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Abstract
In this work we present the novel ASTRID
method for investigating which attribute inter-
actions classifiers exploit when making predic-
tions. Attribute interactions in classification
tasks mean that two or more attributes together
provide stronger evidence for a particular class
label. Knowledge of such interactions makes
models more interpretable by revealing associa-
tions between attributes. This has applications,
e.g., in pharmacovigilance to identify interac-
tions between drugs or in bioinformatics to in-
vestigate associations between single nucleotide
polymorphisms. We also show how the found at-
tribute partitioning is related to a factorisation of
the data generating distribution and empirically
demonstrate the utility of the proposed method.

1. Introduction
A lot of attention has been on creating high-performing
classifiers such as, e.g., support vector machines (SVMs)
(Cortes & Vapnik, 1995) and random forest (Breiman,
2001), both of which are among the best-performing classi-
fiers (Fernández-Delgado et al., 2014). However, the com-
plexity of many state-of-the-art classifiers means that they
are essentially opaque, black boxes, i.e., it is very difficult
to gain insight into how the classifiers work. Gaining in-
sight into machine learning models is a topic that will be-
come more important in the future, e.g., due to possible
legislative requirements (Goodman & Flaxman, 2016). In-
terpretability of machine learning models is a multifaceted
problem, one aspect of which is post-hoc interpretability
(Lipton, 2016), i.e., gaining insight into how the method
reaches the given predictions.

Interpreting black box machine learning models in terms of
attribute interactions provides one form of post-hoc inter-
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pretability and is the focus of this paper. Given a supervised
classification dataset D = (X,C), where X is a data ma-
trix with m predictor attributes x1, . . . , xm (e.g., gender,
age etc), and C is a vector with a target attributes (class),
an interaction between a subset of thesem attributes means
that the attributes together provide stronger evidence con-
cerning C than if the attributes are considered alone. We
say that attributes interact whenever they are conditionally
dependent given the class. We next motivate attribute in-
teractions from the perspective of interpretability of real-
world problems.

Two difficult problems involving interactions concern
drug-drug interactions in pharmacovigilance (e.g., Zhang
et al., 2017; Cheng & Zhao, 2014) and investigating asso-
ciations between single nucleotide polymorphisms (SNPs)
in bioinformatics (e.g., Lunetta et al., 2004; Moore et al.,
2010). Recently, machine learning methods have been ap-
plied to investigate drug-drug (Henelius et al., 2015) and
gene-gene interactions (Li et al., 2016). The benefit of
using powerful classifiers, such as random forest, is that
one does not need to specify the exact form of interactions
between attributes (Li et al., 2016), which is necessary in
many traditional statistical methods (e.g., linear regression
models that include interaction terms). To utilise classifiers
in this manner for studying associations in the data requires
that we have some method for revealing how the classifier
perceives attribute interactions.

A grouping of the attributes in a dataset is a partition
where interacting attributes are in the same group, while
non-interacting (i.e., independent) attributes are in differ-
ent groups. In this paper we study two problems. Firstly
we want to determine if a particular grouping of attributes
represents the attribute interaction structure in a given
dataset. Secondly, we want to automatically find a max-
imum cardinality grouping of the attributes in a given
dataset.

We approach these problems using the following intuition
concerning classifiers, which are used as tools to investi-
gate interactions. A classifier tries to model the class prob-
abilities given the data, i.e., the probability P (C | X) ∝
P (X | C)P (C). Here P (X | C) is the class-conditional
distribution of the attributes, which we focus on here. For-
mally, let S represent a factorisation of P (X | C) into in-
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dependent factors, i.e.,

P (X | C;S) =
∏
S∈S

P (X (·, S) | C) (1)

where X (·, S) only contains the attributes in the set S. In
other words, interacting attributes are in the same group
S ∈ S and, hence, in the same factor in P (X | C;S).

