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1. Introduction

The chest X-rays (CXRs) is one of the views most commonly ordered by radiologists (NHS),
which is critical for diagnosis of many different thoracic diseases. Accurately detecting the
presence of multiple diseases from CXRs is still a challenging task. We present a multi-label
classification framework based on deep convolutional neural networks (CNNs) for diagnos-
ing the presence of 14 common thoracic diseases and observations. Specifically, we trained a
strong set of CNNs that exploit dependencies among abnormality labels and used the label
smoothing regularization (LSR) for a better handling of uncertain samples. Our deep net-
works were trained on over 200,000 CXRs of the recently released CheXpert dataset (Irvin
and al., 2019) and the final model, which was an ensemble of the best performing networks,
achieved a mean area under the curve (AUC) of 0.940 in predicting 5 selected pathologies
from the validation set. To the best of our knowledge, this is the highest AUC score yet
reported to date. More importantly, the proposed method was also evaluated on an inde-
pendent test set of the CheXpert competition, containing 500 CXR studies annotated by a
panel of 5 experienced radiologists. The reported performance was on average better than
2.6 out of 3 other individual radiologists with a mean AUC of 0.930, which had led to the
current state-of-the-art performance on the CheXpert test set.

2. Proposed approach

2.1. Dataset and settings

Our focus in this paper is to develop and evaluate a deep learning-based approach that
could learn from hundreds of thousands of CXR images and make accurate diagnoses of 14
common thoracic diseases and observations (Rajpurkar et al., 2017, 2018). The CheXpert
dataset was used to train and validate the proposed method. It contains 224,316 scans of
65,240 patients, annotated for the presence of 14 common chest CRX observations. Each
observation can be assigned to either positive (1), negative (0), or uncertain (-1). The whole
dataset is divided into a training set of 223,414 studies, a validation set of 200 studies, and
a hidden test set of 500 studies. For the validation set, each study is annotated by 3 board-
certified radiologists and the majority vote of these annotations serves as the ground-truth.
Meanwhile, each study in the hidden test set is labeled by the consensus of 5 board-certified
radiologists. The main task on the CheXpert is to build a classifier that takes as input a CXR
image and outputs the probability of each of the 14 labels. The effectiveness is measured
by the AUC metric over 5 selected diseases (i.e. Atelectasis, Cardiomegaly, Consolidation,
Edema, and Pleural Effusion) as well as by a reader study.
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2.2. Exploiting disease dependencies and dealing with uncertainty labels

In CXRs, diagnoses are often conditioned upon their parent labels and organized into hierar-
chies (Van Eeden et al., 2012). Most existing CXR classification approaches, however, treat
each label in an independent manner. This paper proposes to build a deep learning system
that is able to take the label structure into account and learn label dependencies. To this
end, we train CNN-based classifiers on conditional data with all parent-level labels being
positive and then finetune them with the whole dataset. We adapt the idea of conditional
learning (Chen et al., 2019) to the lung disease hierarchy of the CheXpert dataset (Irvin
and al., 2019). First, a CNN is pretrained on a partial training set containing all positive
parent labels to get more accurate predictions of child labels (Figure 1a). Next, transfer
learning will be exploited. We freeze all the layers of the pretrained network except the last
fully connected layer and then retrain it on the full dataset. This stage aims at improving
the capacity of the network in predicting parent-level labels. During the inference phase,

Figure 1: (a) A CNN is trained on a training set where all parent labels (red nodes) are positive, to
classify leaf labels (blue nodes), which could be either positive or negative . (b) An example of
a tree of 4 diseases: A, B, C, and D that depend on each other.

all the labels should be unconditionally predicted. Thus, as a simple application of the
Bayes rule, the unconditional probability of each label being positive should be computed
by multiplying all conditional probabilities produced by the trained CNN along the path
from the root node to the current label. For example, let C and D be disease labels at the
leaf nodes of a tree T (Figure 1b), which also parent labels A and B. Suppose the tuple of
conditional predictions (p(A), p(B|A), p(C|B), p(D|B)) are already provided by the trained
network. Then, the unconditional predictions for the presence of C and D will be computed
as p(C) = p(A)p(B|A)p(C|B) and p(D) = p(A)p(B|A)p(D|B).

Another challenging issue in the classification of CXRs is that the training dataset have
many CXR images with uncertainty labels. Several approaches have been proposed (Irvin
and al., 2019) to deal with this problem. E.g, they can be all ignored (U-Ignore), all
mapped to positive (U-Ones), or all mapped to negative (U-Zeros). Unlike previous works,
we propose to apply the LSR (Muller et al., 2019) for a better handling of uncertainty
samples. Specifically, the U-ones approach is softened by mapping each uncertainty label
(−1) to a random number close to 1. The proposed U-ones+LSR approach now maps the
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where u ∼ U(a1, b1) is a uniformly distributed random variable between a1 and b1–the
hyper-parameters of this approach. Similarly, we propose the U-zeros+LSR approach that
softens the U-zeros by setting each uncertainty label to a random number u ∼ U(a0, b0)
that is closed to 0.
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2.3. Deep learning model and training procedure

