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Abstract 

In this paper, we study the problem of interpreting line drawings of scenes composed of opaque regular 
solid objects bounded by piecewise smooth surfaces with no markings or texture on them. It is assumed 
that the line drawing has been formed by orthographic projection of such a scene under general view- 
point, that the line drawing is error free, and that there are no lines due to shadows or specularities. Our 
definition implicitly excludes laminae, wires, and the apices of cones. 

A major component of the interpretation of line drawings is line labelling. By line labelling we mean (a) 
classification of each image curve as corresponding to either a depth or orientation discontinuity in the 
scene, and (b) further subclassification of each kind of discontinuity. For a depth discontinuity we deter- 
mine whether it is a limb-a locus of points on the surface where the line of sight is tangent to the 
surface-or an occluding edge-a tangent plane discontinuity of the surface. For an orientation discon- 
tinuity, we determine whether it corresponds to a convex or concave edge. This paper presents the first 
mathematically rigorous scheme for labelling line drawings of the class of scenes described. Previous 
schemes for labelling line drawings of scenes containing curved objects were heuristic, incomplete, and 
lacked proper mathematical justification. 

By analyzing the projection of the neighborhoods of different kinds of points on a piecewise smooth 
surface, we are able to catalog all local labelling possibilities for the different types of junctions in a line 
drawing. An algorithm is developed which utilizes this catalog to determine all legal labellings of the line 
drawing. A local minimum complexity rule-at each vertex select those labellings which correspond to 
the minimum number of faces meeting at the vertex-is used in order to prune highly counter-intuitive 
interpretations. The labelling scheme was implemented and tested on a number of line drawings. The 
labellings obtained are few and by and large in accordance with human interpretations. 

1 Introduction 

In this paper, we study the problem of interpret- 
ing line drawings of scenes composed of opaque 
solid objects bounded by piecewise smooth sur- 
faces with no markings or texture on them. The 
vivid three-dimensional impression conveyed by 
line drawings in the complete absence of other 
cues points to the significance of this problem for 
visual perception. Line drawings also provide a 
vital source of constraint for other shape infer- 
ence modules, e.g., the solution of the shape- 
from-shading differential equation relies on the 
boundary conditions provided by occluding con- 
tours. 

It is trivially obvious that many different shapes 

could project to the same line drawing. What then 
do we mean by line drawing interpretation? 
Some researchers have attempted to determine a 
unique three-dimensional shape which supposed- 
ly is the one perceived by a human observer. Typi- 
cally these approaches [1,3] use some criterion to 
choose one among the (infinite) possible spatial 
interpretations. For example, Brady and Yuille 
[3] search for the most compact shape, i.e., the 
one which maximizes the ratio of area to the 
square of the perimeter. It is easy to construct 
real world counterexamples where these criteria 
fail; e.g., Brady and Yuille’s scheme interprets 
rectangles as slanted squares. Indeed, it is argu- 
able whether the sparse data in a line drawing 
contains sufficient information to, make such 



detailed quantitative inference in the absence of 
high-level model-driven processing. 

If one abandons the desire to determine a 

unique three-dimensional shape, the logical alter- 

native is to characterize in some useful and com- 
plete way the constraints on the infinite set of 

scenes which could project to the line drawing. 
This is the approach taken in this paper. It is our 

belief that the natural way to do this is to 

1. partition the set of possible scenes into equiva- 
lence classes such that in each equivalence 

class all the scenes correspond to the same line 

labelling, and then 

determine the metric constraints on three- 

dimensional shape that any of the scenes cor- 

responding to a particular line labelling must 
satisfy. 

By line labelling we mean (a) classification of 

each image curve as corresponding to either a 
depth or orientation discontinuity in the scene, 

and (b) further subclassification of each kind of 

discontinuity. For a depth discontinuity we deter- 
mine whether it is a limb-a locus of points on the 

surface where the line of sight is tangent to the 

surface-or an occluding edge-a tangent plane 

discontinuity of the surface. For an orientation 

discontinuity we determine whether it corre- 

sponds to a convex or concave edge. Notation and 
precise definitions may be found in section 2. 