Assume that the dataset D is sampled from a factorised
distribution of the form given in Eq. (1) for some S . Fur-
ther assume that we can generate datasets DS that are ex-
changeable with D. Suppose now that we train a classifier
f1 using D and that we train a second classifier f2 (of the
same type as f1) using DS . Now, if classifiers f1 and f2
cannot be distinguished from each other in terms of accu-
racy on the same test data, it means that the factorisation
S captures the class-dependent structure in the data to the
extent needed by the classifier. On the other hand, if f2
performs worse than f1, some essential relationships in the
data needed by the classifier are no longer present, i.e., D
has not been sampled from a distribution of the form given
by Eq. (1). To determine whether f1 and f2 are indistin-
guishable, we compute a confidence interval (CI) for the
performance of f2 by generating an ensemble of datasets
DS . If the performance of f1 is above the CI we conclude
that the factorisation S is not valid.

1.1. Related Work

In this paper we combine the probabilistic approach of
Ojala & Garriga (2010) studying whether a classifier
utilises attribute interactions at all with the method of
Henelius et al. (2014) allowing identification of groups of
interacting attributes. For a review on attribute interactions
in data mining see, e.g., Freitas (2001). Interactions have
been considered in feature selection (Zhao & Liu, 2007;
2009). Mampaey & Vreeken (2013) partition attributes by
a greedy hierarchical clustering algorithm based on Mini-
mum Description Length (MDL). Their goal is similar to
our, but we focus on supervised learning. Tatti (2011)
ordered attributes according to their dependencies while
Jakulin & Bratko (2003) quantified the degree of attribute
interaction and Jakulin & Bratko (2004) factorised the joint
data distribution and presented a method for significance
testing of attribute interactions.

1.2. Contributions

We present and study the two problems of (i) assessing
whether a particular grouping of attributes represents the
class-conditional structure of a dataset (Sec. 2.2) and (ii)
automatically discovering the attribute grouping of high-
est granularity (Sec. 2.3). We empirically demonstrate

using synthetic and real data how the proposed ASTRID1

(Automatic STRucture IDentification) method finds at-
tribute interactions in data (Secs. 3–5).

2. Methods
In this section we consider (i) how to determine if a partic-
ular attribute grouping is a valid factorisation of the class-
conditional joint distribution, and (ii) automatically finding
the maximum cardinality attribute grouping.

2.1. Preliminaries

Let X be an n×m data matrix, where X(i, ·) denotes the
ith row (item), X(·, j) the jth column (attribute) of X , and
X(·, S) the columns of X given by S, where S ⊆ [m] =
{1, . . . ,m}, respectively. Let C be a finite set of class labels
and let C be an n-vector of class labels, such that C (i)
gives the class label for X(i, ·). We denote a dataset D by
the tuple D = (X,C).

We denote by P the set of disjoint partitions of [m] =
{1, . . . ,m}, where a partition S ∈ P satisfies ∪S∈SS =
[m] and for all S, S′ ∈ S either S = S′ or S ∩ S′ = ∅,
respectively.

Here we assume that the dataset has been sampled i.i.d.,
i.e., the dataset D follows a joint probability distribution
given by

P (D) =
∏

i∈[n] P (X (i, ·) , C (i))

=

P (X|C)︷ ︸︸ ︷∏
i∈[n]

P (X (i, ·) | C(i))P (C (i)) ,
(2)

where P (X | C) is the class-conditional distribution. We
consider a factorisation of P (D) into class-conditional fac-
tors given by the grouping S ∈ P and write

P (D) =

∏
S∈S P (X(·,S)|C)︷ ︸︸ ︷∏

i∈[n]

∏
S∈S

P (X (i, S) | C (i))P (C (i)) . (3)

Given an observed dataset D, we want to find the attribute
associations in the data and ask: Has the observed dataset
D been sampled from a distribution given by Eq. (3) with
the grouping given by S ∈ P?

