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Ecological diversity indices are frequently applied to molecular profiling methods, such as terminal restric-
tion fragment length polymorphism (T-RFLP), in order to compare diversity among microbial communities.
We performed simulations to determine whether diversity indices calculated from T-RFLP profiles could
reflect the true diversity of the underlying communities despite potential analytical artifacts. These include
multiple taxa generating the same terminal restriction fragment (TRF) and rare TRFs being excluded by a
relative abundance (fluorescence) threshold. True community diversity was simulated using the lognormal
species abundance distribution. Simulated T-RFLP profiles were generated by assigning each species a TRF
size based on an empirical or modeled TRF size distribution. With a typical threshold (1%), the only
consistently useful relationship was between Smith and Wilson evenness applied to T-RFLP data (TRF-Evar)
and true Shannon diversity (H�), with correlations between 0.71 and 0.81. TRF-H� and true H� were well
correlated in the simulations using the lowest number of species, but this correlation declined substantially in
simulations using greater numbers of species, to the point where TRF-H� cannot be considered a useful
statistic. The relationships between TRF diversity indices and true indices were sensitive to the relative
abundance threshold, with greatly improved correlations observed using a 0.1% threshold, which was inves-
tigated for comparative purposes but is not possible to consistently achieve with current technology. In general,
the use of diversity indices on T-RFLP data provides inaccurate estimates of true diversity in microbial
communities (with the possible exception of TRF-Evar). We suggest that, where significant differences in
T-RFLP diversity indices were found in previous work, these should be reinterpreted as a reflection of
differences in community composition rather than a true difference in community diversity.

Microbial ecologists deal with arguably the most diverse
biological communities on Earth (3, 7) and with organisms
which are among the most difficult to study in their natural
environments. Molecular profiling methods based on the het-
erogeneity of a specific gene resulting in differences in electro-
phoretic mobility are popular approaches for characterizing
microbial community composition. Diversity indices originally
adopted for macroorganisms are frequently used on microbial
community profile data (12, 23), including data generated by
terminal restriction fragment length polymorphism (T-RFLP)
(see reference 24 for details on T-RFLP). This is appealing
because diversity is at the center of a large body of ecological
theory (27) and is a concept that the general public appreci-
ates. Univariate diversity indices (e.g., Table 1) may also be an
elegant summary of a complex community.

Despite their use in microbial ecology, the application of
diversity indices to T-RFLP data has not been analytically
validated, and several aspects common to all electrophoresis-
based community profiling methods should be considered be-
fore this practice is accepted. For example, molecular profiling

methods normally characterize only “dominant” organisms
(e.g., �1% of the community) due to detection limits that arise
whenever many markers are quantified simultaneously. Hence,
rare species can never be detected, but these species often
make up the vast majority of the diversity in microbial com-
munities (13, 33). In addition, terminal restriction fragments
(TRFs) of the same size can be generated from multiple taxa,
which can be disparately related (1, 5, 8). The diversity of even
those dominant taxa that are detected will therefore be under-
estimated.

Given the aforementioned properties of microbial commu-
nity profiles, what can comparison of diversity indices applied
to them tell us about the underlying diversity of the commu-
nities? Here, we make use of database information to answer
this question for simulated communities with various levels of
diversity. We examine T-RFLP of bacterial ribosomal genes
because it is a popular, high-throughput method which we
hope will not be abused, and databases and bioinformatics
tools are available to support our simulations. The utilities of
several diversity indices, including species richness, evenness,
and integrated diversity indices, are evaluated.

MATERIALS AND METHODS

The simulations required assumptions about two distributions: a species abun-
dance distribution, which determines the “true” diversity of the community in
terms of the number of species present and their relative abundances, and a TRF
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size distribution, which describes how the sizes of TRFs vary among species (Fig.
1). The simulations were performed by sampling a TRF size distribution to
determine the T-RFLP profile for a given species abundance distribution. Spe-
cies within the bacteria are difficult to define, and we use the term here to be
consistent with the literature on diversity indices.