In section 3, we list a set of position and 

orientation constraints that a scene corresponding 
to the line drawing must satisfy. As may be ex- 

pected, lines with different labels exert different 

types of constraints on three-dimensional inter- 
pretation. It is this phenomenon which makes line 
labelling an important problem; it is difficult to 

formulate useful quantitative constraints on the 

scene which are independent of line labels. 
The problem of labelling line drawings has 

received considerable attention in the computer 
vision community. Largely due to the work de- 
scribed by Huffman [l l] ,  Clowes [5], Mackworth 

[19], and Sugihara [35], the problem has been 
solved in a formal sense for scenes containing 
only polyhedral objects. The analyses and the 

resulting algorithms are mathematically rigorous. 

For curved objects, while several attempts were 
made [4,18,31,36], the analyses (and the result- 

ing algorithms) were heuristic, incomplete, and 

lacked proper mathematical justification. 

In this paper we present the first mathematical- 
ly rigorous scheme for labelling line drawings of a 

very general class of curved objects. 

We will deal with a simplified model of the 
world where the objects have no surface marks 

and where the lines due to illumination discon- 
tinuities like shadow edges and specularities have 

been removed in some preprocessing step. While 

currently there is no known algorithm for doing 

this preprocessing, some potentially useful tech- 

niques are discussed by Witkin [39] and Shafer 

[29]. The consequence of these restrictions is that 

we limit our attention to line drawings where each 
line corresponds either to a depth or orientation 

discontinuity. An example of such a drawing is 

figure 1. Note that none of the currently available 
edge detectors operating on a real image would 
yield such an idealized result-typically there 

would be missing lines, spurious lines, and 
missing and improperly classified junctions. This 

issue is discussed in section 16. For now, we will 

ignore the resulting difficulties and assume that 
a clean drawing like figure 1 can somehow be 

obtained. 

We model curved objects as opaque solids 
bounded by piecewise smooth surfaces (defined in 

section 5). Examples of scenes containing such 

objects can be found in figures 29-34. There is no 

restriction on the number of faces that can meet 
at a vertex, and each face can be a connected por- 

tion of any smooth surface. The surfaces must be 
at least C3, i.e., for their parametric representa- 
tions, all derivatives of order 5 3 must exist. 

Other restrictions implicit in our definition lead to 

the exclusion of laminae, wires, and the apices of 

cones. 
Consider a scene composed of the class of 

curved objects permitted by us. We catalog all 
possible junctions resulting from the orthographic 
projection of such a scene under general view- 
point.1 In the course of this analysis, several inter- 
mediate results are proved which are of interest in 
their own light. 

'Roughly speaking, this disallows accidental alignment. 
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While the labelling problem for polyhedra had 

been solved in a formal sense, a major limitation 

as pointed out by Draper [7] was the multiplicity 
of labellings produced (98 for a simple figure like 
the tetrahedron). This is in contrast to humans, 

who perceive very few interpretations. We pro- 

pose a local minimum complexity rule-at each 
vertex select those labellings which correspond to 

the minimum number of faces meeting at the 
vertex-which is empirically demonstrated to be 
extremely successful in pruning the unwanted 

"weird" interpretations. (For the tetrahedron, we 

are left with three labellings corresponding to a 
tetrahedron floating in air, stuck to a table, or 

stuck to a wall.) While Draper's observations 

were made in the context of polyhedra, the same 

phenomenon occurs for curved objects and the 

same rule is employed su~cessfully.~ 
An algorithm is developed which takes an 

idealized line drawing as input and makes use of 

the junction catalog to find all3 legal labellings of 

a line drawing. The algorithm makes an addition- 
al restriction on the scene. Smooth transitions 

from convex to concave along an edge-as in 

figure 3-are not ~ e r m i t t e d . ~  A computer imple- 
mentation of the algorithm was done and tested 

on several line drawings. The labellings obtained 

are few and by and large in accordance with hu- 

man interpretations. Figures 29-34 display all the 

labellings found by our program for some scenes. 

2 Preliminaries 

Each point on an image curve in a drawing can 
have one of six possible labels which provide a 

qualitative characterization of three-dimensional 
physical shape at the point in the scene. 