2.2. Framework for Investigating Factorisations

Our goal is to determine whether the data obeys the fac-
torised distribution of Eq. (3). To do this we compare the
accuracy of a classifier trained using the original data with

1R-package available:https://github.com/bwrc/
astrid-r

https://github.com/bwrc/astrid-r
https://github.com/bwrc/astrid-r


Interpreting Classifiers through Attribute Interactions in Datasets

the confidence interval (CI) formed from the accuracies of
a collection of classifiers trained using permuted data. The
permuted datasets are formed such that they are exchange-
able with the original dataset if Eq. (3) holds. If the accu-
racy of the original data is above the CI we can conclude
with high confidence that the data does not obey the fac-
torised distribution.

We denote a classifier trained using the dataset D by
fD. Further assume that we have a separate independent
test dataset from the same distribution as D, denoted by
Dtest = (Xtest, Ctest).

Definition 1. Classification Accuracy Given the above def-
initions, the accuracy for a classifier trained using D is
given by

T (D) =
1

ntest

ntest∑
i=1

I [fD (Xtest (i, ·)) = Ctest (i)], (4)

where I [�] is the indicator function and ntest is the num-
ber of items in the test dataset.

Note that T is not the accuracy of f on D, but the accuracy
of f on Xtest when f is trained using D. Because direct
sampling from Eq. (3) is not possible as the data generat-
ing model is unknown, we generate the permuted data ma-
trices XS so that they have same probability as X under
the assumption that X is a sample from a factorised distri-
bution as given in Eq. (3). This means that X and XS are
exchangeable under the assumption of a joint distribution
that is factorised in terms of S.

We sample datasets using the permutation scheme de-
scribed in Henelius et al. (2014). A new permuted dataset
DS =

(
XS , C

)
is created by permuting the data matrix of

the dataset D = (X,C) at random. The permutation is de-
fined by m bijective permutation functions πj : [n] 7→ [n]
sampled uniformly at random from the set of allowed per-
mutations functions. The new data matrix is then given
by XS (i, j) = X (πj (i) , j). The allowed permutation
functions satisfy the following constraints for all i ∈ [n],
j, j′ ∈ [m], and S ∈ S:

1. permutations are within-a class, i.e., C (i) =
C (πj (i)), and

2. items within a group are permuted together, i.e., j ∈
S ∧ j′ ∈ S =⇒ πj (i) = πj′ (i).

Let DS be the set of datasets that can be generated by the
above permutation scheme using the grouping S . We note:

Lemma 1. Each invocation of the permutation scheme pro-
duces each of the datasets in DS with uniform probability.

Lemma 2. The datasets in DS have equal probability un-
der the distribution of Eq. (3), parametrised by S.

Proof. The proofs follow directly from the definition of the
permutation and the probability distribution of Eq. (3).

Definition 2. Confidence intervals Given a dataset D,
a grouping S, a classifier f and an integer R, let
A =

{
T
(
DS1
)
, . . . , T

(
DSR
)}

be a vector of accuracies
where the datasets DSi are obtained by the permutation
parametrised by S, and T is as in Eq. (4). The CI is the
tuple C = (clower, cupper), where clower and cupper are values
corresponding to the 5% and 95% quantiles in A, respec-
tively.

We cast the above discussion as a problem:

Problem 1. Given an observed dataset D, a grouping S
and a classifier f , let a0 be the accuracy of f (trained us-
ing the original data) on the test set. Determine if the up-
per end of the CI of Def. 2 for the accuracy of a classifier
trained using factorised data is at least a0.

If the above condition is met, we conclude that the factori-
sation correctly captures the structure of the data.

2.3. Automatically Finding Groupings (ASTRID)

In the previous section we examined whether a particular
grouping S describes the structure of the data in terms of
the factorisation in Eq. (3). A natural step is now to ask
how to find the grouping best describing the associations
in a dataset D? Here we choose best to be the grouping S
of (i) maximum cardinality such that (ii) a classifier trained
using data shuffled with S is indistinguishable in terms of
accuracy from a classifier trained using the original, unfac-
torised data.

