fully exploited, they are likely 
to find more useful applications in the future than they have in the past. After deriving 
the optimality properties of structure correlations and weights for factoring matrices of 
correlations and of regression coefficients, we illustrate the use of the proposed plots. 
Thereafter, the results of the paper are extended to partial canonical correlation anal
ysis and to redundancy analysis. 

Theory 

Let X and Y be real matrices of order n x p and n x q, containing n observations 
of p predictor variables and q criterion variables, respectively. On assuming that each 
column of X andY has been standardized to zero mean and unit sum of squares, the 
sample correlation matrices are Rxx = X'X, Ryy = Y'Y, and Ryx = Y'X. Further, let 
IIAII 2 = trace (A' A) and [Alr the matrix consisting of the first r columns of the matrix 
A. For a square, symmetric and positive definite matrix A, let A 112 denote the sym
metric matrix such that A ll2 A l/2 = A. 

To show in which sense the structure correlations are optimal, we derive a "rank 
r weighted least -squares approximation'' to Ry x of the form BC' with B and C matrices 
of order q x rand p x r, respectively. For producing plots on the basis of the approx
imation, a convenient choice of r is 2. Whether r = 2 is adequate can be judged by the 
approximation error or, if the lower dimensionality hypothesis is credible, by Barlett's 
test of dimensionality (see the example section). In the approximation we take as 
weight matrices the inverses of Rxx and Ryy; this choice makes the loss function 
independent of linear transformations of X and Y. Thus, we seek the minimum over B 
and C of 

As follows from the Eckhart-Young theorem (Eckhart & Young, 1936; Greenacre, 
1984) the minimum is obtained from the singular value decomposition 

R -I/2 R R 1/2 = PAQ' 
yy yx XX ' 

(2) 
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where P and Q are orthonormal matrices of order q x t and p x t with t = min(p, q) 
containing the singular vectors, and A a diagonal matrix with the singular values on the 
diagonal, arranged in decreasing order (A 1 :::::: A2 :::::: • • • :::::: A, :::::: 0). The minimum of (l) 
is Ai+ 1 + · · · + A,Z and is attained by setting 

(3) 

or, equivalently, 

B = [R 112PA] and C = [R 112Q] yy r xx r· (4) 

The singular value decomposition is one computational route for obtaining a canonical 
correlation analysis (Gittins, 1985, Horst, 1961); the singular values are the canonical 
correlations, Ry-;,112 P and Rx~112 Q contain the canonical weights, and Band C, there
fore, contain the correlations of the original variables with the canonical variates of the 
predictor set (Gittins, pp. 17-18, 38-39). In the terminology of canonical correlation 
analysis, B and C contain structure correlations; more precisely, B contains the interset 
correlations of the criterion variables and C the intraset correlations of the predictor 
variables (Gittins). The plot of structure correlations is thus obtained by plotting each 
row of B and of C as a vector in an r-dimensional Cartesian coordinate system (see 
Figure 1 for an example). The matrix product BC' is represented in the plot by the scalar 
inner products between the vectors for the criterion variables (the rows of B) and the 
vectors for the predictor variables (the rows of C). Such a plot is called a biplot 
(Gabriel, 1971; 1982); it displays the weighted least-squares approximation BC' to Ryx. 
This was first noted by Haber and Gabriel (1976). The traditional rationale for the plot 
of structure correlations is based on the observation that the rows of B and C contain 
the coordinates of the original variables with respect to the canonical variates of the 
predictor variables (Caillez & Pages, 1976). The rationale that the plot optimally dis
plays Ryx according to the biplot rules, is much stronger, and more helpful for the 
interpretation. The example section provides easy-to-use rules for reading the biplot. 