1. A "+" label represents a convex edge-an 

orientation discontinuity such that the two 

surfaces meeting along the edge in the scene 

enclose a filled volume corresponding to a 

dihedral angle less than n-. 

*Exactly which interpretations are "natural" and which are 

"weird is to some extent a matter of personal preference. 

Even for the most complex examples tried, more than 50% of 

the interpretations found were judged by us to be "natural" as 

opposed to the less than 3% found for the simple tetrahedron 

A "-" label represents a concave edge-an 

orientation discontinuity such that the two 

surfaces meeting along the edge in the scene 
enclose a filled volume corresponding to a 

dihedral angle greater than a. 
A "t" or a "-+" represents an occluding con- 

vex edge. When viewed from the camera, both 
the surface patches which meet along the edge 

lie on the same side, one occluding the other. 
As one moves in the direction of the arrow, 

these surfaces are to the right. 
A "tt" or a "++" represents a limb. Here 

the surface curves smoothly around to occlude 
itself. As one moves in the direction of the 

twin arrows, the surface lies to the right. The 
line of sight is tangential to the surface for all 

points on the limb. Limbs move on the surface 

of the object as the viewpoint changes. 

We will use the term connect edge to mean either 

a convex or concave edge such that both the 

surfaces meeting along the edge are visible. The 
notation for different kinds of labels is illustrated 
in figure 1. 

In line drawings of polyhedral scenes, the label 
is necessarily the same at all points on a single line 

segment. This permits us to use the term line label 

as opposed to label at a point on a line. For 
curved objects the label can change along a line. 

Because of this phenomenon, we need to distin- 

guish between two different senses of line labelling. 
A dense labelling is a function which maps the 

set of all points on curves in the drawing into the 

Fig. 1. Different kinds of line labels. 

in the absence of such a rule. 

Subject to the minimum number of faces rule. 

4The mathematical analysis leading to the junction catalog is 

valid for these kinds of objects-our algorithm, however, 

makes this additional assumption. 
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set of labels. The dense labelling problem is to 
find all the dense labellings of a drawing which 

can correspond to a projection of some scene. 

Such a dense labelling is said to be legal. The set 

of legal dense labellings can be infinite (even un- 
countably infinite). 

Instead of trying to find the label at each point 

on a curve, we could restrict our attention to suf- 

ficiently small neighborhoods of the junctions of 

the line drawing. For each line segment (between 

junctions) we now have to specify only two 

labels-one at each end. Of the 62n combinator- 
ially possible label assignments to the n lines in a 

drawing, only a small subset correspond to physi- 

cally possible scenes. We refer to these as legal 

sparse labellings. The determination of all legal 
sparse labellings of a particular line drawing is the 

sparse labelling problem. Note that the set of 
legal sparse labellings is always a finite set (usual- 
ly small). 

It may be noted that the definitions above are 
incomplete in an important sense-we have not 

yet specified the legal class of scenes. Examples 

are well known in line labelling literature (e.g., 

Draper [8]) of labellings which would be legal for 

curved objects but cannot correspond to any 

polyhedral scene. The class of scenes dealt with in 

this paper is defined in section 5. 
In the case of polyhedra, a legal sparse labelling 

uniquely determines a legal dense labelling and 
vice versa. For drawings of curved objects, the 

set of dense labellings can be partitioned into 

equivalence classes where each equivalence class 

corresponds to a single sparse labelling. 
The labelling problem addressed in this paper is 

the sparse labelling problem. 

3 How Does a Line Labelling Constrain Solid 

Shape? 

As mentioned earlier, lines with different labels 
correspond to different types of constraints. In 
this section we study the system of position and 
orientation constraints associated with a dense 

labelling of a line drawing. Most of these con- 
straints are well known; our purpose is to provide 
a coherent list of the "fundamental" constraints 
and also supply additional motivation for the line 
labelling problem. 

It is assumed that the line drawing has been 

formed by orthographic projection, with the eye 
along the z-axis at z = +w. We now consider 

the constraints from the different elements of a 
labelled line drawing. 