Finding the maximum cardinality grouping is motivated by
the fact that in this case there are no irrelevant interactions.
Also, interpreting attribute interactions in small groups is
easier than in large groups. The requirement on accuracy
means that no essential information is lost and in practice
this means that the upper end of the CI for the accuracy of
the classifier f trained using DS is at least as large as the
original accuracy a0 of f trained using D.

Exhaustive search of all groupings is in general impossi-
ble due to the size of the search space. Hence, to make
our problem tractable we assume that accuracy decreases
approximately monotonically with respect to breaking of
groups in the correct solution, i.e., the more the interactions
are broken, the more classification performance decreases.
Using this property we use a top-down greedy algorithm
termed ASTRID. For details see the extended description
in Henelius et al. (2017). In practice, T in Eq. (4) is sus-
ceptible to stochastic variation and for stability we instead
use expected accuracy V when optimising accuracy in the
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greedy algorithm:

V (S) = 1

N

N∑
i=1

T
(
DSi
)
, (5)

where N is the number of samples used to calculate the ex-
pectation, DSi (i ∈ [N ]) is a dataset generated by the per-
mutation parametrised by S and T is defined as in Eq. (4).

3. Experiments
We use ASTRID to identify attribute interactions. We use
a synthetic dataset and 11 datasets from the UCI machine
learning repository (Bache & Lichman, 2014)2. All exper-
iments were run in R (R Core Team, 2015) and our method
is released as the ASTRID R-package, available for down-
load3. We use a value ofR = 250 in Def. 2 andN = 100 in
Eq. (5). In all experiments the dataset was randomly split
as follows: 50% for training (D) and the rest for testing
(Dtest, see Eq. (4)): 25% for computing V (Eq. (5)), and
25% for computing CIs. As classifiers we use support vec-
tor machines (SVM) with RBF kernel, random forest (RF)
and naı̈ve Bayes (NB).

The datasets are summarised in Table 1. The UCI datasets
were chosen so that the SVM and random forest classi-
fiers achieve reasonably good accuracy at default settings,
since the goal here is to demonstrate the applicability of the
method rather than optimise classifier performance. Rows
with missing values and constant-value columns were re-
moved from the UCI datasets. The synthetic dataset has
two classes, each with 500 data points. Attributes 1 and 2
carry meaningful class information only when considered
jointly, attribute 3 contains some class information and at-
tribute 4 is random noise. The correct grouping is hence
S = {{1, 2} , {3} , {4}}.

4. Results
The results are presented as tables where each row is a
grouping and the columns represent attributes. Attributes
belonging to the same group are marked with the same let-
ter, i.e., attributes marked with the same letter on the same
row are interacting.

Table 2 shows the results for the synthetic dataset where
the highest-cardinality grouping is highlighted and is also
shown below the table. Using the SVM and RF classifiers
ASTRID identifies the correct attribute interaction structure
(k = 3). For k = 4 the accuracy is clearly lower. For
naı̈ve Bayes all groupings (all values of k) are equally valid

2Datasets obtained from http://www.cs.waikato.
ac.nz/ml/weka/datasets.html

3https://github.com/bwrc/astrid-r (R-package
and source code for experiments)

Table 1: The datasets used in the experiments (2–10 from
UCI). Columns as follows: Number of items (Ni) after
removal of rows with missing values, number of classes
(Nc) after removal of constant-value columns, number of
attributes (Na). MCP is major class proportion. TSVM and
TRF give the computation in minutes of the ASTRID method
for the SVM and random forest, respectively.