Species abundance distributions. Community species abundance distributions
were simulated using the lognormal distribution, which has previously been
applied to soil microbial communities (3, 6, 13). Equations defining the lognor-
mal distribution were obtained from Dunbar et al. (6). The distribution is defined
by the following equation:

TABLE 1. Indices used to quantify the diversity of simulated bacterial communities and their associated community profilesa

Index Formula

Richness (S)............................................................................................................................................S

Shannon index (H�) ...............................................................................................................................H� � �
i � 1

S

pi ln�pi�

Shannon effective no. of species (eH�).................................................................................................eH� � exp�H��

Simpson index (1/D)..............................................................................................................................1/D � 1/�
i � 1

S

pi
2

Berger-Parker index (1/d).....................................................................................................................1/d � 1/max�pi�

Shannon evenness (J�)...........................................................................................................................J� �
H�

ln�S�

Simpson evenness (E1/D).......................................................................................................................E1/D �
1/D
S

Smith and Wilson evenness (Evar).......................................................................................................Evar � 1 �
2
�

arctan��
i � 1

S �ln�pi� � �
j � 1

S

ln�pj�/S�2�S�
a S is the number of species in the community or the number of biomarkers present; pi is the relative abundance of species or biomarker i. For further information,

see Jost (21), Magurran (29), and Smith and Wilson (37).

FIG. 1. Illustration of how the species abundance distribution and TRF distribution interact to form a simulated T-RFLP profile. Illustrated
steps include calculating relative abundances in a lognormal species abundance distribution based on systematically iterated distribution param-
eters (1), defining a TRF size probability distribution (one of the four empirical restriction enzyme databases was used for OTU sampling and
sequence sampling simulations, whereas a new TRF size distribution was generated for each iteration in parametric sampling simulations) (2),
randomly assigning each species in the simulated community to a TRF size according to the TRF size probability distribution (3), summing signals
from TRFs and applying a relative abundance (fluorescence) threshold and upper and lower fragment size cutoffs (4), and comparing diversity
statistics calculated on the underlying community (species abundance distribution) and the simulated T-RFLP profile by calculating correlation
coefficients and plotting data density graphs (5).
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S�R� �
ST a

��
exp��a2R2�

where R is the log2 species abundance octave, S(R) is the number of species in
octave R, ST is the total number of species in the community, and a is the
dispersion constant which incorporates the variance of the distribution [a �
(0.5/	2)0.5]. The abundance of each species in octave R(NR) equals N02R. The
focus of our simulations was relative abundance, so the abundance of each
species was found relative to N0, and then the total arbitrarily scaled population
size of the community (from N�Rmax to NRmax) was determined so that relative
abundances could be calculated.

The simulations consisted of systematically varying initial parameters which
determined the diversity and shape of the distribution, including a, ST, and
S(Rmax). The parameter S(Rmax) is the number of species in the octave with the
most abundant species. The parameter a was varied from 0.15 to 0.3 by intervals
of 0.05, and S(Rmax) was varied from 1 to 7 by intervals of 2. While it is often
assumed that S(Rmax) equals 1, we did not see an a priori reason to assume this
when considering species with highly diverse ecological niches, as is the case for
soil bacteria. ST was varied from 10 species to different maxima, depending on
the analysis (Table 2), by intervals of 10 species. For a given set of these
parameters, S(0) was calculated as ST 
 a/�0.5, and then Rmax was determined
iteratively. The number of species in each octave, its relative abundance, and ST

for the resulting distribution were then calculated. To accommodate the fixed
value of a and the discrete lognormal distribution, values of ST and S(Rmax) were
allowed to vary slightly below and above their initial values, respectively, after the
number of octaves in the distribution was determined. Combinations of param-
eters which did not result in meaningful distributions were discarded (e.g.,
distributions with a values of 0.2, S(Rmax) values of 5, and 40 or fewer species
were not used, because at least 42 species are required for this combination of
parameters).

