
Practice of Epidemiology

Interpreting Incremental Value of Markers Added to Risk Prediction Models

Michael J. Pencina*, Ralph B. D’Agostino, Karol M. Pencina, A. Cecile J. W. Janssens, and

Philip Greenland

* Correspondence to Dr. Michael J. Pencina, Department of Biostatistics, Boston Unviersity, Framingham Heart Study, Harvard Clinical

Research Institute, Room 328, CrossTown, 3rd Floor, 801 Massachusetts Avenue, Boston, MA 02118 (e-mail: mpencina@bu.edu).

Initially submitted June 20, 2011; accepted for publication October 6, 2011.

The discrimination of a risk prediction model measures that model’s ability to distinguish between subjects

with and without events. The area under the receiver operating characteristic curve (AUC) is a popular measure

of discrimination. However, the AUC has recently been criticized for its insensitivity in model comparisons in

which the baseline model has performed well. Thus, 2 other measures have been proposed to capture improve-

ment in discrimination for nested models: the integrated discrimination improvement and the continuous net

reclassification improvement. In the present study, the authors use mathematical relations and numerical simula-

tions to quantify the improvement in discrimination offered by candidate markers of different strengths as

measured by their effect sizes. They demonstrate that the increase in the AUC depends on the strength of the

baseline model, which is true to a lesser degree for the integrated discrimination improvement. On the other

hand, the continuous net reclassification improvement depends only on the effect size of the candidate variable

and its correlation with other predictors. These measures are illustrated using the Framingham model for incident

atrial fibrillation. The authors conclude that the increase in the AUC, integrated discrimination improvement, and

net reclassification improvement offer complementary information and thus recommend reporting all 3 alongside

measures characterizing the performance of the final model.

area under curve; biomarkers; discrimination; risk assessment; risk factors

Abbreviations: ΔAUC, change in area under the receiver operating characteristic curve; AUC, area under the receiver operating

characteristic curve; BNP, B-type natriuretic peptide; CRP, C-reactive protein; IDI, integrated discrimination improvement; NRI,

net reclassification improvement; NRI(>0), continuous net reclassification improvement.

Editor’s note: Invited commentaries on this article
appear on pages 482 and 488, and the authors’ response
appears on page 492.

Risk prediction models have been successfully developed
in all major fields of modern medicine, including cardiovas-
cular disease, cancer, and diabetes (1–7). The performance
of said models is assessed by both their calibration and dis-
crimination (8). Calibration addresses the question of how
closely the model-based risk estimates align with the ob-
served outcomes. Discrimination focuses on a model’s

ability to distinguish between subjects who will (or did)
develop the event of interest from those who will (did) not.
“Good” prediction models can then be developed into risk
prediction rules. Such rules may classify people into 2 (e.g.,
high vs. low risk; treat vs. do not treat) or 3 (e.g., high, inter-
mediate, or low risk; treat pharmacologically, introduce life-
style intervention, or do not act) medical decision categories
based on preselected thresholds (9).

The importance and usefulness of risk prediction models
has been recognized by the medical community, and in
some cases, their use has even been incorporated into clini-
cal treatment guidelines (9). However, as new risk factors
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or markers are discovered (10–12), it has become impera-
tive to identify the ones that merit routine measurement and
incorporation into the aforementioned prediction models
and rules (13–16). Recently, an expert panel in the cardio-
vascular field presented the phases of an evaluation of
novel risk markers (14). Briefly, after the marker has been
shown to predict disease onset, it must demonstrate that it
adds incremental value to risk prediction models that
contain standard factors; additionally, it needs to show
clinical utility (it must change the predicted risk enough
to warrant a change in therapy), and it needs to be cost-
effective. In the present study, we investigated the incre-
mental value that the new markers add to prediction models
with standard factors. This is a more basic and more purely
statistical assessment that ignores the costs and utilities
while focusing on measures that do not lose information
because of reliance on risk categories. As recommended by
Hlatky et al. (14), this assessment should be followed by an
evaluation of clinical utility and a cost-effectiveness
analysis.
Because new candidate markers must be associated with