1. Shape constraint at a limb. At limbs, one can 

determine the surface orientation uniquely. 

Let n be the unit surface normal, and I the unit 
tangent vector at a point on the limb. Obvious- 

ly, n.1 = 0. As a limb corresponds to points 

on the surface where the line of sight vector t 

lies in the tangent plane to the surface, we 

also have n.2 = 0 for points on the limb 

(equivalently n, = 0). n therefore lies in the 

image plane and can be constructed by draw- 
ing the outward-pointing unit vector per- 

pendicular to the projection of the limb in the 
image plane. 

What is stated above is the orientation 

constraint for the surface on which the limb 
lies, i.e., the surface on the right of the twin 

arrows. We also have a position constraint- 

the surface on the right of the twin arrows is 

nearer, implying a linear inequality between 

the z values on either side of the limb. 

The surface orientation constraint due to 

limbs is well known and has been used by Bar- 
row and Tenenbaum [I] and by Ikeuchi and 

Horn [34]. 
2. Shape constraint at an edge. Let C be the unit 

tangent vector to the edge at a point, and let nl 

and n2 be the unit surface normals to the tan- 
gent planes to the two faces fi and f2 at the 

point. Let C be oriented such that, when one 

walks on the edge in the direction of C, the face 
fl is to the left. Now 6 is perpendicular to nl 

because C lies in the tangent plane to the face 

fl. Similarly C is perpendicular to n2. Therefore 

& is parallel to nl X n2. We do not know the 
vector C, but from a line drawing we can deter- 
mine its orthographic projection into the im- 
age plane. We thus have the constraint (nl x 

n2)proj = ACproj. Here the notation vpr0, is used 
for the orthographic projection of v into the 

image plane. A is a positive scalar if the edge is 
convex, and negative if the edge is concave. 
Note that this constraint is equally valid for 
occluding convex edges, where one of the sur- 
face normals corresponds to a hidden face. 
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This constraint when expressed using p, q- 
the gradient space coordinates-gives the rule 

used by Mackworth [19] and many other re- 

searchers in their gradient space constructions. 
The position constraint at an edge is trivial 

-the depth z is continuous across a convex 

or concave edge and is discontinuous at an 
occluding edge. 

3. Shape constraint inside an area. If each area in 
the image is to be the projection of a con- 

nected part of a smooth surface, the functions 
that map each image point to its position and 

orientation must be smooth within a single 

area. Also the surface normals at all the visible 
surface patches must have positive n,  compo- 

nents. 
Note that, as the surface normal in a smooth 

patch can be wirtten in terms of the partial de- 

rivatives of z with respect to x and y, these two 
functions are not independent. If we specify a 

C2 function z(x, y), the orientation function 
n(x, y) is automatically determined and 

smooth. 

We feel that it is appropriate to regard the posi- 

tion and orientation constraints listed above as 
the fundamental system of constraints associated 

with a dense labelling of a line drawing. We will 

refer to this constraint set as the DL-system 
corresponding to a dense labelling. A candidate 
solution to this set of constraints is obtained by 

specifying 

1. A piecewise smooth function z(x, y) corre- 

sponding to the depth at each visible point in 

the scene. 
2. A smooth function nh(x, y) defined on all 

points on the lines in the drawing which are 
labelled t or +. This function corresponds to 

the surface normal on the hidden face at that 
point on the occluding edge. 

As pointed out earlier, the surface normal at 

each visible point is then automatically deter- 

mined. 
It is obvious that for a dense labelling of a line 

drawing to correspond to a legal scene, it is neces- 
sary that there exist a candidate solution which 
satisfies its DL-system. To show sufficiency, we 

also have to show that a suitable "completion" of 

the hidden parts of the scene exists which corre- 

sponds to a set of valid physical objects. We con- 

jecture that this is always possible, but we do not 

have a rigorous proof. 
We hope that the reader is now convinced of 

the primary importance of the dense labelling 
problem in line drawing interpretation. In this 

paper we present a solution to the sparse labelling 
problem, the motivation being to obtain a useful, 

finite characterization of the set of legal dense 
labellings. Because of the continuity of physical 

surfaces, the label at points along an image curve 

segment (between junctions) can undergo transi- 
tions only in a well-behaved fashion (see section 