Empirical TRF size distributions. A database of TRF sizes was generated
using the ARB 2004 small-subunit ribosomal database (28) and the ARB tool
TRF-CUT (36). A total of 5,133 sequences which matched the primers Bac8F
and Univ1492R underwent in silico digestions using the restriction enzymes
HhaI, RsaI, MspI, and HaeIII, assuming that Bac8F was the labeled primer. A
sequence was excluded from analysis for a particular enzyme if it contained
missing nucleotide data before the first restriction site. This empirical database
was sampled in two ways. In “sequence sampling,” sequences were randomly
sampled without replacement and assigned to each species in a species abun-
dance distribution. In “OTU sampling,” sequences were first categorized into
operational taxonomic units (OTUs) by using the following approach. Genetic
distances between the primed gene fragments were calculated using the Olsen
distance correction factor recommended by ARB. Sequences were then clustered
into OTUs by using a 3% distance cutoff and the average distance method in SAS
(SAS Institute, Cary, NC). OTU sampling consisted of randomly choosing one
OTU without replacement and then randomly choosing one sequence within that
OTU to represent it. OTU sampling therefore avoided bias due to overrepre-
sentation of certain OTUs within the sequence database, whereas sequence
sampling was prone to this bias.

Simulations of community diversity and T-RFLP profiles. Simulations were
performed using a macro written in SAS Proc IML. For a given simulation, true
community diversity was varied by altering the parameters of the species abun-
dance distribution as described above, and 10 replicate T-RFLP profiles were
generated for each species abundance distribution. Replicate T-RFLP profiles
were generated by repeating the random assignment of sequences to species in
the distribution. The TRF signal in the simulated T-RFLP profile (representing
height or area) was assumed to be proportional to the relative abundance of the

species. TRF signals were pooled when two species had the same TRF size in
base pairs. TRFs smaller than 50 bp and greater than 600 bp were deleted, and
TRFs were expressed as relative abundances of the total signal detected in the
T-RFLP profile. TRFs below a threshold (0.1, 1, or 4% of the total profile signal)
were also deleted, and relative abundances of remaining TRFs were recalculated.
Diversity statistics (Table 1) were calculated on both the T-RFLP profile (TRF
indices) and the species abundance distribution that it was derived from (true
indices).

The utilities of TRF indices were assessed by calculating their correlation
coefficients with true indices. However, testing the statistical significance of the
correlation coefficients is not appropriate, because the very large number of data
points makes all correlations significant, even those very close to zero and
obviously not useful as an analytical tool. Therefore, we used graphical displays
of the data cloud (data density plots) to further interpret correlation coefficients.
These were constructed by plotting the mean values and percentile ranges of a
true index over each 5-percentile interval of a TRF index.

Theoretical TRF size distributions and simulations. “Parametric sampling”
consisted of using mathematical approximations of TRF size distributions, al-
lowing the total number of species in abundance distributions to be increased
beyond the number of empirical sequences available in the database. Candidate
models for the general form of the parametric TRF size distribution were
evaluated for their abilities to fit the HhaI, RsaI, MspI, and HaeIII TRF size
distributions. Models were initially screened by one of two methods. The first
involved visually comparing empirical TRF frequency plots arranged by size (bp)
to plots generated using combinations of normal and uniform probability distri-
butions. The second screening method consisted of fitting nonlinear equations
supplied with the software GOSA (Bio-Log, Ramonville, France) (e.g., expo-
nential decay, two-phase exponential decay, lognormal, normal, power, Pareto,
and polynomial, etc.) to empirical TRF frequencies arranged as rank abundance
data. We were modeling TRF size distributions for the purpose of evaluating
TRF diversity indices by simulation, so our main criterion was the ability of the
models to generate correlations similar to those obtained in empirical simula-
tions when performed over the same range of ST. After the initial screen,
simulations were performed to 1,200 and 4,000 species by using selected models,
and correlations were compared to results from OTU sampling and sequence
sampling, respectively. Simulations were performed as described above, except
that assignment of TRF size to each species was according to a probability
distribution defined by the model in question (the parametric TRF size distri-
bution) rather than an empirical TRF size distribution. Also, variability between
empirical TRF size distributions was incorporated into the simulations by cre-
ating a new parametric TRF size distribution for each iteration within a simu-
lation. This was done by allowing random variability in model parameters based
on the range of parameter values obtained during fitting of the model to the four
empirical TRF size distributions. Correlation matrices obtained using different
parametric TRF size distribution models were compared to OTU sampling and
sequence sampling correlation matrices by conducting Mantel tests and by cal-
culating the mean absolute deviation between correlation matrices.