the onset of disease after controlling for risk factors already
included in the baseline model, it is necessary to assess
their incremental value for risk prediction models in terms
other than statistical significance. Furthermore, the increas-
ing availability of large databases will lead to more markers
crossing the threshold of statistical significance. Here, our
goals were 2-fold. First, we intended to assess the impact
on model discrimination exerted by the addition of candi-
date markers of various strengths. For continuous markers,
we defined their strength in terms of effect size and consid-
ered the following 3 measures of improvement in model
performance: the change in the area under the curve
(ΔAUC), the integrated discrimination improvement (IDI),
and the net reclassification improvement (NRI) (17–19)
(Web Appendix 1, available at http://aje.oxfordjournals.org/).
Second, we wanted to determine how these 3 measures were
affected by differences in the strength of the baseline model
based on standard risk factors. We accomplished this using
numerical simulations and exploiting the existing links
between these 3 measures and the concept of effect size in
the context of normally distributed variables, as shown by
Pencina et al. (20), Demler et al. (21), and Royston and
Altman (22).

CONCEPT OF EFFECT SIZE

Let X be a normally distributed predictor with means
among subjects with and without events denoted by μ1 and
μ0, respectively. Furthermore, assume a common standard
deviation among these 2 groups and denote it with σ. A
measure of effect size introduced by Cohen (23) is defined
as d = (μ1 − μ0)/σ. Its sample estimator, which uses the
pooled variance formula, is known as Hedges g (24). For
practical applications, Cohen proposed ad hoc labels quan-
tifying the strength of the effect size resulting from the
above equation. An effect size of d = 0.8 is considered
strong, d = 0.2 is considered weak, and d = 0.5 is considered
medium. Cohen himself admitted that these numbers are ar-
bitrary and suggested that they be used only if there is no
other way to deduce the importance of the observed effect
size.
Because the effect size is not commonly used in risk pre-

diction, to determine whether Cohen’s benchmarks can be
viewed as reasonable in this setting, we needed to translate
them into the more familiar metrics. We did this under the
assumption of normality, where such translation is possible
(22, 25). We used measures commonly provided in publica-
tions focused on risk prediction, including the odds ratio
per 1 standard deviation as a measure of association, the
sensitivity at the point where the specificity equals 0.85
(motivated by the approximate specificity of the Framingham
risk prediction rule established by D’Agostino et al. (1)) as a
measure of diagnostic accuracy, and the area under the
receiver operating characteristic curve (AUC) and discrimina-
tion slope for different event rates as measures of model
discrimination. In Table 1, we show how the effect sizes of
0.2, 0.5, and 0.8 translate into the above measures. The math-
ematical derivations are summarized in Web Appendix 2.
We observed that a variable with a “weak” effect size of

0.2 translated into a weak association, diagnostic perfor-
mance, and model discrimination. On the other hand, a var-
iable with a “strong” effect size of 0.8 led to a model with
a reasonable AUC of 0.71. On the basis of the direct inter-
pretation of the performance metrics, we may not consider
the AUC of 0.71 and sensitivity of 0.41 strong. However,
these results were strikingly similar to the effect of age as a
single predictor in 10-year cardiovascular risk model based
on the Framingham data (1). Because age is known to be

Table 1. Relation Between Different Measures of Effect Size for Normal Data

Cohen’s d Odds Ratioa Sensitivityb AUC

Discrimination Slope By Varying
Percentages of Event Rates

5% 10% 20% 50%

0.2 1.22 0.20 0.56 0.002 0.004 0.006 0.010

0.5 1.65 0.30 0.64 0.013 0.024 0.040 0.059

0.8 2.23 0.41 0.71 0.037 0.064 0.101 0.139

Abbreviation: AUC, area under the receiver operating characteristic curve.
a Per 1 standard deviation.
b Specificity = 0.85.
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the best discriminator in cardiovascular risk prediction
(provided its distribution is wide enough in the population
of interest), based on comparative interpretation, we can
still argue for the “strong” label for effect sizes above 0.8.
The effect size of 0.5 falls directly in the middle, justifying
its label.