13). 
For obvious reasons, in the rest of this paper, 

when we employ the ambiguous term "labelling 

problem," the correct term is usually "sparse 

labelling problem. " 

4 Review of Past Work on Line Labelling 

The first successful attempt to solve this problem 

was made by Huffman [11] and Clowes (51 in 

1971. They exhaustively cataloged the vertices 

that could arise in line drawings of trihedral ob- 
jects (objects whose corners are formed by exact- 

ly three meeting faces) and then used the catalog 
to interpret lines as corresponding to convex, con- 

cave, or convex occluding edges. The catalog 

gives the possible labellings at each junction and 
global consistency is forced by the rule that each 

line in the drawing be assigned one and only one 

label along its length. Waltz [37] proposed an 
algorithm for this problem (actually for an aug- 

mented version with shadows, cracks, and separ- 

ably concave edges) which reduced the search by 
a filtering step in which adjacent pairs of junctions 
are examined and incompatible candidate label- 

lings discarded. Mackworth [19] developed the 
concept of gradient space, which enabled his pro- 
gram to label line drawings of arbitrary polyhedral 

scenes. One consequence of the attempt to deal 

with an arbitrary number of planes meeting at a 
vertex was a combinatorial explosion in the num- 
ber of labellings generated which correspond to 
highly counter-intuitive interpretations. Draper 
[7] points out that there are 33 legal labellings (98 

if accidental viewpoint is allowed) for the line 
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drawing of a tetrahedron. In the context of the 
Origami World, Kanade [14] had to face a similar 

problem. 

For objects bounded by curved surfaces, there 
have been two major efforts. The first was by Tur- 

ner [36], who used a heuristic procedure called 

the PC (polyhedral-to-curved) transformation to 
obtain the labelling possibilities for junctions. 

Turner's approach suffered from several basic 

weaknesses: 

The Huffman-Clowes procedure is guaranteed 

to find all the legal labellings of a line drawing 

of a legal trihedral scene. Such a convincing 

claim cannot be made for Turner's procedure 

for the class of scenes it is supposed to handle. 

Turner's procedure is limited to objects such 
that each face is only one type of surface- 

planar, parabolic but nonplanar, elliptic or 
hyperbolic. A simple object like a torus which 

is bound by a single smooth surface which has 

both elliptic and hyperbolic patches can not be 

handled. 

A major problem is the huge number of junc- 
tion labels and the consequent explosion in the 

number of legal interpretations (see table 1). 
This is to be contrasted with the small size of 

the Huffman-Clowes catalog. 

The next major effort was by Shapira- 

Freeman-Chakravarty [4,31]. They considered 
objects such that exactly three faces meet at a ver- 

tex where each face is either a quadric surface or a 
plane. Their junction catalog is much smaller than 

that of Turner, which makes it practically usable 
in certain situations. However, some fundamental 

weaknesses remain: 

Table 1. Number of labellings for each of Turner's corner 

classes. 

1. No arguments are given to prove the validity 

of the junction catalog. One is left with the 
suspicion that it was "derived" by observation 

of junctions in some typical curved objects. 

2. The scheme is limited to objects bounded by 
quadric surfaces/planes and exactly three faces 

meeting along a vertex. 

3. For a nonoccluding edge, convex and concave 

edges are not distinguished. 

Corner 

p3 

p4 

c I 

CZ 

CIPI 

c1p2 

EI 

EZ 

EIP, 

Lee, Haralick, and Zhang [18] extend this 

catalog by adding line labels based on Huff- 
man-Clowes rules. The justification for the valid- 

ity of this step is not given. While this partially 

solves problem 3 mentioned above, the first two 

weaknesses remain. For a detailed discussion we 

would refer the reader to Malik [24], where we 
also point out some mistakes in these catalogs. 

Labels 

152 

652 

16 

348 

138 

1905 

8 

205 

138 

5 Modelling the Scene and the Projection 

The scene consists of a set of objects in three- 

dimensional space. 