Our goal was to simulate communities with up to 10,000 species. Through the
above-described process, we chose to use the following model in further simu-
lations: an assemblage of six normal curves and one uniform random distribu-
tion. Each normal curve had a randomly generated probability (PO) that a
species would have a TRF size derived from that curve. PO values for all the
normal curves summed to 90%, while the underlying random-uniform-distribu-
tion PO was 10%. Each normal curve was defined by a randomly generated mean
(25 to 650 bp) and standard deviation (SD; 2 to 20 bp). The uniform random
distribution ranged from 1 to 1,400 bp. Parametric TRF size distributions were
sampled by randomly assigning each species in an abundance distribution to one
of the six normal curves or the uniform distribution (according to their PO

values) and then randomly assigning a specific TRF size within the assigned
curve.

RESULTS

OTU sampling. OTU sampling was conducted using species
abundance distributions with 10 to 1,200 species for most re-
striction enzymes (Table 2). Table 3 shows correlation results
for a 1% threshold (the most commonly used threshold in the
literature) for some of the indices tested. The highest correla-
tion between a true index and its corresponding TRF index was
between H� and TRF-H� (0.71). However, TRF-Evar had the
highest correlations with true indices overall, with the correla-

TABLE 2. Database and simulation information for restriction
enzymes used to create empirical TRF size distributions

Enzyme

No. in database Maximum no. of speciesa for:

OTUs Sequences OTU sampling Sequence
sampling

HaeIII 1,552 4,836 1,200 4,000
HhaI 1,512 4,679 1,200 4,000
MspI 1,532 4,724 1,200 4,000
RsaI 1,118 3,759 900 3,000

a Maximum number of species simulated in community abundance distribu-
tions.
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tion between H� and TRF-Evar the highest (0.81). Data density
plots (Fig. 2A and B) show the extent to which TRF-H� and
TRF-Evar may be useful over this range of abundance distri-
butions. Compared to the data in Fig. 2A, the decreased slope
and the smaller range of true H� for each category in Fig. 2B
show the greater resolution that TRF-Evar has in reflecting true
H�. This is particularly true when H� is greater than 4.5, which
is the case for approximately half the data. Species richness (S)
and the evenness indices Evar and E1/D are not predicted well
by any TRF index (r � 0.4). This is illustrated for the relation-
ship between S and TRF-S in Fig. 2C. Other indices tested (J�,
1/D, 1/d, and eH�) were moderately well correlated with TRF
indices (r � 0.73).

When a 4% threshold was used, the correlations between
most true and TRF indices declined substantially (data not
shown), even for those TRF indices with the highest correla-
tions with true indices (Table 4). However, the relationship
between TRF-Evar and H� may still be useful, with a correla-
tion coefficient of 0.66 (SD � 0.03). This was the highest
correlation observed between true and TRF indices when a
threshold of 4% was used. The correlation between true H�
and TRF-H� dropped to �0.54 (SD � 0.03).

With a 0.1% threshold, true indices were generally well
correlated with their corresponding TRF indices (see examples
in Table 4).

Sequence sampling. When species richness was extended to
4,000 species by using sequence sampling (Table 2) and a 1%
peak threshold, almost all correlations between true and TRF
indices declined compared to those described above for simu-
lations using up to 1,200 species and OTU sampling (data not
shown). The highest correlation remained between H� and
TRF-Evar, which declined from 0.81 to 0.71 (SD � 0.03) (Table
4), whereas the correlation between H� and TRF-H� declined
from 0.71 to 0.51 (SD � 0.08). Differences between results for
sequence sampling and OTU sampling for 4% or 0.1% thresh-
olds were similar to the differences described for the 1%
threshold. Correlations remained basically the same or de-
clined slightly (data not shown).