The above discussion focused on the univariate case, in
which the strength of one variable translates into the
strength of the model. It provided a simple context through
which we could derive the notions of effect magnitude for
a variable and the corresponding model. In what follows,
we focused on an arguably more pertinent issue: quantify-
ing the impact of variables added to a risk score that
already contains a set of standard factors. We addressed the
question of the extent to which the strength of a variable
translates into improvement in model discrimination and
rely on comparative interpretation to derive heuristic bench-
marks for small, medium, and large incremental values.

STRENGTH OF NEW PREDICTORS AND IMPROVEMENT

IN DISCRIMINATION

Improvement in the discrimination of risk prediction
models can be quantified in numerous ways (13, 15, 18, 19).
A natural approach takes the difference in discrimination
metrics between the models with and without the new pre-
dictor. The ΔAUC is produced in this manner and so is the
IDI, defined as a difference in discrimination slopes (19).
The relative IDI (26) can be calculated as the ratio of IDI
over the discrimination slope of the model without the new
predictor (“baseline model”). A different metric, called the
continuous NRI (NRI(>0)), is obtained when we focus on
the relative increase in the predicted probabilities for subjects
who experience events and the decrease for subjects who do
not (19) (Web Appendix 1).

We were interested in determining the magnitude of im-
provement rather than testing the hypothesis that said im-
provement was greater than zero. We therefore determined
the approximate improvements in discrimination that were
incurred when adding weak, medium, and strong new pre-
dictors to any baseline model. Because a vast majority of
the risk prediction algorithms are based on generalized
linear models of some form, we assumed that the predicted
probabilities for the event from the baseline model were
uniquely determined by its linear predictor. Furthermore, it
is not unreasonable to assume that this linear predictor was
distributed normally. For technical reasons, we assumed its
normal distribution within the event categories with equal
covariance matrices.

First, we considered a novel marker, also distributed nor-
mally, with equal covariance matrices within event groups.
Pencina et al. (20) and Demler et al. (21) have shown that
in this case, the ΔAUC, the IDI, and the NRI(>0) are func-
tions of a generalized measure of separation known as the
squared Mahalanobis distance, or M2 (27). In the case of
the IDI, we also needed to know the ratio of the nonevents
to events prevalence (or incidence). Exact formulas are
given in Web Appendix 3. If the predictors were uncorrelat-
ed, the M2 would reduce to the sum of squared effect sizes.
However, because the measures of interest depended only

on M2 without any loss of generality, we could assume that
the predictors were not correlated. Indeed, for any new pre-
dictor correlated with predictors already in the model, we
can find a predictor that is uncorrelated and results in the
same increase in the M2. Hence, in the following text,
the additional predictor will be conditionally (within event
categories) uncorrelated with the rest.

Because the magnitude of the AUC is the most well un-
derstood of the measures, we focused on baseline models
with AUCs ranging from 0.50 (useless) to 0.90 (excellent),
in increments of 0.05. Using the associations given in Web
Appendix 3, we translated these AUCs into M2s for the
baseline models. Adding an uncorrelated normal predictor
with an effect size d increased the M2 by d2. Said increases
were then transformed into measures of improvement in
discrimination using the identities given in Web Appendix
3. The IDI was calculated for event rates equal to 0.05,
0.10, 0.20, and 0.50, representing a wide range of possible
scenarios. The results are presented in Table 2.