Definition. An object is a connected, bounded, 

and regular subset of R3 whose boundary is a 

piecewise smooth surface. 
By regular we mean that it is the closure of its 

interior. This disallows objects with "dangling" 

faces or edges (the interior of a "dangling" face or 
edge is empty). Imposing this condition is a stan- 
dard practice in solid modelling. The definition of 

piecewise smooth surface is the subject of the rest 
of this section. 

The traditional approach in differential 

geometry to define and study surfaces is to de- 
compose a given surface into a number of small 
pieces, each of which can be described parametri- 

cally as the function of two variables. A good 
development of the concepts and terminology 
of this approach may be found in Millman and 
Parker [26]. In what follows, we will assume that 
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define piecewise smooth surfaces. We use the 

notation B,(P; M )  = B,(P) f l  M to denote the E- 

neighborhood of P relative to M. B,(P) is, as 
usual, the open ball of radius E in R3 centered at 

P. 

Definition. A Ck piecewise smooth surface in R3 is 
a subset M c R3 for which there exists a collection 

of surface elements S = {S1,. . . , S,) with each 

Fig. 2. Unacceptable object. of the Si, i = 1,. . . , n a subset of M. For every 

point P E M exactly one of the following three 

conditions is true: 

the reader is familiar with the definition of a Ck 1. There exists an Si E S such that B,(P; M) = 
smooth surface. B,(P; Si) for some E > 0. In other words, P is 

We will need to enlarge the class of surfaces 
the interior point of some surface element Si. 

considered to include piecewise smooth surfaces. 
If there are two or more such surface ele- 

Roughly speaking, a piecewise smooth surface 
ments, then on the overlap the corresponding 

consists of portions of smooth surfaces joined 
patches are related by a Ck coordinate trans- 

together. The boundary of a polyhedron or a 
formation as in the definition for Ck surfaces. 

finite cylinder are simple examples. If two C k  sur- 
2. There exist two surface elements Si, Sj in S, 

faces intersect at a point P where the surfaces 
such that for some E > 0, 

have distinct tangent planes, then it can be easily 

shown ([24], page 36) that the part of the intersec- 
B,(P; M) = B,(P; Si) U B,(P; S,) 

Furthermore the tangent planes to Si and S, are 
tion of the two surfaces near P i s  a smooth Ck arc. 

distinct at P. 
Such an arc on a piecewise smooth surface is 

3. There are m 2 3 surface elements Si,, Si,, . . . , 
called an edge. A point of intersection of three 

Si, such that for some E > 0, 
or more edges is called a vertex. 

To formalize these notions, we first need to BE(P; M )  = B,(P; Si,) U B,(P; SiJ 
U . . . UB,(P; Si,) 

define a surface element with boundary. Recall 
For any two of these surface elements, the tan- 

that a surface element without boundary is just the 
gent planes are distinct at P. 

image of a Ck coordinate patch. 

Definition. Let x: U - R3 be a Ck coordinate 

patch, where U is a connected open subset of R2. 
Let D be a region such that 

1. its boundary, dD, consists of a finite number of 

piecewise smooth simple closed curves. 

2. D U d D c U  

Then S, the image of the restriction of x to D U 

dD, is said to be a surface element with boundary. 

It can be shown that dS, the boundary of S, is the 

image of dD. 
Note that x and its derivatives are defined for 

all points of D U dD and hence a tangent plane is 
defined for all the points of a surface element with 
boundary. 

From now on, we will use the term surface ele- 

ment for both kinds of surface elements-with 
and without boundary. We are now ready to 

Depending on which of the above three condi- 

tions is true at P, P is said to be a face point, edge 

point, or a vertex, respectively. 

Definition. A face is a connected set of face 

points. 

Definition. An edge is a connected set of edge 

points. 
The definition given above would allow de- 

generate cases like two cubes connected by a sin- 
gle vertex. In the definition of polyhedra [6], such 

cases are excluded by requiring that the faces sur- 
rounding each vertex form a simple circuit. We 
impose a similar condition by requiring that the 
surface elements surrounding each vertex form a 
simple circuit. 