Parametric sampling for complex communities. A variety of
parametric TRF size distributions were compared to the four
empirical size distributions obtained from TRF-CUT. The
comparisons were based on shapes of the size distributions and
on how well correlations between true and TRF indices ob-

tained with communities of up to 1,200 or 4,000 species
matched results obtained using empirical TRF size distribu-
tions over the same range of ST. According to both Mantel
tests and the mean absolute deviations, assemblages of six

FIG. 2. Data density plots for OTU sampling simulations of com-
munities with up to 1,200 species, using a relative abundance threshold
of 1% and the HhaI TRF distribution. These plots summarize a data
cloud. Lines can be interpreted as contour lines of data point density
around a “peak” showing the central relationship between the two
variables. Overlapping percentile ranges for two values of the TRF
index indicate the potential for the true indices to be the same for the
two communities. Therefore, the slope of the central relationship, as
well as the width of the percentile ranges, is important. The TRF
diversity index data were broken up into five percentile groups. The
mean value for the TRF index in each group was plotted against the
following true community index values: mean (diamond), 25th and
75th percentiles (bold line), 10th and 90th percentiles (thin line), and
2.5th and 97.5th percentiles (dashed line). In panels A and B, n was 940
for each group. In panel C, n was 638 to 1,998 due to TRF-S ties.

TABLE 3. Representative correlation coefficients from OTU sampling
simulations of communities with up to 1,200 species, using a TRF

relative abundance threshold of 1%a

Index
Avg (SD) for indicated true index

S H� 1/D J�

TRF-S 0.15 (0.04) 0.58 (0.06) 0.45 (0.07) 0.54 (0.04)
TRF-H� 0.23 (0.03) 0.71 (0.05) 0.56 (0.06) 0.67 (0.03)
TRF-eH� 0.21 (0.04) 0.67 (0.06) 0.57 (0.08) 0.63 (0.04)
TRF-1/D 0.22 (0.04) 0.68 (0.06) 0.61 (0.09) 0.64 (0.05)
TRF-1/d 0.16 (0.05) 0.55 (0.09) 0.52 (0.13) 0.56 (0.07)
TRF-J� 0.26 (0.02) 0.72 (0.04) 0.59 (0.05) 0.70 (0.03)
TRF-E1/D 0.24 (0.04) 0.66 (0.07) 0.64 (0.10) 0.66 (0.06)
TRF-Evar 0.36 (0.02) 0.81 (0.04) 0.72 (0.04) 0.71 (0.03)

a The highest coefficients for each true index are shown in bold. Values are
means (standard deviations) of results for four restriction enzymes.
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normal curves plus an underlying random uniform distribution
were the most similar to results obtained using the empirical
distributions (Table 5). This distribution performed better by
these criteria than a two-phase exponential-decay model,
which had the best fit of built-in nonlinear equations according
to analysis with the software GOSA. When the simulations
were limited to 1,200 species (1% threshold), the correlation of
H� and TRF-H� declined to 0.64 for the parametric distribu-
tion, whereas the correlation of H� and TRF-Evar was 0.82;

these values were the closest to those obtained by OTU sam-
pling for all models tested.

