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ABSTRACT In this paper, we propose a convolutional neural network (CNN) model for device-free

fingerprinting indoor localization based on Wi-Fi channel state information (CSI). Besides, we develop

an interpretation framework to understand the representations learned by the model. By quantifying and

visualizing CNN in comparison with the fully-connected feedforward deep neural network (DNN) (or

multilayer perceptron), we observe that each model can automatically identify location-specific patterns,

which are however different across models and are linked to the respective performance of each model.

Furthermore, we quantify how features, relevant or otherwise, as deemed by the adopted quantifying metrics

(i.e., relevance scores, calculated by relevance propagation techniques), determine or affect the performance

results. Interpretation of learning models for wireless applications is challenging due to the lack of human

sensory intuition and reference. The results presented in this paper provide visually perceivable evidence

and plausible explanations for the performance advantages of CNN in this important application.

INDEX TERMS Wireless indoor localization, convolutional neural networks (CNN), fingerprinting, Wi-Fi,

channel state information (CSI), Internet of Things (IoT), visualization.

I. INTRODUCTION

Wireless indoor localization is a key enabling technology for

the Internet of Things (IoT) [1]. Precise location information

is crucial for many futuristic IoT applications, such as smart

cities and smart homes [2], disaster management and drone-

assisted rescue services [3], [4], health care and assisted

living [5], vehicle-to-everything (V2X) services [6]–[8],

etc. Fingerprinting-based techniques with Wi-Fi measure-

ments are a widely adopted solution for indoor localiza-

tion. Fingerprinting refers to building an offline database

(‘‘fingerprints’’) of wireless signal measurements and then

matching the online measurements with the offline database

to determine the location of the target. A commonly used

measurement parameter is the received signal strength (RSS).

However, for orthogonal frequency-division multiplexing

(OFDM)-basedWi-Fi radios, channel state information (CSI)

carries advantageous potential as themeasurement parameter,

as it provides fine-grained link information in the granularity

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurice J. Khabbaz .

of a single OFDM subcarrier [9]. From a device perspective,

indoor localization techniques can be classified as device-

based or device-free [10]. While the device-based approach

generally provides higher accuracy, the device-free approach

serves broader general-purpose use cases (especially in the

IoT era) and has additional benefits such as lower cost and

higher privacy, since no tracking device needs to be equipped

by the target.

Deep learning-based approaches have been studied for

fingerprinting-based indoor localization (both device-based

and device-free) due to their recent advances and successes

in various domain applications. Wang et al. [11] proposed

a deep learning-based framework for device-based indoor

localization, which includes a greedy learning algorithm to

train the weights of a multilayer network in the offline train-

ing phase and a probabilistic method to estimate the location

based on CSI measurements in the online testing phase.

BelMannoubi and Touati [12] proposed a stacked autoencoder-

based (SAE) model, where two stacked autoencoders are

trained in an unsupervised manner to recognize RSS signals

for device-based Wi-Fi indoor localization. Chen et al. [13]
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proposed a local feature-based deep long short-term mem-

ory (LF-DLSTM) approach for Wi-Fi indoor localization

with RSS, which consists of a local feature extractor that

extracts robust local features and the DLSTM model that

learns high-level representations from the extracted features.

Liu et al. [14] proposed a deep neural network (DNN)-based

classification model for device-free indoor localization. CSI

pre-processing and data augmentation were introduced into

the proposed DNN model to improve the localization perfor-

mance.Wang et al. [15] proposed a deep convolutional neural

network (DCNN)-based classification model for device-

based indoor localization. The phase information of the CSI

measurements is extracted to estimate the angle of arrival

(AoA), which forms an image-type input for DCNN. The

AoA images are used to train the DCNN model for loca-

tion estimation. Hsieh et al. [16] compared different deep

learning models with different measured Wi-Fi parameters

for fingerprinting-based device-free indoor localization, and

concluded that convolutional neural network (CNN)-based

model with CSI achieves the best performance.