In (3) and (4), A can be moved from the equation forB to the equation for C without 
affecting the loss-function (1); then, B contains intraset correlations and C interset 
correlations. For the biplot one might therefore equally well use intraset correlations 
for the criterion variables and interset correlations for the predictor variables. This 
yields the same approximation to Ryx· Alternatively, one can treat Band C symmet
rically with respect to A and choose 

B = [R 112PA 112] and C::::: [R 112QA 112] yy r xx r- (5) 

This factorization ofRxy is the most natural in the common factor model (Rao, 1973, p. 
585-586) and in inter-battery factor analysis (Browne, 1979), because Y and X are 
placed on equal footing in these models. Under the assumption of multinormality, the 
various factorizations (e.g., (4) and (5)) are, however, equivalent, because they yield 
the same value of the likelihood (Browne). 

When the relationship between the two sets of variables is asymmetric, we can 
obtain more insight into the relationships by performing a multivariate regression of Y 
on X using the model 

Y XM' +E, (6) 

where M is a q x p matrix of regression coefficients, andEan x q matrix of random 
errors. The usual least-squares estimator forM is 
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• - -1 
M- Ryx Rxx . (7) 

One may grasp the main features of M more easily from a plot than from the numbers 
themselves. Such a plot can be obtained from an approximation toM of the form B0C0, 
with B0 and C0 matrices of order q x rand p x r, respectively. Some elements of M 
are more precise than other elements, as indicated by the standard error of estimate of 
the regression coefficients. Therefore, we use a weighted least-squares approximation. 
As weight matrix we choose the inverse of the covariance matrix of the estimated 
regression coefficients (to allow not only for the standard errors of the estimates but 
also for the covariances among them). The estimated covariance matrix of the i-th row 
andj-th row ofM is (n p- o-t sijRx~l (Anderson, 1984, p. 291), with Sij the (i,j)-th 
element of the residual sum of squares and products matrix of Y with respect to X: 

Se = Ryy - Ryx Rx~ 1Rxy. (8) 

The loss function is thus proportional to 

IISe- 112 (M BoCO)Rl~ll 2 
= IISe- 112 RyxRx~ 112

- (Se- 112Bo)(Rl~Co)'ll 2 • (9) 

As before, the minimum follows from a singular value decomposition, now of 

S - t/2 R R - 112 = G4H' 
e yx xx ' (10) 

where G and H are orthonormal matrices of order q x t and p x t containing the singular 
vectors, and 4 a diagonal matrix with the singular values in decreasing order on the 
diagonal ( s-;-2:= 82 • • • 2:= 8r 2:= 0). The minimum of (9) is therefore 8'/:+ 1 + · · · + 8l, and 
is attained by setting 

B = [S 112G4] and C = [R - 112H] 0 e r 0 xx r • (11) 

But, the singular value decompositions of (2) and (10) are closely related (Anderson, 
1984, pp. 506-507; Bock, 1975, p. 391), in particular 

From (11) and (12) we obtain the expressions 

Bo = [R;~2PA], and Co = [Rx~ 112Qlr, (13) 

that is, B0 equals B in (4) and contains the interset correlations of the criterion varia
bles, whereas Co contains the canonical weights of the predictor variables (Gittins, 
1985, p. 18). In conclusion, these interset correlations and these weights minimize the 
loss-function (9). By plotting each row of Bo and of C0 as a vector in an r-dimensional 
Cartesian coordinate system, we therefore obtain a biplot that approximates M in a 
weighted least-squares sense. 

The biplot approximation of M can also be derived from reduced rank regression. 
Izenman (1975), Brillinger (1981), Davies and Tso (1982), and Velu, Reinsel, and 
Wichern (1986) considered a loss-function of the form li(Y - XC 1BJ)f 112

11
2 with r a 

given weight matrix. This is also the loss-function of a fixed factor score model with 
linear restrictions (de Leeuw, Mooijaart, & van der Leeden, 1985). If r = Se-t (i.e., 
weight inverse with residual variance), the minimum is attained by setting B 1 = B0 and 
C1 =C0 . This weighted least-squares solution is also the maximum likelihood solution 
when the errors are normally distributed with unknown error covariance matrix (see 
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Tso, 1981, for fixed X; Israels, 1987, p. 271, for random X). The choicer= Ry-;,1 gives 
the same solution (Haber & Gabriel, 1976; Velu, Reinsel, & Wichern, 1986). The 
reduced-rank fit for Y is displayed in a biplot of the rows of XC0 and the rows of B0 , 

that is, a plot of both the canonical variate scores of the predictor set (V = XC0) and 
the interset correlations of the criterion variables. Yet another formulation is that V and 
B0 minimize 