A few observations merit particular attention. First, we
noticed that consistent with empirical evidence (28), im-
provement in the AUC depended strongly on the baseline
model. If we started with a poor model that had an AUC of
0.60, a new predictor with a strong effect of 0.8 could raise
the AUC by 0.13. The same predictor added to a very good
baseline model with an AUC of 0.85 would raise that AUC
by merely 0.03. The same was true for both medium and
weak predictors, with their contribution becoming more
miniscule as a function of the baseline model’s AUC. By
contrast, this phenomenon was much weaker for the IDI. In
particular, the IDI was stable as a function of the baseline
model for an event rate of 10%. For lower event rates (e.g.,
5%), the IDI increased as a function of the strength of the
baseline model, and for larger rates (i.e., 20% and 50%), it
decreased. The weaker effect in the IDI compared with that
in the ΔAUC can be partially explained by the discrimina-
tion slopes, particularly those for smaller event rates, which
are much further from their maximum of 1.00 than are the
AUCs. Hence, there remains more room for improvement.

As suggested by formula 3 in Web Appendix 3, the NRI
(>0) depends mainly on the effect size of the added predictor
rather than on the strength of the baseline model. This was
confirmed in Table 2, where the NRI(>0) values were cons-
tant across the baseline models: 0.62 for a strong predictor,
0.39 for a medium predictor, and 0.16 for a weak, uncorrelat-
ed predictor added to the baseline model. This illustrates an
important property of the NRI(>0): Its value depends only on
the strength of its association with the outcome and not on
the strength of the baseline model. Of note, our assumption
of uncorrelatedness simplified things here; the NRI(>0) still
captured the impact of correlation and penalized those
markers that might be strongly associated with the outcome
but also correlated with variables already in the model.

Further, in Figure 1, we plotted the discrimination slope
as a function of the M2 under the assumption of normality.
We noticed that regardless of the event rate, for values of
the M2 below 3, the relation was not far from a linear rela-
tion with no intercept. Assuming this simple approximation
is reasonable, we have a slope≈ β1 ×M2. If we also assume
the baseline model is comprised of p uncorrelated
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Table 2. Improvement in Discrimination as a Function of Discrimination of Baseline With Single Normal Predictor

and Normal New Predictor: Theoretical Calculations

Model and Metric Valuea

Baseline

AUC 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900

M 0.000 0.178 0.358 0.545 0.742 0.954 1.190 1.466 1.812

M2 0.000 0.032 0.128 0.297 0.550 0.910 1.417 2.148 3.285

Slope5
b 0.000 0.002 0.006 0.016 0.031 0.057 0.097 0.161 0.264

Slope10 0.000 0.003 0.012 0.028 0.055 0.094 0.151 0.231 0.346

Slope20 0.000 0.005 0.021 0.047 0.087 0.142 0.213 0.306 0.426

Slope50 0.000 0.008 0.031 0.069 0.122 0.189 0.270 0.369 0.489

Baseline plus
uncorrelated
normal predictor
with large effect
size of 0.8

ΔAUC 0.214 0.169 0.132 0.103 0.080 0.061 0.045 0.031 0.019

ΔM 0.800 0.642 0.518 0.423 0.349 0.291 0.244 0.204 0.169

ΔM2 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640

IDI5
b 0.037 0.038 0.040 0.043 0.047 0.052 0.056 0.058 0.056

IDI10 0.064 0.065 0.066 0.068 0.071 0.072 0.071 0.067 0.058

IDI20 0.101 0.101 0.100 0.098 0.095 0.089 0.082 0.071 0.058

IDI50 0.139 0.138 0.132 0.124 0.113 0.101 0.087 0.072 0.055

NRI(>0) 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622 0.622

Baseline plus
uncorrelated
normal predictor
with medium
effect size of 0.5

ΔAUC 0.138 0.096 0.068 0.049 0.036 0.027 0.019 0.013 0.008

ΔM 0.500 0.353 0.257 0.195 0.153 0.123 0.101 0.083 0.068

ΔM2 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250

IDI5
b 0.013 0.013 0.014 0.015 0.017 0.019 0.021 0.023 0.022

IDI10 0.024 0.024 0.025 0.026 0.027 0.028 0.028 0.027 0.023

IDI20 0.040 0.040 0.040 0.039 0.038 0.036 0.033 0.029 0.023

IDI50 0.059 0.058 0.056 0.052 0.047 0.042 0.036 0.029 0.023

NRI(>0) 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395

Baseline plus
uncorrelated
normal predictor
with small effect
size of 0.2

ΔAUC 0.056 0.025 0.014 0.009 0.006 0.005 0.003 0.002 0.001

ΔM 0.200 0.090 0.052 0.036 0.026 0.021 0.017 0.014 0.011

ΔM2 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040

IDI5
b 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.004

IDI10 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

IDI20 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.004

IDI50 0.010 0.010 0.009 0.009 0.008 0.007 0.006 0.005 0.004

NRI(>0) 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160

Abbreviations: AUC, area under the receiver operating characteristic curve; IDI, integrated discrimination