While a deep learningmodel performs impressively well in

practice, its lack of transparency, resulted from the abstract

and nonlinear processes through multiple layers without

human intervention, restricts its interpretability. This issue

has received increasing attention. Research that aims to

open the black box of multilayer neural networks has been

conducted, mostly in the domain of image classification.

Kuo [17] proposed amathematical model to explain why non-

linear activations in CNNs are essential and what advantages

the multilayer cascade structure of CNNs offers. Tishby and

Zaslavsky [18] analyzed DNN via the theoretical framework

of the information bottleneck (IB) principle and suggested

that any DNN can be quantified by the mutual information

and the optimal information theoretic limits of DNN can be

computed. Visualization techniques proved to be a handy tool

to understand the learning process of the multilayer neural

networks [19].

Several approaches for network visualization have been

proposed, e.g., the deconvolution method [20], [21] and the

layer-wise relevance propagation (LRP) method [22], [23],

both essentially mapping the network output decisions to the

pixel space for interpretation and visualization. The deconvo-

lution method [20] visualizes the activities within the model

and the visualization results are used to demonstrate the learn-

ing process of the model as well as for model improvement.

Balu et al. [21] proposed the forward-backward approach

for visualizing the information flow in DNNs based on the

approach in [20], with reduced computations since it only

needs matrix adjoints and (element-wise) nonlinearities for

each convolutional layer. The LRP method [22], [23], and its

cousin, the deep Taylor decomposition method [24], decom-

pose the output decision and backpropagate neuron-wise con-

tributions from the output to the input layer. It was shown

[25] that the LRP method provides a better pixel-wise visual

interpretation of model decisions than the deconvolution

method.

In this paper, we aim at two objectives: i) proposing a CNN

model for device-free Wi-Fi fingerprinting indoor localiza-

tion, and ii) inspired by similar work in image classifica-

tion, interpreting the CNN prediction in device-free Wi-Fi

fingerprinting indoor localization by adapting and explicitly

formulating the LRPmethod for the CNN architecture. To the

best of our knowledge, this is the first work to provide visually

perceivable evidence and plausible explanations for CNN in

this specific application. Our main results are:

1) The CNN model achieves superior precision, recall,

and F1-score performances as compared to the k-

nearest neighbor (k-NN), support vector machine

(SVM), and the fully-connected feedforward DNN

model in two real-world scenarios, and has much fewer

trainable parameters as compared to DNN.

2) CNN observes more clear and explicit location-specific

patterns, as revealed by the greater polarization in the

distribution of relevance scores (calculated by LRP),

as compared to DNN. This suggests that CNN can

focus on a smaller subset of relevant, discriminative

features, which may help explain the better perfor-

mance of CNN.

3) For both CNN and DNN, a small subset of features

with the highest relevance scores dominates the model

prediction.

The rest of the paper is organized as follows. Section II

describes the indoor localization problem and the experi-

mental settings. Section III describes the proposed CNN

model for localization. Section IV introduces the method

for interpreting CNN prediction via LRP. Section V presents

the performance and interpretation results and discussion.

Finally, Section VI concludes the paper.

II. PROBLEM DESCRIPTION AND EXPERIMENTAL

SETTINGS

We consider the fingerprinting-based device-free Wi-Fi

indoor localization problem. The problem is to locate a person

in an indoor environment as one of the prespecifiedM target

locations. A single fixed-locationWi-Fi transmitter and a sin-

gle fixed-location receiver are deployed in the indoor environ-

ment. No tracking device is attached to the target person (i.e.,

device-free). The receiver receives wireless signals from the

transmitter after reflection, diffraction, absorption, scattering,

etc. of the wireless signals off the target, and collects the

channel state information (CSI). CSI provides fine-grained

link information in the granularity of a single OFDM subcar-

rier as compared to the received signal strength (RSS) which

provides coarse-grained information of the overall received

signal power [9]. The CSI data are collected in both offline

training and online testing phases, and the fingerprinting

technique is used to locate the target person by matching the

online testing data with the offline database.