(14) 

over all rank r fits, where Y is the ordinary least-squares fit of the regression of Y on X 
(Davies & Tso). It follows (Gabriel, 1971) that B0 is also the solution for the minimi
zation of 

(15) 

Inner products of the rows of B0 therefore approximate, in a weighted least-squares 
sense, the covariances among the fitted criterion variables. What they represent exactly 
are the covariances among the reduced-rank fits of the criterion variables, because 
(XC0B0)'(XC0Bo) = B0B0. 

The biplot for M can be enriched in a simple way to show the approximate signif
icance of the regression coefficients as judged by the usual t-ratio (estimate/estimated 
standard error). The matrix oft-ratios T, say, and its approximation are 

T = D- 112MF- 112 = (D- 112Bo)(F- 112Co)'' (16) 

where D and F are diagonal matrices of orders q and p containing the diagonal elements 
of(n- p- 1) -lse and ofRx~1 , respectively. Note that F contains the variance inflation 
factors for the predictor variables (e.g., Montgomery & Peck, 1982). A biplot forT is 
therefore obtained from the biplot for M by changing the lengths of vectors in the latter. 
The vector for any predictor variable must be divided by the square root of its variance 
inflation factor (a number :2: 1) and will therefore be reduced in length. The approximate 
t-ratios are then obtained by taking the scalar inner products between vectors ofthe two 
sets. Geometrically, a scalar inner product can be obtained by projecting a vector for 
a predictor on a vector for a criterion variable and by multiplying the length of the 
projection with the length of the vector for the criterion variable on to which it is 
projected. Rather than changing the lengths of the vectors for the criterion variables, it 
is convenient to mark the position on each vector where a projection point would 
precisely yield the critical t-ratio. The coordinates of the mark for the i-th criterion 
variable are (tc(n- p- o-l/Zs;)'2Jibill-2)bj, where tc is the critical t-ratio and bj the 
i-th row of B0 . An example of such a plot is in Figure 2. 

Greenacre (1984, p. 349) proposed yet another biplot, namely of canonical weights 
only. This biplot yields a weighted least-squares approximation of Ry~ 1 RyxRx~1 , the 
weights involved in the approximation being Ryy and Rxx. Because the quantities being 
approximated are difficult to interpret, this type of plot cannot be recommended. 

The optimality properties of the proposed biplots can be generalized beyond the 
Euclidean matrix norm to norms that are invariant under unitary transformations (Rao, 
1979, 1980; Sabatier, Jan, & Escoufier, 1984). Velu, Reinsel, and Wichern (1986) de
rived the asymptotic co variances of the elements of Bo and C0. 

Example of Proposed Biplots 

Adelman, Geier, and Morris (1969) applied canonical correlation analysis to study 
"the simultaneous relationships among instruments and goals in the process of national 
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TABLE 1 

Correlation Matrix between Goals (y) and 
Instruments (x) in National Development 
(a: ~ , b: Ryy below and Ru above Diagonal) 

a Xt Xz x3 x4 Xs ~ 

Yt 0.45 0.40 0.35 0.57 0.63 0.52 
Yz 0.77 0.61 0.29 0.87 0.65 0.80 
Y3 0.86 0.54 0.27 0.80 0.67 0.82 
Y4 0.69 0.36 0.19 0.72 0.46 0.73 
Ys 0.16 0.38 0.51 0.16 0.21 0.18 