improvement; NRI, net reclassification improvement.
a Values show changes after adding a new variable as a function of the corresponding baseline metric.
b Numerical subscript indicates percent of events, that is, slope5 means discrimination slope when event rate is

5%.
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predictors, each with an equal effect size of d, and the new
model adds another uncorrelated predictor with an effect
size d, we get the following: slope (baseline) ≈ β1 × p × d2

and slope (new)≈ β1 × (p + 1) × d2. Hence, the IDI≈ β1 ×
d2 and the relative IDI≈ 1/p. This introduces a useful
benchmark for the comparative interpretation of the relative
IDI in reference to variables already included in the model:
If the new predictor has a squared effect size similar to the
average of the squared effect sizes of the p variables includ-
ed in the baseline model, then the relative IDI should be 1/
p. This offers a simple comparative benchmark – the rela-
tive IDI over and above the inverse of the number of vari-
ables in the baseline model indicates a predictor better than
the average of the rest, whereas a value below the inverse
suggests the new predictor is worse than that average. We
note that the criterion of proportionality to the square of
the effect size was justified by the fact that the squared
Mahalanobis distances or squared effect sizes are additive
for uncorrelated markers, whereas the effect sizes them-
selves are not.

The results presented thus far were derived under specific
and restrictive assumptions. However, even though most
variables are not normally distributed, the majority of con-
tinuous predictors can be appropriately transformed to be
not far from normal. As mentioned earlier, the assumption
of uncorrelatedness is not restrictive, and formulas analo-
gous to those given in Web Appendix 3 exist in cases of
unequal covariance matrices. Separate investigation is nec-
essary to extend the results to conditions with binary or cat-
egorical predictors. Because any nonordinal categorical
predictor can be defined by a set of “dummy” variables, we
focused on binary variables.

To obtain results parallel to those presented in Table 2,
we resorted to numerical simulations. We simulated 2 inde-
pendent variables from multivariate normal distributions
within the event categories, with the first representing the
linear predictor of the baseline model and the second di-
chotomized at a prespecified threshold to represent a new
added binary predictor. Effect sizes for the linear predictors
matched those listed in the second row of Table 2 and were
set for the second dichotomized predictor at 0.2, 0.5, and
0.8. Because the strength of dichotomous predictors

depends on the prevalence of the “exposed” among the
events and nonevents, we considered various dichotomiza-
tion thresholds. For brevity, we present only the results for
a threshold that guarantees a specificity of 0.85 if the vari-
able were used as a single predictor. Sample size was set at
1,000,000 to obtain results on a population level and the
event rates matched those presented in Table 2. Two logis-
tic regressions models were fitted, one with the linear pre-
dictor only and second with the linear predictor and the
additional binary variable. The quantities of interest (same
as in Table 2) were calculated using published methods
(17–19, 29). Of note, changes in the Mahalanobis distance
were obtained by inverting the AUC, as it is not defined in
the nonnormal case. The results are given in Table 3.

We observed that the contribution of the binary risk
factor was smaller than that of the corresponding continu-
ous predictor, which underscores the inefficiency of dichot-
omization. Not surprisingly, the impact of the binary risk
factor depended on the prevalence of the “exposed.”
Table 3 represents only one scenario; in several other cases,
the impact of the binary risk factor varied with this preva-
lence but never exceeded the impact of the corresponding
continuous predictor (results not shown). The maximum
NRI(>0) was reached when the Youden’s index (30) of the
binary risk factor was maximized and it approached the
value obtained for the continuous predictor. Furthermore,
we observed that the general patterns seen in Table 2 still
held: The NRI(>0) remained constant regardless of the
strength of the baseline model, which was not true for the
ΔAUC or the IDI, although the IDI was much less affected.