We conduct two real-world experiments at the Research

Center for Information Technology Innovation, Academia

Sinica, as described below.
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FIGURE 1. Scenario 1. (a) Floor plan. (b) Photograph.

FIGURE 2. Scenario 2. (a) Floor plan. (b) Photograph.

Scenario 1: The experimental scenario here is a con-

ference room with dimensions 5.8 × 8.6 m2, as depicted

in Fig. 1. There are M = 16 target locations, labeled by

p1, p2, . . . , p16, which are 1.2 m apart between two nearest

locations. One Zyxel NBG-419N Wi-Fi access point (AP) as

the transmitter (Tx) and one ASUS laptop with Intel Wi-Fi

Link 5300 802.11n MIMO-OFDM radios [26] as the receiver

(Rx) are placed at fixed locations with heights 88 cm and

82 cm, respectively. In the offline training phase, the training

data are collected in two consecutive days at four different

times each day (morning, noon, afternoon, and evening). 100

CSI sampleswere collected at each time; hence, 400CSI sam-

ples were collected for each location (6400 for all locations).

In the online testing phase, a similar procedure is performed

in two different times (morning and afternoon), which results

in 200 CSI samples for each location (3200 for all locations).

Each CSI sample is aW -dimensional vector, whereW = 120

as specified by the number of OFDM subcarriers (i.e., 30)

multiplied by the 2 × 2 transmit-receive antenna pairs. Each

element of the CSI sample is termed a CSI channel, or simply

channel, in this paper.

Scenario 2: The experimental scenario here is a lounge

with dimensions 5.4 × 6.6 m2, as depicted in Fig. 2. There

are M = 14 target locations, labeled by p1, p2, . . . , p14,

which are 1.2 m apart between two nearest locations. The

Wi-Fi transmitter and receiver are similarly deployed as in

Scenario 1, but at heights 76 cm and 69 cm, respectively.

In the offline training phase, the training data are collected in

two consecutive days at six different times of two hours apart

each day. 128CSI samples were collected at each time; hence,

768 CSI samples were collected for each location (10752 for

all locations). In the online testing phase, a similar procedure

is performed in two different times in the same day, which

results in 184 CSI samples for each location (2576 for all

locations).

Note that the room dimensions and the distances between

two nearest training points in both experimental scenarios are

comparable to those considered in [27]–[29]. The two sce-

narios exemplify practical indoor environments with different

room layouts and indoor objects.

III. CNN-BASED MODEL FOR LOCALIZATION

As depicted in Fig. 3, the proposed CNN model is composed

of an input layer, L = 3 convolutional layers, and an output

layer. The input layer accepts theW = 120 dimensional CSI

sample vector, denoted as x = [x1, x2, . . . , xW ]T . The first

convolutional layer (denoted by Conv-1) filters the input CSI

x with K (1)
= 32 kernels (or filters) of size F (1)

× 1 = 5× 1,

and stride S = 1. This is illustrated in Fig. 3 as 32@5 × 1

filters. The output volume of Conv-1 is of dimensionsW (1)
×

H (1), where W (1)
= (W − F (1))/S + 1 = 116 and H (1)

=

K (1)
= 32. The output of neuron i in the hth slice of Conv-1

(resulting from the hth kernel of Conv-1) is described as

a
(1)
h,i = ReLU





F (1)
−1

∑

f=0

xj × w
(1)
h,1,j,i + b

(1)
h



 , j = i+ f (1)

where w
(l)
h,d,j,i denotes the weight connecting neuron j in the

hth slice of the lth convolutional layer (denoted by Conv-l)

and neuron i in the d th slice of the previous layer (here, l = 1

and d = 1 since the previous layer is the input layer), b
(l)
h

denotes the bias of the hth kernel of Conv-l (here, l = 1), and

ReLU (·) is the nonlinear activation function.