When species abundance distributions were extended up to
10,000 species and a threshold of 1% was used, the correlation
between H� and TRF-Evar remained high (0.73), whereas the
correlation between H� and TRF-H� dropped to 0.15 (Fig. 3).
Other TRF evenness indices also correlated well with H� and
J�, but the TRF species richness and diversity indices did not
correlate well with any true indices (Table 6). The results were

TABLE 4. TRF indices with the highest correlation with select true indicesa

Threshold
(%)

TRF size
distribution group

Correlation with indicated true index

S H� 1/D J�

1 OTU 0.36 (TRF-Evar) 0.81 (TRF-Evar) 0.72 (TRF-Evar) 0.71 (TRF-Evar)
Sequence 0.30 (TRF-Evar) 0.71 (TRF-Evar) 0.51 (TRF-Evar) 0.63 (TRF-Evar)
Parametric 0.30 (TRF-Evar) 0.73 (TRF-Evar) 0.57 (TRF-E1/D) 0.69 (TRF-E1/D)

4 OTU 0.23 (TRF-E1/D)b 0.66 (TRF-Evar) 0.55 (TRF-E1/D) 0.60 (TRF-Evar)
Sequence 0.24 (TRF-E1/D) 0.60 (TRF-E1/D) 0.44 (TRF-E1/D) 0.56 (TRF-E1/D)
Parametric 0.15 (TRF-E1/D)b 0.56 (TRF-E1/D)b 0.33 (TRF-E1/D) 0.54 (TRF-E1/D)

0.1 OTU 0.68 (TRF-S) 0.97 (TRF-H�) 0.92 (TRF-1/D) 0.80 (TRF-J�)
Sequence 0.59 (TRF-S) 0.96 (TRF-S) 0.83 (TRF-S) 0.73 (TRF-J�)
Parametric 0.37 (TRF-S) 0.76 (TRF-H�) 0.65 (TRF-1/d) 0.68 (TRF-J�)

a Values show the best correlations from among the eight TRF indices evaluated for each of the true indices. OTU sampling included communities with up to 1,200
species, sequence sampling up to 4,000 species, and parametric sampling up to 10,000 species. Values shown for OTU sampling and sequence sampling are averages
from analyses of four restriction enzymes (standard deviations were less than or equal to 0.04). Values shown for parametric sampling incorporate variability due to
TRF size distribution by using a different randomly generated size distribution for each iteration.

b TRF-E1/D and TRF-Evar correlations round to the same two-decimal number.

TABLE 5. Evaluation of different models in creating correlation
matrices similar to average empirical matricesa

Distribution type

Value for indicated threshold and group

1% 4% 0.1%

OTU Sequence OTU OTU

Uniform plus six normal
curvesb

0.98 0.92 �0.99 0.99

Two-phase exponential
decayc

0.91 0.68 �0.99 0.99

Powerd 0.80 0.70 ND ND
Uniforme 0.65 0.54 ND ND
Contrastf ** ** ** *

a Values shown are Mantel statistics which reflect the congruence of (i) the
average correlation matrix created using empirical TRF size distributions with
(ii) the correlation matrix created using the model shown, performed over the
same range in ST (1,200 for OTU sampling and 4,000 for sequence sampling).
ND, not determined.

b Distribution described in text.
c Within the analyzed size range (50 to 600 bp), TRF size distribution followed

y� a1 exp(�k1 
 x) � a2 exp(�k2 
 x) � b, where x is TRF size minus 49. Based
on fitted empirical data, a1 was allowed to vary from 0 to 14, a2 from 17 to 111,
k1 from 0.0025 to 0.03373, k2 from 0.093 to 0.7513, and b from 0.12 to 1. The
probability that a species had TRF in the analyzed size range varied between 0.2
and 0.34.

d Same as two-phase exponential-decay distribution, except that TRF size
distribution followed y � axb; a varied from 90 to 120, and b varied from �0.87
to �1.

e The species was assigned a random TRF size between 1 and 1,000 bp; the
analyzed size range remained 50 to 600 bp.

f Significance of difference between the uniform-plus-six-normal-curve and
two-phase exponential-decay distributions in terms of absolute deviations from
OTU sampling and sequence sampling correlations (two-tailed pairwise t test).
��, P � 0.01; �, P � 0.1. The mean absolute deviation was smaller for the
uniform-plus-six-normal-curve distribution for each comparison.