PRACTICAL EXAMPLE

We illustrate the concepts described in this article with
an example from the Framingham Heart Study. The focus
was on the assessment of 10-year risk of atrial fibrillation
in people free of the condition at baseline between 1995
and 1998. A sample of 3,120 Framingham participants
aged 29 to 86 years were available for analysis. A total of
203 cases of atrial fibrillation occurred within 10 years of
follow-up. These data have been analyzed previously by
Schnabel et al. (31). Three logistic regression models were
fit. The first included sex and baseline age, as well as stan-
dard risk factors; the second included all of the above vari-
ables plus the natural logarithm of B-type natriuretic
peptide (BNP); and the third included the natural logarithm
of C-reactive protein (CRP) instead of BNP. The AUC was
estimated using the c statistic (17, 29), and the Mahalanobis
distance was calculated by inverting the AUC using the re-
lation presented in Web Appendix 2. The discrimination
slopes, IDI, relative IDI, and NRI(>0) were computed
using the methods of Pencina et al. (18, 19). The results are
presented in Table 4.

Both biomarkers were significantly associated with the
outcome after controlling for other risk factors (per 1 stan-
dard deviation in log-biomarker, odds ratio = 1.68 for BNP
and odds ratio = 1.24 for CRP). Log-transformed BNP had
a much stronger impact on model performance than did
CRP. BNP increased the AUC from 0.774 to 0.805,
whereas CRP raised it only to 0.780. On the absolute scale,

Figure 1. Discrimination slope as function of squared Mahalanobis
distance.
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Table 3. Improvement in Discrimination as a Function of Discrimination of Baseline With a Single Normal