Subsequent convolutional layer operations can be modeled

similarly. Conv-l (l = 2, . . . ,L) filters the W (l−1)
× H (l−1)

output (or featuremap) of Conv-(l−1) withK (l)
= 32 kernels

of size F (l)
× D(l), where F (l)

= 5 and D(l)
= H (l−1), and

stride S = 1. The output volume of Conv-l (l = 2, . . . ,L) is

of dimensionsW (l)
×H (l), whereW (l)

= (W (l−1)
−F (l))/S+1

andH (l)
= K (l). Consider l = 2 as an example. Conv-2 filters

theW (1)
×H (1)

= 116×32 output of Conv-1 with K (2)
= 32

kernels of size F (2)
×D(2)

= 5×32, resulting in an output of

dimensions W (2)
× H (2)

=
[

(W (1)
− F (2))/S + 1

]

× K (2)
=

112 × 32. The filter and output dimensions for Conv-2 are

illustrated in Fig. 3. Likewise, the filter and output dimen-

sions for Conv-3 can be calculated and are also illustrated

in Fig. 3. The output of neuron i in the hth slice of Conv-l

(resulting from the hth kernel of Conv-l) for l = 2, . . . ,L is

described as

a
(l)
h,i = ReLU





D(l)
∑

d=1

F (l)
−1

∑

f=0

a
(l−1)
d,j ×w

(l)
h,d,j,i+b

(l)
h



 , j = i+f .

(2)
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FIGURE 3. Architecture overview of the proposed CNN model for device-free fingerprinting indoor localization based on Wi-Fi CSI.
The model accepts CSI sample with 120 channels as its input. Each convolutional layer is performed with 32 filters, a stride of one,
and ReLU nonlinear activation. The softmax fully-connected (FC) layer produces the model output y.

After the operations of all convolutional layers, the out-

put of Conv-L is flattened into a 1D feature vector a(L) =

[a
(L)
1 , a

(L)
2 , . . . , a

(L)
K ], where K = W (L)

× H (L). In our model

with L = 3 convolutional layers, K = W (3)
× H (3)

= 108 ×

32 = 3456, as illustrated in Fig. 3. The output layer is a fully-

connected layer that accepts a(L) as its input and produces a

softmax output denoted by y = [y1, y2, . . . , yM ]. The model

prediction is location pm, where ym is the maximum value

in y.

Note that downsampling and regularization techniques

such as pooling and dropout [30] are not incorporated in the

proposed CNNmodel, since the original input CSI data are of

a relatively small dimension already, as compared to images.

In fact, it is numerically verified in our extensive simulations

that incorporating pooling layer(s) and/or dropout results in

degraded performance.

IV. METHODS FOR INTERPRETING CNN PREDICTION

Layer-wise relevance propagation (LRP) [22], [23] was

developed to quantify the contribution of the input data to a

specific output prediction. Here, we adapt LRP to the CNN

architecture. LRP first decomposes the softmax value of the

model prediction, ym, into relevance scores of the neurons

in the previous layer and backpropagates the scores toward

the input layer to obtain the relevance score of CSI channel i

in the input layer, denoted by Ri. The conservation principle

[23] constrains the summation of the relevance scores of each

layer to be equal to ym. The relevance score of neuron i of the

1D feature vector of Conv-L is given by

R
(L)
i =

a
(L)
i

(

w
(L+1)
m,i

)+

∑

j a
(L)
j

(

w
(L+1)
m,j

)+
ym, i = 1, . . . ,K (3)

where w
(L+1)
m,i is the weight connecting neuronm in the output

layer and neuron i of the 1D feature vector of Conv-L, and

(x)+ = max(0, x). By backward calculations, the relevance

scores of neuron i in the d th slice of Conv-l (l = 1, 2, . . . ,L−

1), and of CSI channel i in the input layer, are given

respectively by

R
(l)
d,i =

∑

h

∑

k

a
(l)
d,i

(

w
(l+1)
h,d,k,i

)+

∑D(l)

d=1

∑F (l+1)−1
f=0 a

(l)
d,j

(

w
(l+1)
h,d,j,i

)+
R
(l+1)
h,k ,

j = i+ f , (4)

Ri =

∑

h

∑

k

xi

(

w
(1)
h,1,k,i

)+

∑F (1)−1
f=0 xj

(

w
(1)
h,1,j,i

)+
R
(1)
h,k , j = i+ f . (5)