Y6 0.78 0.60 0.32 0.89 0.65 0.77 

b Xt Xz x3 x4 Xs ~ 

Yt 0.45 0.14 0.73 0.60 0.80 

Yz 0.66 0.51 0.60 0.52 0.46 

Y3 0.50 0.80 0.32 0.40 0.26 
Y4 0.40 0.64 0.79 0.68 0.78 

Ys 0.18 0.21 0.27 0.16 0.56 

Y6 0.55 0.86 0.82 0.72 0.16 

development and modernization". Table 1 (extracted from Adelman & Morris 1967, 
Table A.l) shows the correlation coefficients between 6 goals and 6 instruments in their 
"full" sample of 74 developing noncommunist nations. The goals and instruments are 
those analysed by Adelman et al. for their "low sample": 

goals: y 1 =rate of growth of real per capita GNP: 1950/51-1963/64; 
y2 =extent of dualism; 
Y3 = extent of social mobility; 
y4 = degree of national integration and sense of national unity; 
Ys = extent of political stability; 
y6 =level of modernization of techniques in agriculture. 

instruments: x1 =extent of literacy; 
x2 degree of administrative efficiency; 
x3 = extent of leadership commitment to economic development; 
x4 =level of adequacy of physical overhead capital; 
xs = gross investment rate; 
x6 rate of improvement in human resources. 

Table 2 displays the results of a canonical correlation analysis for these data. The 
canonical correlations are 0.96, 0.59, 0.51, 0.38, 0.29, and 0.17. As judged by Bartlett's 
(1938) test of dimensionality (Gittins, 1985, p. 61), the first two canonical correlations 
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TABLE 2 

Canonical Correlation Analysis of Table 1•: 
Canonical Weights and Correlations with 
the Canonical Variates of the Instruments 

weights correlations 
1 2 3 4 5 6 

Yt 0.01 0.37 -0.26 0.58 0.22 -0.09 

Y2 0.35 -0.48 0.38 0.90 -0.00 0.05 

Y3 0.31 0.20 -0.96 0.89 0.03 -0.14 

Y4 0.08 -0.39 0.26 0.76 -0.13 0.01 

Ys 0.00 0.45 0.26 0.21 0.45 0.15 

Y6 0.30 0.26 0.46 0.91 0.01 0.09 

xi 0.32 0.06 -0.45 0.89 -0.06 -0.29 

x2 0.08 0.29 0.25 0.63 0.44 0.31 
x3 0.02 0.72 0.43 0.32 0.81 0.37 
x4 0.49 -0.77 1.16 0.95 -0.07 0.20 
Xs 0.04 0.56 -1.02 0.72 0.42 -0.37 

~ 0.18 -0.16 -0.30 0.89 -0.07 -0.10 

* Using 5 digits in the Correlation Matrix 

are nonzero at the 1 %-significance level. The third canonical correlation is just signif
icant at the 5%-level. 

Figure 1 is a plot of the correlations of the original variables of both sets with the 
first two canonical variates of the instruments (see Table 2; Columns 4 and 5). This plot 
is a biplot approximation of the correlations between goals and instruments; so the 
innerproduct of a goal-arrow (y) and an instrument-arrow (x) is an approximation of 
their sample correlation coefficient. Although this type of joint plot is not new at all 
(Caillez & Pages, 1976; Gifi, 1981; van der Geer, 1986; Israels, 1987; among others), it 
seems appropriate to remember some useful rules for interpreting the biplot (Gabriel, 
1971, 1982). The inner product is by definition equal to the product of the lengths of the 
corresponding arrows and the cosine of the angle between them. Thus, the correlation 
as displayed in the biplot is positive if the angle is sharp, negative if the angle is obtuse, 
and zero if the arrows are perpendicular. Alternatively, the inner product is derived by 
projecting an x-vector onto a y-vector and multiplying the lengths of the y-vector and 
the projected x-vector (the result is multiplied by -1 if they-vector and the projected 
x-vector point in opposite directions). One can therefore obtain the approximate order 
of the correlations of x-vectors with a particular y-vector from the order of the projec
tion points of these x-vectors onto this y-vector. One can of course equally well inter
change x and y in the above rule. 