Predictor and a Binary New Predictor: Estimated Results

Model and Metric Valuea

Baseline

AUC 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900

M 0.004 0.181 0.361 0.548 0.746 0.956 1.191 1.463 1.779

M2 0.000 0.033 0.130 0.301 0.556 0.915 1.418 2.142 3.165

Slope5
b 0.000 0.002 0.006 0.016 0.016 0.057 0.097 0.162 0.265

Slope10 0.000 0.003 0.012 0.028 0.028 0.094 0.150 0.231 0.346

Slope20 0.000 0.005 0.020 0.047 0.047 0.141 0.213 0.305 0.425

Slope50 0.000 0.008 0.031 0.069 0.069 0.188 0.269 0.368 0.488

Baseline plus
uncorrelated
normal predictor
with large effect
size of 0.8

ΔAUC 0.129 0.108 0.086 0.066 0.050 0.037 0.027 0.017 0.014

ΔM 0.468 0.397 0.327 0.264 0.211 0.172 0.140 0.108 0.113

ΔM2 0.223 0.301 0.344 0.358 0.360 0.358 0.354 0.327 0.416

IDI5
b 0.024 0.024 0.026 0.028 0.031 0.034 0.036 0.037 0.036

IDI10 0.041 0.042 0.043 0.044 0.046 0.046 0.045 0.042 0.036

IDI20 0.066 0.066 0.065 0.063 0.060 0.056 0.050 0.043 0.034

IDI50 0.083 0.082 0.078 0.073 0.067 0.059 0.051 0.042 0.032

NRI(>0) 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523

Baseline plus
uncorrelated
normal predictor
with medium
effect size of 0.5

ΔAUC 0.073 0.055 0.039 0.027 0.020 0.014 0.010 0.007 0.007

ΔM 0.260 0.199 0.145 0.106 0.081 0.065 0.052 0.040 0.052

ΔM 2 0.070 0.112 0.125 0.128 0.127 0.128 0.127 0.119 0.188

IDI5
b 0.008 0.008 0.009 0.009 0.010 0.012 0.013 0.013 0.013

IDI10 0.014 0.014 0.015 0.015 0.016 0.016 0.016 0.015 0.013

IDI20 0.023 0.023 0.023 0.023 0.022 0.020 0.018 0.016 0.013

IDI50 0.031 0.031 0.030 0.028 0.025 0.022 0.019 0.016 0.012

NRI(>0) 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296 0.296

Baseline plus
uncorrelated
normal predictor
with small effect
size of 0.2

ΔAUC 0.025 0.013 0.007 0.004 0.003 0.002 0.002 0.001 0.001

ΔM 0.088 0.045 0.025 0.017 0.012 0.010 0.008 0.006 0.008

ΔM 2 0.009 0.018 0.019 0.019 0.019 0.020 0.020 0.017 0.029

IDI5
b 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002

IDI10 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

IDI20 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002

IDI50 0.005 0.005 0.005 0.004 0.004 0.003 0.003 0.002 0.002

NRI(>0) 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104

Abbreviations: AUC, area under the receiver operating characteristic curve; IDI, integrated discrimination

improvement; NRI, net reclassification improvement.
a Values show changes after adding a new variable as a function of the corresponding baseline metric.
b Numerical subscript indicates percent of events, that is, slope5 means discrimination slope when event rate is

5%.
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the difference in mean predicted probabilities of event
between subjects with and without event was 0.078 for the
baseline model. It increased to 0.105 when BNP was added
and to 0.081 when CRP was added. These increases trans-
late to relative IDIs of 0.352 and 0.038 for BNP and CRP,
respectively. The first value was well above and the second
value was well below the average contribution of the other
8 variables already included in the model, which equaled
0.125. Finally, the NRI(>0) was 0.474 for BNP and 0.237
for CRP, corresponding to an uncorrelated continuous pre-
dictors with more than a medium and weak effect sizes,
respectively.

On the basis of these results, we concluded that BNP is
more promising in terms of improving predictive value
than is CRP. All metrics considered paint a consistent
picture that can be expected in cases of continuous uni-
modal predictors and baseline models that are not excep-
tionally strong. Furthermore, the facts that the strength of
model improvement achieved by the inclusion of BNP cor-
responded to the effect expected when a new uncorrelated

predictor of more than a medium effect size was added and
the relative impact of BNP exceeds that of the average pre-
dictor already in the model suggest that BNP should be
considered for further evaluation in terms of clinical utility
and cost-effectiveness.

CLINICAL IMPLICATIONS

The AUC provides a familiar summary for the discrimina-
tory ability of risk models. Its increment, ΔAUC, does not
have a direct interpretation of its own beyond what it means:
a difference between the AUCs of models with and without
the new predictor(s). This increment should always be re-
ported together with the AUC of the baseline model to put it
in the proper context. New predictors of different strengths
are needed to achieve the same ΔAUC depending on the
strength of the baseline model, which could lead to the op-
posite conclusions about the same candidate marker evaluat-
ed in studies with baseline models of different strengths. For
example, to increase the AUC from 0.50 to 0.55, a new pre-
dictor with a weak effect size below 0.2 will suffice; to in-
crease the AUC from 0.80 to 0.85, we need a new predictor
with a strong effect size (above 0.8). These increases can be
translated into changes in sensitivity induced while holding
specificity fixed; for example, when specificity is set at 0.85,
an increase in AUC from 0.50 to 0.55 implies an increase in
sensitivity from 0.15 to 0.20, and an increase in AUC from
0.80 to 0.85 implies an increase in sensitivity from 0.56 to
0.66. The ΔAUC is the preferred metric in settings in which
the focus is on the model itself rather than on the variables
that are to be added.