Note that when l = L − 1, R
(L)
h,k in the right-hand-side of (4)

is equal to R
(L)
i in (3) with i = (h − 1)W (L)

+ k , by index

mapping from 2D to 1D. Finally, Ri in (5), which is always

positive-valued, is normalized to the interval [0, 1], i.e.,

R′

i =
Ri

maxj=1,...,W Rj
. (6)

Values of R′

i close to one suggest that CSI channel i provides

positive evidence supporting themodel prediction, and values

of R′

i close to zero suggest that CSI channel i provides neg-

ligible evidence for the model prediction. The computational

flow of LRP is illustrated in Fig. 4.

To examine how each CSI channel contributes to the model

prediction, we propose the channel nullification procedure.

The procedure is to sequentially nullify each CSI channel in

the ascending or descending order of the relevance scores of

the CSI channels. ‘Descending’ means CSI channels with the

highest relevance scores are nullified first, and ‘ascending’

means CSI channels with the lowest relevance scores are

nullified first. When a channel is nullified, the value of that

channel is set to zero.

V. RESULTS AND DISCUSSION

The performance of the CNN and the interpretation of its

learning results are presented in this section. Statistical per-

formance measures of precision, recall, and F1-score are

considered. The precision and recall quantify the percentages

of correct classification for each predicted class and true

class, respectively, and the F1-score is the harmonic mean of

precision and recall.
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TABLE 1. Scenario 1: Location-Wise and Average Statistical Performance of k-NN, SVM, DNN, and CNN.

TABLE 2. Scenario 2: Location-Wise and average statistical performance of k-NN, SVM, DNN, and CNN.

A. PERFORMANCE

The proposed CNN achieves superior performance as

compared to k-NN, SVM, and DNN, and has fewer train-

able parameters as compared to DNN. A proper value of

k , i.e., k = 5, is adopted for the k-NN, as other typical

values all produce similar performance. Radial basis function

(RBF) kernel and the one-against-one approach for multi-

class classification [31] is adopted for the SVM model. The

DNN model is a fully-connected feedforward network (aka

the multilayer perceptron) with three fully-connected hidden

layers (denoted by FC-1, FC-2, and FC-3) of 300, 280, and

260 neurons, respectively, and one fully-connected output

layer (denoted by FC-output). The numbers of neurons in

the hidden layers of DNN are determined by cross-validating

the model performance with different configurations, and

sufficient numbers of neurons are chosen. Further increas-

ing the numbers of neurons leads to saturating performance

according to our extensive experiments. Both CNN and DNN

models are trained with the same dataset as described in

Section II, by using TensorFlow with the Adam optimizer

[32] and cross-entropy loss function.

Table 1 and Table 2 present the statistical performance

of the proposed CNN in comparison with k-NN, SVM, and

DNN in Scenario 1 and Scenario 2, respectively. As can

be seen, CNN generally yields higher precision, recall, and

F1-score performances, both location-wise and on average,

in both scenarios. Also, all schemes achieve deteriorated per-

formance in Scenario 2, because, as will be visually presented

later, the CSI data are more noisy due to more obstructions in

the indoor environment in Scenario 2.

Table 3 summarizes the number of trainable parameters

(weights and biases) for CNN and DNN. The fully-connected

layer structure in DNN results in a large number of weights

FIGURE 4. The computational flow of LRP. The prediction is obtained by
forward propagating CSI sample vector x. The relevance scores in the
input layer are obtained by decomposing the softmax value of the
prediction into relevance scores of the neurons in the previous layer and
then backpropagating the scores toward the input, which are visualized
as a heatmap at the input.

to train. In contrast, the convolutional layers in CNN employ

shared weights of kernels, thereby dramatically reducing the

number of parameters to train. For example, the input to

Conv-1 of CNN has F (1)
× K (1)

= 5 × 32 = 160 weights

and K (1)
= 32 biases, whereas the input to FC-1 of DNN has

120×300 = 36000 weights and 300 biases. Overall, the total

number of trainable parameters for CNN is only 33% of that

of DNN.