Using these rules, we see from Figure 1 that in the approximation used, the goals 
Y2. y3, and y 6 are highly correlated with the instruments x1 , x4 , and x6 (correlations 
between 0.76 and 0.89 in Table 1), somewhat less with x2 and x 5 (correlations between 
0.53 and 0.65 in Table 1) and least with x 3 (correlations between 0.26 and 0.32 in Table 
1). Goal y 4 shows about the same correlation pattern, but at a lower level of correlation. 
Goal y5 points in a quite different direction and therefore shows another pattern; the 
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FIGURE I 
Biplot of correlations between goals and instruments (Table Ia) based on canonical correlation analysis 
(Table 2). Plotted are the interest correlations of the goals (solid lines) and the intraset correlations of the 
instruments (dashed lines); for explanation, see example Section. The circle has radius I. 

FIGURE 2 
Biplot of the coefficients and associated t-ratios of the multivariate regression of goals on instruments (Table 
3) based on canonical correlation analysis (Table 2). Plotted are the interset correlations of the goals (lines 
ending solid) and the canonical weight for the instruments (lines ending dashed). The length of a line for a goal 
is equal to its multiple correlation in the displayed Rank-2-regression model. The multiple correlation in the 
full rank model is indicated by the distance of the star to the origin. The positions where the lines change from 
solid in dashed (mark) are important for inferring t-ratios. For explanation, see example section. The circle 
has radius I. 
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highest correlation is with x3 . Because y5 is closest to the origin of the plot, the 
correlations with y 5 tend to be small. Goal y1 is intermediate between y 3 and y 5 ; of all 
goals, y 1 has the least differentiation in its correlations with the instruments. The 
approximation of correlations by Figure 1 is quite good; from the 36 correlations in Ryx• 
only 2 correlations differ by more than 0.07 from their value displayed in the biplot. 

Because Figure 1 is a plot of correlations of the original variables with the canon
ical variates of the instruments, the squared lengths of arrows are Rank 2 communal
ities: intraset communalities for the instruments and interset communalities for the 
goals (Gittins, 1985, p. 43). 

In Figure 2 the canonical weights of the instruments are plotted together with the 
interset correlations of the goals. Figure 2 is thus a biplot approximation of the regres
sion coefficients of the multiple regression of each goal on the instruments (Table 3). 
Each arrow is subdivided in a solid part and a dashed part. For instruments (x-vectors), 
the solid part indicates the reduced vectors for the approximation oft-ratios (see the 
theory Section). If a reduced x-vector is projected onto a particular y-vector and the 
projection point falls in the dashed part of they-vector (or its mirror-image on the other 
side of the origin), then the t-ratio as displayed in the biplot is less than 2 (in absolute 
value) and the hypothesis that the corresponding regression coefficient is equal to zero 
cannot be rejected at the 5%-significance level. Note that this graphical test is not 
exact-even if the assumptions of a t-test hold true-because the biplot displays the 
observed t-ratios with some error. 

For example, by projecting the solid part of the x-vectors on y 5 , we see that the 
projection point of x 3 is the only one falling outside the dashed part of y 5 and its mirror 
image. The observed t-ratio is 3.6 (Table 3). Notice that the projection point of x4 falls 
in the mirror image; its t-ratio is -1.3 in Table 3. Similarly we derive from Figure 2 that 
x4 has a significant effect (p < 0.05) on y 4 , y2 , y6 , and y3 • This agrees with Table 3, 
except that the t-ratio for y3 is only 1.8. The major discrepancy between Figure 2 and 
Table 3 is the effect of x5 on y1, which is not well displayed in the biplot. The third 
canonical variate may help in detecting discrepancies; the magnitude of the weights of 
x4 and xs on this variate suggests that the biplot displays their effect the worst. 

The length of a y-vector in Figure 2 is its multiple correlation in the Rank-2-
regression model. The usual (full rank) multiple correlation, indicated by a star in 
Figure 2, is only slightly higher. From Figure 2 we can thus see that the goals y2 , y3 , 

and Y6 can be explained best by the instruments (R = 0.9), the goals y 1 and y 4 less 
(R = 0.6-0.7), and goal y 5 least (R = 0.5). The first canonical dimension accounts for 
57% of the variance in the goals, the second one for 4%, and the third one for only 1%. 
In full space, the instruments account for 64% of the variance in the goals; so only 
slightly more than the 61% displayed in Figure 2. 