n Dataset Ni Nc Na MCP TSVM TRF

1 synthetic 1000 2 4 0.50 0.1 0.4
2 balance-scale 625 3 4 0.46 0.1 0.3
3 diabetes 768 2 8 0.65 0.2 1.1
4 vowel 990 11 13 0.09 1.2 56.1
5 credit-a 653 2 15 0.55 0.8 3.5
6 vote 232 2 16 0.53 0.6 0.9
7 segment 2310 7 18 0.14 3.7 14.2
8 vehicle 846 4 18 0.26 1.5 6.8
9 mushroom 5644 2 21 0.62 13.1 19.8
10 soybean 682 19 35 0.13 9.1 29.5
11 kr-vs-kp 3196 2 36 0.52 42.2 41.7

since the classifier assumes attribute independence. The
results mean that the average accuracy of an SVM or RF
classifier trained on the synthetic dataset permuted using
S = {{1, 2} , {3} , {4}} is within CIs. ASTRID reveals the
factorised form of the joint distribution of the data, which
makes it possible to identify the attribute interaction struc-
ture exploited by the classifier in the datasets. This makes
the models more interpretable and we, e.g., learn that NB
does not exploit interactions (as expected!).

The groupings for the UCI datasets are summarised in Ta-
ble 3. SVM and RF are in general similar in terms of
the cardinality (k), with the exception of kr-vs-kp and
soybean. In many cases it appears that the classifiers
utilise few interactions in the UCI datasets. To compare
this finding with the results of Ojala & Garriga (2010), we
calculated the value of their Test 2, denoted pOG in Ta-
ble 3. This test investigates whether a classifier utilises at-
tribute interactions. pOG ≥ 0.05 indicates that no attribute
interactions are used by the classifier, which we find for
diabetes and soybean for SVM and for diabetes
and credit-a for random forest (highlighted in the ta-
ble). This is in line with the findings from ASTRID, since
for these datasets k equals N in Table 3 and no interac-
tions are hence utilised as the dataset can be factorised into
singleton groups.

Finally, as an illustrative example of grouping at-
tributes exploited by a classifier we consider the vote
dataset. This dataset contains yes/no information on
16 issues with the target of classifying if a person is
republican or democrat. Using SVM ASTRID finds
that the maximum cardinality grouping is of size
k = 8 (Tab. 3). The grouping consists of 7 single-
ton attributes (water-project-cost-sharing,
synfuels-corporation-cutback, physician-fee-

freeze, education-spending, duty-free-exports,

http://www.cs.waikato.ac.nz/ml/weka/datasets.html
http://www.cs.waikato.ac.nz/ml/weka/datasets.html
https://github.com/bwrc/astrid-r
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Table 2: The synthetic dataset. The cardinality of the
grouping is k and CI is the confidence interval for accu-
racy. Original accuracy using unshuffled data (a0) and the
final grouping (S, highlighted row) shown above and be-
low the table, respectively. An asterisk (∗) denotes that the
factorisation is valid.

(a) SVM

a0 = 0.908

k CI a3 a4 a2 a1

2 [0.900, 0.920] * (A) (B B B)
3 [0.896, 0.920] * (A) (B) (C C)
4 [0.696, 0.784] (A) (B) (C) (D)

S = {{1, 2} , {3} , {4}}

(b) Random forest

a0 = 0.904

k CI a3 a4 a1 a2

2 [0.896, 0.928] * (A) (B B B)
3 [0.896, 0.928] * (A) (B) (C C)
4 [0.668, 0.756] (A) (B) (C) (D)

S = {{1, 2} , {3} , {4}}
(c) Naı̈ve Bayes

a0 = 0.760

k CI a1 a2 a3 a4

2 [0.760, 0.760] * (A) (B B B)
3 [0.760, 0.760] * (A) (B) (C C)
4 [0.760, 0.760] * (A) (B) (C) (D)

S = {{1} , {2} , {3} , {4}}

export-administration-act-south-africa,
immigration) and one group with 9 interact-
ing attributes (crime, handicapped-infants,
religious-groups-in-school, superfund-right-

to-sue, adoption-of-the-budget-resolution,
mx-missile, anti-satellite-test-ban, aid-to-

nicaraguan-contras, el-salvador-aid). It appears
that the 9 attributes in the group roughly represent military
and foreign policy issues, and economic and social issues.
This means, that the SVM exploits relations between these
9 political issues when classifying persons into republicans
or democrats. On the other hand, the singleton attributes
seem to mostly represent domestic economic, economic
and export issues. The classifier does not use any singleton
attribute jointly with any other attribute when making
predictions.