On the other hand, when assessing the true discrimina-
tory potential of a new predictor in contrast to other predic-
tors, especially from different or nonhomogeneous studies,
the NRI(>0) is probably the best metric. It captures the
marginal strength of the new predictor after accounting for
correlations with variables included in the baseline model,
and it can be used to compare predictors with different sta-
tistical distributions, a desirable feature not available when
using the odds ratios, hazard ratios, or effect sizes. Our
analysis suggested simple interpretation benchmarks for the
NRI(>0) based on the effect size labels proposed by
Cohen: NRI(>0) values above 0.6 should be considered
strong, those around 0.4 should be considered intermediate,
and those below 0.2 should be considered weak. Further-
more, NRI(>0) can be viewed as a limiting case of the cate-
gory-based NRI (18), in which each unique predicted
probability forms its own category. This gives the NRI(>0)
an interpretation as a summary measure quantifying the
correct upward versus downward movement in model-
based predicted probabilities for events and nonevents.

The 2 different perspectives offered by the ΔAUC and
NRI(>0) are bridged by the IDI. The IDI is not as easily in-
fluenced by the strength of the baseline model as ΔAUC, but
at the same time, it has a direct connection to a model perfor-
mance metric: the discrimination slope. Moreover, its magni-
tude has a direct interpretation as the amount by which we
increased the separation of mean predicted probabilities for
events and nonevents. In our example, BNP had an IDI of
0.027, having increased the separation of mean predicted

Table 4. Increase in Discrimination of Atrial Fibrillation Risk Model

After Addition of B-Type Natriuretic Peptide and C-Reactive Protein

Model and Metric Value

Model with standard risk factorsa

and baseline age

AUC 0.774

M b 1.065

M2b 1.134

Slope 0.078

Contribution of BNPc to standard
risk factors and baseline
age model

ΔAUC 0.031

ΔM b 0.153

ΔM 2b 0.349

IDI 0.027

Relative IDI 0.352

NRI(>0) 0.474

Contribution of CRPc to standard
risk factors and
baseline age model

ΔAUC 0.006

ΔM b 0.026

ΔM 2b 0.056

IDI 0.003

Relative IDI 0.040

NRI(>0) 0.237

Abbreviations: AUC, area under the receiver operating

characteristic curve; BNP, B-type natriuretic peptide; CRP, C-

reactive protein; IDI, integrated discrimination improvement; NRI, net

reclassification improvement.
a Sex, body mass index, systolic blood pressure, electro-

cardiogram PR interval, hypertension treatment, heart valve

disease, and heart failure.
b Based on inverting the AUC.
c Natural logarithmically transformed.
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probabilities for events and nonevents from 0.078 to 0.105.
The magnitude of this improvement can be presented in a
comparative context based on the simple benchmark derived
for the relative IDI. If the predictor is of similar strength to
those predictors already present in the model, the relative IDI
should be equal to the inverse of the number of predictors.
The IDI and discrimination slope operate on the absolute

scale of model-based predicted probabilities, which is par-
ticularly desirable when we are concerned with absolute
risks. However, this also makes it dependent on the overall
event rate, and thus discrimination slopes and IDIs cannot
be compared among studies with different rates and can be
heavily influenced by model calibration. This dependence
may also complicate interpretation, as the meaning of the
IDI is different in studies with different event rates. That is
why it can be useful to look at the relative IDI, which stan-
dardizes the observed increment to the discrimination slope
of the baseline model.

CONCLUSIONS

In the present study, we focused on statistical measures of
incremental value of new predictors. We assessed and quan-
tified the relation between the strength of the predictor in
terms of its effect size and its incremental value when added
to a risk prediction model and provided simple guidelines
for comparative interpretation. Because the ΔAUC, IDI, and
NRI(>0) offer complementary information, in many settings
it will be important to report all 3 alongside measures char-
acterizing the performance of the final model to provide a
complete assessment of incremental predictive value. Further
research is needed to determine if the relations presented
here hold under less restrictive assumptions.
The measures described here form the “first line” of as-

sessment that can be particularly helpful in prescreening
markers with limited promise. On the other hand, if a given
predictor is deemed worthy of future exploration, a formal
cost-benefit analysis should be undertaken. The weighted
NRI with categories (19) or the net benefit analysis
(32, 33) are promising simple options for the second step,
directed more towards establishing clinical utility.
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