We trained and evaluated DenseNet-121 (Huang et al., 2017) as a baseline model on the
Chexpert dataset to verify the impact of the proposed conditional training procedure and
LSR. Then, a strong set of different state-of-the-art CNNs have been experimented includ-
ing: DenseNet-121, DenseNet-169, DenseNet-201 (Huang et al., 2017), Inception-ResNet-
v2 (Szegedy et al., 2017), Xception (Chollet, 2017), and NASNetLarge (Zoph et al., 2018).
In the training stage, all images were fed into the network with a standard size. Before that,
a template matching algorithm (Brunelli, 2009) was used to search and find the location of
lungs on the original images, which helps to remove the irrelevant noisy areas such as texts
or the existence of irregular borders. The final fully-connected layer is a 14-dimensional
dense layer, followed by sigmoid activations that were applied to each of the outputs to
obtain the predicted probabilities of the presence of the 14 pathology classes. We used
Adam optimizer (Kingma and Ba, 2015) with default parameters β1 = 0.9, β2 = 0.999 and
a batch size of 32 to find the optimal weights. The learning rate was initially set to 1e− 4
and then reduced by a factor of 10 after each epoch during the training phase. Our network
was initialized with the pretrained model on ImageNet (Krizhevsky et al., 2012) and then
trained for 50,000 iterations. The ensemble model was simply obtained by averaging the
outputs of all trained networks.

3. Experiments and results

Our extensive ablation studies show that both the proposed conditional training and LSR
helped boost the model performance. The baseline model trained with the U-Ones+CT+LSR

approach obtained an AUC of 0.894 on the validation set. This was a 4% improvement
compared to the baseline trained with the U-Ones approach that obtained a mean AUC of
0.860. Our final model, which was an ensemble of six single models, achieved a mean AUC
of 0.940 – a score that outperforms all previous state-of-the-art results (Irvin and al., 2019;
Allaouzi and Ahmed, 2019) by a big margin. To compare our model with human expert-level
performance, we evaluated the ensemble model on the hidden test set and performed ROC
analysis. The ROCs produced by the prediction model and the three radiologists’ operating
points were both plotted. For each disease, whether the model is superior to radiologists’
performances was determined by counting the number of radiologists’ operating points lying
below the ROC. The result shows that our deep learning model, when being averaged over
the 5 diseases, outperformed 2.6 out of 3 radiologists with a mean AUC of 0.930. This is
the best performance on the CheXpert leaderboard at the time of writing this paper.

4. Conclusion

We presented in this paper a deep learning-based approach for building a high-precision
computer-aided diagnosis system for common thoracic diseases classification from CXRs.
In particular, we introduced a new training procedure in which dependencies among diseases
and uncertainty labels are effectively exploited and integrated in training advanced CNNs.
Extensive experiments demonstrated that the proposed method outperforms the previous
state-of-the-art by a large margin on the CheXpert dataset. More importantly, our deep
learning algorithm exhibited a performance on par with specialists in an independent test.

3



References

Imane Allaouzi and Mohamed Ben Ahmed. A novel approach for multi-label chest X-ray
classification of common thorax diseases. IEEE Access, 7:64279–64288, 2019.

Roberto Brunelli. Template matching techniques in computer vision: Theory and practice.
Wiley Publishing, ISBN: 978-0-470-51706-2, 2009.

Haomin Chen, Shun Miao, Daguang Xu, Gregory D. Hager, and Adam P. Harrison. Deep
hierarchical multi-label classification of chest X-ray images. In MIDL, pages 109–120,
2019.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In IEEE
CVPR, pages 1251–1258, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In IEEE CVPR, pages 4700–4708, 2017.

Jeremy Irvin and al. CheXpert: A large chest radiograph dataset with uncertainty labels
and expert comparison. In AAAI, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, pages 1097–1105. 2012.

Rafael J. Muller, Simon Kornblith, and Geoffrey E. Hinton. When does label smoothing
help? ArXiv, abs/1906.02629, 2019.

NHS. NHS England: Diagnostic imaging dataset statistical release. February 2019. https:
//www.england.nhs.uk/. (accessed 04 December 2019).

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony
Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al. ChexNet:
Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint
arXiv:1711.05225, 2017.

Pranav Rajpurkar, Irvin, and al. Deep learning for chest radiograph diagnosis: A retrospec-
tive comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine,
15(11):e1002686, 2018. doi: https://doi.org/10.1371/journal.pmed.1002686.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
Inception-ResNet and the impact of residual connections on learning. In AAAI, 2017.

Stephan Van Eeden, Jonathon Leipsic, SF Paul Man, and Don D Sin. The relationship
between lung inflammation and cardiovascular disease. American Journal of Respiratory
and Critical Care Medicine, 186(1):11–16, 2012.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In IEEE CVPR, pages 8697–8710, 2018.

4

https://www.england.nhs.uk/
https://www.england.nhs.uk/

	Introduction
	Proposed approach
	Dataset and settings
	Exploiting disease dependencies and dealing with uncertainty labels
	Deep learning model and training procedure

	Experiments and results
	Conclusion