FIG. 3. Data density plots for parametric sampling simulations of
communities with up to 10,000 species, using a relative abundance
threshold of 1%. See the legend to Fig. 2 for explanation. n was 7,973
for each group.
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found to be essentially the same when a 4% threshold was used
(correlation between H� and TRF-Evar of 0.56) (Table 4). In
contrast, when a 0.1% threshold was used, all true indices
correlated well with their corresponding TRF indices, with the
best correlations between H� and TRF-H� (0.76) and between
J� and TRF-J� (0.68) (e.g., Table 4).

DISCUSSION

Estimates of species richness in soil bacterial communities
range from thousands to millions of species, whether based on
sequencing of ribosomal genes (3, 31) or DNA reassociation
kinetics (13, 39). Here, we asked whether differences in diver-
sity between communities can be meaningfully portrayed by
common diversity indices applied to T-RFLP profiles derived
from bacterial communities. Our results demonstrate a large
disparity between true community diversity and diversity esti-
mates derived from T-RFLP data, indicating that diversity
estimates based on T-RFLP inaccurately portray the true un-
derlying diversity of bacterial communities.

When typical peak height or area thresholds (�1%) were
used, richness and diversity indices applied to T-RFLP profiles
had limited capabilities to discriminate between levels of di-
versity in the underlying community. The number of bands in
T-RFLP profiles (TRF-S) did a very poor job at predicting the
number of taxa in the community (S) in all simulations. Loisel
et al. (26) found that the number of bands did not correspond
with S for other community profiling methods (single-stranded
conformation polymorphism and denaturing gradient electro-
phoresis profiles) and proposed that the Curtis estimator could
be used to evaluate the diversity of the underlying community.
The Curtis estimator is based on the reciprocal of the Berger-
Parker index (1/d), which we did not find to be particularly
useful here, as demonstrated by low correlations between
TRF-1/d and true community indices.

H� is a well-known and widely used diversity index integrat-
ing both species richness and evenness, although interpretation
of the index itself is not without some conceptual difficulties
(19, 21). TRF-H� did correlate well with the true community
value of H� in the simulations using the lowest number of
species (10 to 1,200). However, this correlation declined sub-
stantially in simulations using greater numbers of species, to
the point where TRF-H� cannot be considered a useful metric

of diversity. We were surprised to find that one community
evenness index applied to T-RFLP profiles, TRF-Evar, consis-
tently had the highest correlations with the true community
value of H� in all simulations using 1% or 4% thresholds
(correlations above 0.71 to 0.81 and 0.56 to 0.66, respectively).
The fact that different taxa can generate the same TRF (1, 8)
may in part explain why evenness of T-RFLP profiles (reflected
in TRF-Evar) is affected by true community richness as well as
true evenness (reflected in true H�). An increase in species
richness will likely increase the average number of taxa con-
tributing to each TRF, which will reduce the impact of differ-
ences in abundance and increase the evenness of the profile.
Additionally, our results may indicate that evenness within the
most abundant taxa is often affected by the overall species
richness of a community.

The factors captured in our simulations which cause
T-RFLP diversity indices to underestimate, and differ indepen-
dently from, true community diversity include (i) TRFs of the
same size generated from multiple taxa, (ii) exclusion of TRFs
if they are outside the size range reliably resolved during elec-
trophoresis, and (iii) TRFs not being detected if they fall below
a fluorescence threshold. This fluorescence threshold is trans-
lated to a relative abundance threshold by the standardization
processes that have been recommended to reduce effects of
analytical variability in overall profile strength (2, 5, 32). While
there are some similarities between the threshold and the
lognormal distribution “veil line” of Preston (34), they differ in
that the veil line is a consequence of random sampling,
whereas the threshold specifically excludes rare TRFs. Hence,
there is no reason to expect the well-known relationship be-
tween diversity and sampling effort (14) to hold for T-RFLP
profiles, if sampling effort is increased by repeating the assay
on the same DNA extract. The relationship may or may not
hold if sampling effort is increased by repeating the analysis on
replicate environmental samples, depending on the spatial
scale of the sampling relative to the spatial variability of the
community (35).