B. ANALYSIS OF MODEL PREDICTION

CNN observes more explicit location-specific patterns,

as revealed by greater polarization in the distribution of

relevance scores, as compared to DNN. A model makes
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TABLE 3. The number of trainable parameters (weights and biases) of
CNN and DNN.

FIGURE 5. Scenario 1: Heatmaps of relevance scores R′

i
, i = 1, . . . , 120

superimposed on all testing samples predicted as (a) location p14 for
CNN and (b) location p14 for DNN. The location corresponding to the best
precision performance for each model (1.00 for both CNN and DNN) is
chosen.

classification decision based on the patterns it learned about

each location. The patterns are visual representations of how

each location looks like in view of a model. Intuitively, more

clear and explicit location-specific patterns will lead to better

classification performance. The results for the two scenarios

are discussed as follows. For Scenario 1, Fig. 5 shows the

heatmaps of relevance scores superimposed on all testing

samples predicted as location p14 for CNN and DNN, and

Fig. 6 shows the heatmaps of relevance scores superimposed

on all testing samples predicted as location p4 for CNN and p3
for DNN. The locations corresponding to the best and worst

precision performance for each model are shown in Fig. 5

and Fig. 6, respectively. For Scenario 2, Fig. 7 and Fig. 8 plot

the results, where the locations corresponding to the best and

worst precision performance for each model are shown here

as well. The relevance scores for DNN are calculated using a

similar technique as described in Section IV.

It is observed from Figs. 5–8 that, for the same loca-

tion, CNN and DNN yield different distributions of rele-

vance scores. Specifically, CNN yields more concentrated,

polarized-valued relevance scores over a smaller number of

FIGURE 6. Scenario 1: Heatmaps of relevance scores R′

i
, i = 1, . . . , 120

superimposed on all testing samples predicted as (a) location p4 for CNN
and (b) location p3 for DNN. The location corresponding to the worst
precision performance for each model (0.69 for CNN and 0.43 for DNN) is
chosen.

FIGURE 7. Scenario 2: Heatmaps of relevance scores R′

i
, i = 1, . . . , 120

superimposed on all testing samples predicted as (a) location p13 for
CNN and (b) location p13 for DNN. The location corresponding to the best
precision performance for each model (1.00 for both CNN and DNN) is
chosen.

CSI channels, while DNN yields more moderate-valued rel-

evance scores spread over a larger number of CSI channels.

VOLUME 7, 2019 172161
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TABLE 4. Scenario 1: Coefficient of variation of relevance scores, across CSI channels and averaged over all CSI samples (CV (channels)), and across CSI
samples and averaged over all CSI channels (CV (samples)).

TABLE 5. Scenario 2: Coefficient of variation of relevance scores, across CSI channels and averaged over all CSI samples (CV (channels)), and across CSI
samples and averaged over all CSI channels (CV (samples)).

FIGURE 8. Scenario 2: Heatmaps of relevance scores R′

i
, i = 1, . . . , 120

superimposed on all testing samples predicted as (a) location p4 for CNN
and (b) location p2 for DNN. The location corresponding to the worst
precision performance for each model (0.23 for CNN and 0.30 for DNN) is
chosen.

This suggests that CNN can focus on a small subset of rel-

evant, discriminative features for better classification perfor-

mance (analogous to identifying clearer outlines of an object

in image object classification). Quantitatively, by calculating

the coefficient of variation (CV), defined as the ratio of the

standard deviation to themean of relevance scores, across CSI

channels and averaged over all CSI samples, as summarized

in Table 4 and Table 5 as CV (channels), it is seen that CNN

yields a higher CV across CSI channels for the locations

plotted in Figs. 5–8, as well as all other locations, as compared

to DNN.