If the original observations would have been available, one could have plotted in 
Figure 2 the canonical variate scores of the nations as well, to obtain a biplot of the 
fitted values (see (14)). 

On comparing Figure I and Figure 2, one should notice that Figure 1 displays 
marginal "effects" (pairwise correlations) and Figure 2 conditional effects (regression 
coefficients). The comparison of these effects is easy because the y-vectors take the 
same position in both Figures, whereas the x-vectors differ. From the comparison we 
see that the instruments x 1 and x 6 have about the same marginal effect as x 4 but a 
much lower conditional effect. The change in position of x2 and x5 is most striking. 
These instruments have a high correlation (r > 0.5) with y2 , y3 , and y 6 , but a non
significant conditional effect. 
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TABLE 3 

Multivariate Regression of Goals (y) on Instruments (x) 

XI x2 x3 X.. Xs ~ R** 

Yt -0.13* -0.03 0.09 0.17 0.44 0.23 0.68 
(-0.77) (-0.23) (0.78) (0.99) (3.30) (1.33) 

Y2 0.17 0.13 -0.02 0.50 0.03 0.20 0.91 
(1.75) (1.79) (-0.30) (5.05) (0.39) (2.01) 

Y3 0.46 0.05 0.01 0.18 0.12 0.21 0.91 
(4.85) (0.74) (0.21) (1.82) (1.63) (2.06) 

Y4 0.24 -0.11 0.04 0.44 -0.11 0.30 0.78 
(1.70) (-1.07) (0.43) (3.01) ( -1.00) ( 1.99) 

Ys 0.17 0.22 0.46 -0.25 -0.04 0.04 0.55 
(0.89) (1.53) (3.61) (-1.27) ( -0.25) (0.22) 

Y6 0.27 0.07 0.05 0.61 -0.01 0.04 0.91 
(2.91) (1.03) (0.84) (6.35) ( -0.15) (0.38) 

VIF••• 3.44 1.96 1.55 3.77 2.18 3.82 

* Standardized regression coefficient and, between brackets, 
the associated t-ratio 

** Multiple correlation coefficient for the goals 
*** Variance inflation factor for the instruments 

Partial Canonical Correlation Analysis 

In partial canonical correlation analysis, one wants to study the relationships be
tween criterion and predictor variables while taking account for their correlations with 
variables of a third set, say Z (Rohr, 1987; Roy & Whittlesey, 1952; Timm & Carlson, 
1976). The technique reduces to the usual canonical correlation analysis applied to 
partial correlations and nothing new arises: the biplot based on (4) approximates partial 
correlations and the biplot based on (13) approximates "partial" regression coeffi
cients. These partial regression coefficients are essentially the regression coefficients 
corresponding to the predictor variables in the full model (compare (6)): 

Y=XM' + ZN' +E. (17) 

A complication is that the analysis on partial correlations linearly rescales the criterion 
and predictor variables in such a way that their length is 1 after the adjustment for Z. 
We will assume this scaling in (17). The rescaling affects the definition of the regression 
coefficients in an obvious way but does not affect the t-ratios in (16) because the latter 
are scale-invariant. (Alternatively, the analysis specified by (2), (7) through (13) can be 
applied to partial covariances rather than correlations). Loss function (9) is appropriate 
indeed for the partial analysis because with the redefinitions, the covariance matrix of 
the i-th andj-th row of :Min (17) is as specified above (9). The analysis of Model (17) 
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with partial canonical correlation analysis is a form of reduced-rank regression with 
concomitant variables (Davies & Tso, 1982). 