Sampling effort can also be increased by enhancing the sen-
sitivity of detection of rare TRFs. We found that an order-of-
magnitude increase in the simulated sensitivity of T-RFLP,
from a 1% threshold to 0.1%, completely alters the relation-
ships between true diversity indices and TRF indices. Evenness
indices are replaced by richness or integrated indices as the
best predictors of true S, H�, and 1/D for a 0.1% threshold. To
our knowledge, current technology cannot be used to consis-
tently differentiate peaks from background noise at this low
level, so we present the analysis for comparative purposes. This
sensitivity to fluorescence threshold highlights the importance
of choosing a common threshold to be applied uniformly
across profiles.

All diversity indices tested here, other than TRF-S, are
based on comparisons of peaks within a single profile and the
assumption that these comparisons reflect differences in rela-
tive abundances of taxa. It is worth noting that this assumption
is also tenuous due to complex interactions between taxa in
ribosomal copy number, PCR bias, and DNA extraction bias
(11). It is important to note that analysis of profiles by ordi-
nation is based on comparisons between rather than within
samples and on the more realistic assumption that biases af-
fecting taxa are the same across samples. The simulations are

TABLE 6. Representative correlation coefficients from parametric
sampling simulations of communities with up to 10,000 species,

using a TRF relative abundance threshold of 1%

Index
Value for indicated true indexa

S H� 1/D J�

TRF-S �0.07 0.02 �0.08 0.07
TRF-H� �0.01 0.15 0.01 0.19
TRF-eH� 0.00 0.19 0.06 0.23
TRF-1/D 0.05 0.30 0.16 0.33
TRF-1/d 0.11 0.40 0.31 0.42
TRF-J� 0.25 0.68 0.47 0.66
TRF-E1/D 0.27 0.71 0.57 0.69
TRF-Evar 0.30 0.73 0.53 0.66

a The highest coefficients for each true index are shown in bold. Values shown
incorporate variability due to TRF size distribution by using a different randomly
generated size distribution for each iteration.
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also conservative (in favor of diversity indices) because TRFs
were assumed to be sized with single-base-pair resolution,
which often cannot be achieved (22, 30).

While we have demonstrated that diversity indices applied to
T-RFLP profiles do not tell us much about the underlying
community diversity, empirical studies using the indices often
find significant differences between communities from different
environments. In other words, the indices do not vary ran-
domly in the field. Significant differences could, however, arise
from changes in the identities or relative abundances of the
taxa present rather than species richness and evenness. Calcu-
lation of diversity indices results in an inevitable loss of infor-
mation, as the community data are reduced to a single value.
Indeed, we are unaware of any studies in which diversity indi-
ces indicated a difference between communities and multivar-
iate methods (an ordination or cluster analysis) did not,
whereas there are numerous studies where both methods of
analysis indicated a difference between communities (9, 17, 20,
25) or where multivariate methods indicated a difference but
diversity indices did not (4, 10, 15, 16, 40). It has been sug-
gested that the greater sensitivity of multivariate methods for
detecting community differences is true even across methods
which seem optimal for each type of analysis (18).

From our analyses, we are led to conclude that T-RFLP-
based estimates of diversity provide inaccurate insights into the
actual diversity of bacterial communities, even as a compara-
tive method. We suggest that previously published work using
diversity indices applied to T-RFLP data should be reinter-
preted. For example, Fierer and Jackson (9) found that diver-
sity indices (TRF-S and TRF-H�) and community ordinations
of bacterial T-RFLP profiles were correlated with soil pH.
Based on conclusions reached here, both of these analyses
indicate that community composition responds to pH, but no
reliable statements can be made regarding the diversity (rich-
ness or evenness) of those communities. In addition, there is
little reason to apply diversity indices to T-RFLP data to detect
differences in community composition, because multivariate
methods are more sensitive and better suited for this task. If it
is necessary to measure bacterial diversity using T-RFLP, we
recommend using TRF-Evar as a measure of diversity because
it was the index that best represented the true underlying
community diversity.
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