Note that ASTRID is a randomised algorithm and the found
groupings are hence not necessarily unique. The stability of
the results depends on factors such as the used classifier, the
size of the data and the strength of the interactions. Also,
the results are affected by the number of random samples
(R in Def. 2 andN in Eq. (5)) and for practical applications
a trade-off between accuracy and speed must be made.

5. Discussion and Conclusion
Interpreting black box machine learning models is an im-
portant emerging topic in data mining and in this paper
we present the ASTRID method for investigating classifiers.
This method provides insight into generic, opaque classi-
fier by revealing how the attributes are interacting. ASTRID
automatically finds in polynomial time the maximum cardi-

Table 3: Groupings for UCI datasets. Columns as follows:
number of attributes in the dataset (N), size of the grouping
(k), size of the largest (N1) and second-largest (N2) groups,
baseline accuracy for the classifier trained with unshuffled
data (a0) and the CI. pOG is the p-value of Test 2 in Ojala &
Garriga (2010) (p ≥ 0.05 highlighted).

Dataset N k N1 N2 a0 CI pOG

SVM

balance-scale 4 3 2 1 0.891 [0.821, 0.897] 0.03
credit-a 15 12 4 1 0.871 [0.847, 0.871] 0.04
diabetes 8 8 1 1 0.714 [0.688, 0.740] 0.59
kr-vs-kp 36 33 4 1 0.917 [0.922, 0.924] 0.00
mushroom 21 15 7 1 0.995 [0.991, 0.995] 0.00
segment 18 3 16 1 0.948 [0.936, 0.948] 0.00
soybean 35 35 1 1 0.844 [0.820, 0.850] 0.26
vehicle 18 3 15 2 0.767 [0.719, 0.781] 0.00
vote 16 8 9 1 0.931 [0.897, 0.931] 0.00
vowel 13 3 11 1 0.806 [0.760, 0.806] 0.00

random forest

balance-scale 4 3 2 1 0.821 [0.731, 0.833] 0.02
credit-a 15 15 1 1 0.877 [0.847, 0.883] 0.19
diabetes 8 8 1 1 0.703 [0.698, 0.740] 0.89
kr-vs-kp 36 16 21 1 0.982 [0.972, 0.982] 0.00
mushroom 21 14 8 1 1.000 [0.996, 1.000] 0.00
segment 18 4 15 1 0.986 [0.979, 0.986] 0.00
soybean 35 24 12 1 0.964 [0.946, 0.964] 0.00
vehicle 18 3 13 4 0.752 [0.710, 0.757] 0.00
vote 16 10 7 1 0.948 [0.897, 0.948] 0.00
vowel 13 3 11 1 0.917 [0.901, 0.917] 0.00

nality grouping such that the accuracy of a classifier trained
using the factorised data cannot be distinguished (in terms
of confidence intervals) from a classifier trained using the
original data. The method makes no assumptions on the
data distribution or the used classifier and hence has high
generic applicability to different datasets and problems.
This work extends previous research (Henelius et al., 2014;
Ojala & Garriga, 2010) on studying attribute interactions in
opaque classifiers.

Knowledge of attribute interactions exploited by classifiers
is important in, e.g., pharmacovigilance and bioinformat-
ics (see Sec. 1) where powerful classifiers are used in data
analysis, since they make it possible to simultaneously in-
vestigate multiple attributes instead of, e.g., just pairwise
interactions. Here ASTRID allows the practitioner to au-
tomatically discover attribute groupings, providing insight
into the data by making the classifiers more transparent.
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