Redundancy Analysis 

The results of this paper carry over to redundancy analysis (van den Wollenberg, 
1977) and the equivalent reduced-rank regression (Davies & Tso, 1982; Israels, 1984, 
1987) by redefining Ryy in (1) and Se in (9) to be a q x q identity matrix. This change 
reflects the fact that in redundancy analysis, no adjustment is made for correlations 
among criterion variables nor for differences in error variance. In redundancy analysis, 
the elements of B ((4)) and of B0 ((10)) are not only correlations but also canonical 
coefficients. Partial redundancy analysis is discussed briefly by Davies and Tso (1982) 
under the name of reduced rank regression with concomitant variables. 

Discussion 

This paper uses canonical weights and structure correlations to construct low
dimensional views of the relationships between two sets of variables. These views, in 
the form of biplots, display familiar statistics: correlations between pairs of variables 
and regression coefficients. The canonical variates are simply a means to construct 
these views, and are not needed for interpretation. This makes the interpretation of 
canonical correlation output easier. In contrast to Rencher (1988), we find canonical 
correlation analysis useful because it reproduces univariate statistics! The gain lies in 
the dimension reduction that makes the biplot possible. 

The question of whether to use structure correlations or weights for interpretation 
is now back at the choice between pairwise correlations between variables and regres
sion coefficients to study relationships. Multivariate regression, whence regression 
coefficients, is useful when one set of variables is to be predicted from the other set; that 
is, when the role of the two sets of variables is asymmetric. A regression coefficient 
estimates the change in the criterion variable for one unit of change in the correspond
ing predictor variable when the other predictor variables are held constant. It measures 
a conditional effect. By contrast, a sample correlation coefficient measures marginal 
association. It depends in general on how other variables covary in the sample and may 
therefore be spurious. Of course, one must also be careful in interpreting regression 
coefficients, when (a) the predictor variables are intrinsically related, so that predictor 
variables cannot be held constant when the predictor under consideration is varied; (b) 
the sample is such that the predictor variables are almost multicollinear (the "bouncing 
beta" problem). In the first case one should consider (latent) path models (LISREL; 
Joreskog & Sorbom, 1983; Saris & Stronkhorst, 1984). The second case is indicated by 
the variance inflation factors (Table 3) which are displayed in the biplot by the squared 
relative lengths of the full vector and its solid part for each predictor (Figure 2). 

Following Tso (1981) and Davies and Tso (1982), we showed that both canonical 
correlation analysis and redundancy analysis can analyze asymmetric relationships. 
Redundancy analysis is based on an unweighted least-squares criterion, whereas ca
nonical correlation analysis uses a weighted criterion. The choice between them should 
therefore be based on whether one wants to weight criterion variables equally or with 
statistically chosen optimal weights. An interesting intermediate case is to set Ryy equal 
to a diagonal matrix with the same diagonal as Se ((8)). This weights criterion variables 
in dependence of how well they can be predicted without the reduced-rank restriction. 
Similar considerations apply to the choice between a weighted (Browne, 1979) and an 
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unweighted (Tucker, 1958) approximation of Ryx. Related discussion is provided by 
Wold (1982) in his choice between the modes A, B, and C in PLS. 

Timm and Carlson (1976) proposed part canonical correlation as an alternative for 
partial canonical correlation analysis, for the case where the third set of variables (Z) 
influences only one of the other two sets, say Y, and not the other, say X. This is the 
case in the asymmetric model (17). Yet, under normality of errors, the maximum 
likelihood solution of (17) with a rank-restriction on M is obtained by partial (not part) 
canonical correlation analysis. The proof runs along the same lines as in Tso (1981). 

The proposed biplots can also be used in non-linear canonical correlation analysis 
(van der Burg & de Leeuw, 1983) by basing the plots on the optimally scaled variables. 
Gower and Harding (1988) propose a modification of the classical biplot that has some 
data analytic appeal. Instead of a vector, they suggest drawing for each variable, a line 
segment through the origin, the end points of which indicate the minimum and maxi
mum value of the variable in the data. The segments warn the user against inferring 
values from the plot that are outside the observed range. This modification can be 
useful as well in the biplots we propose, although a plot like our Figure 2 would quickly 
become too crowded. As this paper shows, the strength of canonical correlation anal
ysis and related multivariate techniques lies in their ability to tum tables into biplots. 
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