Consistent patterns across CSI samples contribute to

high precision performance. Comparing Fig. 5 and Fig. 6

FIGURE 9. Scenario 1: Change in the recall performance after progressive
channel nullification, in the ascending or descending order of the
relevance scores, on the correctly classified CSI samples of location p1,
for (a) CNN and (b) DNN. CNN outperforms DNN by the largest margin in
the recall performance for this location (0.95 for CNN and 0.41 for DNN).

for Scenario 1, and comparing Fig. 7 and Fig. 8 for Scenario 2,

it is observed that the heatmap colors of the testing CSI sam-

ples exhibit higher variation and less consistency at the same

CSI channels when the CNN or DNNmodel performs poorly

(as in Fig. 6 and Fig. 8) than when the CNN or DNN model

performs well (as in Fig. 5 and Fig. 7) on respective locations.

Specifically, for Scenario 1, visual inspection of Fig. 6 reveals

that, among all the testing CSI samples predicted as location

p4 in CNN, some CSI samples exhibit darker red (relevance

scores close to one), while other CSI samples exhibit lighter

red (relevance scores close to zero), at the same CSI chan-

nels 30–35. A similar phenomenon of inconsistent relevance

scores across CSI samples is observed for CSI channels

172162 VOLUME 7, 2019
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FIGURE 10. Scenario 1: Change in the recall performance after
progressive channel nullification, in the ascending or descending order of
the relevance scores, on the correctly classified CSI samples of location
p6, for (a) CNN and (b) DNN. Both CNN and DNN achieve the highest
recall performance for this location (1.00 for both CNN and DNN).

60–70 and 90–100 for location p3 for DNN. For Scenario 2,

a similar phenomenon of inconsistent relevance scores across

CSI samples is seen, perhaps even more conspicuously, as the

waveforms of CSI samples collectively appear ‘‘thicker’’

due to the more noisy indoor environment. Quantitatively,

by calculating the CV across CSI samples and averaged over

all CSI channels, as summarized in Table 4 and Table 5 as

CV (samples), it is seen that both CNN and DNN models

yield smaller CV across CSI samples for high-performing

locations than for low-performing locations. Specifically, for

the locations plotted in Figs. 5–8, the numbers are: 0.18 for

location p14 and 0.55 for location p4 for CNN, and 0.23

for location p14 and 0.45 for location p3 for DNN (Scenario

1); 0.41 for location p13 and 0.84 for location p4 for CNN,

and 0.19 for location p13 and 0.49 for location p2 for DNN

(Scenario 2). In general, if the patterns are more consistent

across CSI samples, which correspond to lower CV across

CSI samples, the precision performance is better for a model.

This is because if a model learns less clear and explicit pattern

about a location, it results in higher misclassification for

ambiguous samples and thus lower precision performance.

A small subset of features with the highest relevance

scores dominates the model prediction. Fig. 9 shows the

effect of progressive channel nullification on CNN and DNN

classification for location p1 in Scenario 1. Location p1 is

where CNN outperforms DNN by the largest margin in the

recall performance (0.95 for CNN and 0.41 for DNN). It is

FIGURE 11. Scenario 2: Change in the recall performance after
progressive channel nullification, in the ascending or descending order of
the relevance scores, on the correctly classified CSI samples of location
p3, for (a) CNN and (b) DNN. Both CNN and DNN achieve the
highest or second-highest recall performance for this location (0.85
(second-highest) for CNN and 0.89 (highest) for DNN).

observed that, by performing progressive channel nullifica-

tion on the CSI samples of location p1 that are correctly

classified, the percentage of correct classification (i.e., recall)

decreases. Furthermore, nullifying first the channels with the

highest relevance scores (‘descending’) yields a more rapid

decrease than nullifying first the channels with the lowest

relevance scores (‘ascending’). This shows that a small num-

ber of CSI channels with the highest relevance scores are

dominant features for model prediction. Similar results are

observed for location p6 in Scenario 1 in Fig. 10, location p3
in Scenario 2 in Fig. 11, as well as other locations, in our

extensive simulations.

The ‘ascending’ curves exhibit more complicated trends.

This can be examined and explained by re-computing the

relevance scores after channel nullification progressions.

We first examine CNN. For location p1 in Scenario 1,

as shown in Figs. 12(a)–12(c), after 23 runs of ‘ascend-

ing’ channel nullification, dominant features for predicting

location p1 fade (e.g., channels 40–60) and new dominant

features not part of the original pattern of location p1 appear

(e.g., channels 5–10). This change of pattern results in the

increased model misclassification to other locations and thus

the decreased recall (0.58). As the nullification procedure

continues, after 34 runs, the influence of channels 5–10 atten-

uates and the influence of channels 40–60 enhances, thus

the increased recall (0.94). For location p6 in Scenario 1,

as shown in Figs. 13(a)–13(c), after 80 runs of ‘ascending’
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FIGURE 12. Scenario 1: Heatmaps of relevance scores R′

i
, i = 1, . . . , 120 superimposed on the correctly classified CSI samples of location p1

after 0, 23, and 34 runs of ‘ascending’ channel nullification, for (a)–(c) CNN and (d)–(f) DNN. (cf. Fig. 9.)

FIGURE 13. Scenario 1: Heatmaps of relevance scores R′

i
, i = 1, . . . , 120 superimposed on the correctly classified CSI samples of location p6

after 0, 80, and 95 runs of ‘ascending’ channel nullification, for (a)–(c) CNN and (d)–(f) DNN. (cf. Fig. 10.)

channel nullification, dominant features for predicting loca-

tion p6 generally remain and no huge dominant features not

part of the original pattern of location p6 appear, and therefore

the recall remains almost unchanged (0.98). As the nullifica-

tion procedure continues, after 95 runs, there is a heightened

distortion in CSI, resulting in the decreased recall (0.29).

For location p3 in Scenario 2, as shown in Figs. 14(a)–14(c),

after 30 runs of ‘ascending’ channel nullification, dominant

features for predicting location p3 fade (e.g., channels 80–

90) and new dominant features not part of the original pattern

of location p3 appear (e.g., channels 100–110). This change

of pattern results in the increased model misclassification to
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FIGURE 14. Scenario 2: Heatmaps of relevance scores R′

i
, i = 1, . . . , 120 superimposed on the correctly classified CSI samples of location p3

after 0, 30, and 116 runs of ‘ascending’ channel nullification, for (a)–(c) CNN and (d)–(f) DNN. (cf. Fig. 11.)

other locations and thus the decreased recall (0.66). As the

nullification procedure continues, after 116 runs, the height-

ened distortion in CSI leads to the decreased recall (0.27).

Next, we examine DNN. For location p1 in Scenario 1,

as shown in Figs. 12(d)–12(f),, ‘ascending’ channel nullifica-

tion generally results in the attenuation of the original domi-

nant features for predicting the location, and not the genera-

tion of new dominant features not part of the original pattern

of the location, thus exhibiting a generally decreasing trend

in the recall in Fig. 9(b). Different degrees of attenuation,

as observed for location p6 in Scenario 1 in Figs. 13(d)–13(f)

and location p3 in Scenario 2 in Figs. 14(d)–14(f), may lead

to different trends and rates of decreasing in the recall.

In general, classification results depend on the interplay of

various competing factors related to how nullifying chan-

nels erases or enhances the evidence for predicting different

classes.

VI. CONCLUSION

In this paper, we have modeled the fingerprinting-based

indoor localization problem as a classification problem and

approached it using a CNN classifier. We showed that the

CNN classifier achieves better statistical performance as

compared to the k-NN, SVM, and DNN, and has fewer

trainable parameters as compared to the DNN. Furthermore,

we provided interpretations of CNN and DNN learning over

wireless datasets, which cannot be well interpreted by human

perceptions.We developed an interpretation framework based

on the LRP technique and the CSI channel nullification

procedure. The main observations are: 1) clear and explicit

location-specific patterns, as learned by the CNN or DNN

model, contribute to high classification performance; 2) con-

sistent location-specific patterns across CSI samples also

contribute to high classification performance; and 3) a small

subset of features with the highest relevance scores dominates

the model prediction.
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