Example. A polyhedron is a C" piecewise smooth 
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Fig. 3. Not a piecewise smooth surface. 

surface. Our definitions for faces, edges, and ver- 
tices reduce to the standard definitions. 

Example. A right circular cylinder is a C” piece- 
wise smooth surface with 3 faces, 2 edges and 0 
vertices. 

An important issue is the order of smoothness 
needed. We restrict our attention to C3 piecewise 
smooth surfaces. This choice is purely for mathe- 
matical convenience-as a consequence of this 
assumption, each face is a subset of a Ca surface 
and we can apply Whitney’s theorem [38] to study 
how it projects. 

We would like to point out that our definition 
of piecewise smooth surfaces differs somewhat 
from some other definitions, which do not require 
that the tangent planes be distinct across an edge. 
An example of a surface which is not piecewise 
smooth under our definition is shown in figure 3. 
There is a point on AB at which the tangent 
planes to surfaces Sr and S, are the same. The 
requirement that the tangent planes always be 
distinct along an edge forces each edge to be 
either convex or concave. Smooth transitions 
from convex to concave, as along AB, are not 
permitted. This consequence is a crucial one for 
the algorithm developed in section 14. 

As pointed out earlier, we are dealing with a sim- 
plified model of the world so that the only lines 
we need to consider are the projections of depth 
and orientation discontinuities. In this context we 
can make our definition of line drawing precise. 
Each point in the image is the projection of a visi- 
ble point in the scene. With each point (x,y) in the 
image can be associated a scalar z and a unit vec- 
tor n corresponding respectively to the depth and 
the direction of the surface normal at the associ- 
ated point in the scene. At most points in the im- 
age, these functions are continuous (at least Cl, in 
fact C2 because of the restriction on our scenes). 
The locus of discontinuities of either of these 
functions constitutes the line drawing. The curves 
in the line drawing are segmented at tangent and 
curvature discontinuities. The points where there 
are tangent or curvature discontinuities are re- 
ferred to as junctions. Figure 4 is a sample line 
drawing. Endings of image curves, e.g., ja, are 
also referred to as junctions as are points where 
two or more image curve segments meet, e.g., j4, 

j5, j6. 

The process of image formation is modelled as 
orthographic projection, which corresponds to 
the eye/camera being effectively at infinite dis- 
tance from the scene. Given an image plane, we 
assume a right-handed coordinate system with x- 
and y-axes lying in the plane. The eye is assumed 
to be located on the z-axis at z = +a. A point 
(x,y,z) in the scene projects to the point (x,y) in 
the image plane, and is visible if there is no other 
point (x,y,z’) belonging to any object in the scene 
with z’ > z. The projection of the scene is the 
projection of the visible points in the scene. 

From the line drawing, an image structure 
graph may be constructed. It is an undirected 
graph. Its nodes are all the junctions in the line 
drawing and additionally pseudo-junctions like ja, 
one for each isolated smooth closed curve like Ci. 
Each image curve segment corresponds to an arc 
between the vertices corresponding to the junc- 
tions on which it is incident. For example, the 

j4 

B 

i7 % 
C4 

h Fb 
j9 
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The viewpoint is assumed to be general-there Fig. 4. Different kinds of junctions. 

exists an open neighborhood of the vantage point 
in which the “topological” structure of the line 
drawing remains unaltered. This will be made 
more precise in the next section. 

6 The Line Drawing 

ce 

i j3 
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node corresponding to j4 has arcs corresponding 
to C.,, C,, C,-the first two to the node corre- 
sponding to j, and the third to the node corre- 
sponding to j*. The node corresponding to js has 
three arcs; the ones corresponding to js, js have 
only one arc each. As is obvious, in general the 
image structure graph (henceforth the ISG) may 
be disconnected, have more than one arc between 
two nodes, and have self-loops. 

By considering the observed geometric prop- 
erties in the line drawing, these junctions can be 
classified as follows: 

Terminal: Curve ends there, e.g., js. 
L: Tangent discontinuity across junction, e.g., ji. 
Curvature-L: Tangents continuous, curvature dis- 

continuity, e.g., j,. 
T-junction: Two of three image curves at the junc- 

tion have same slope and curvature, e.g., j6. 
Pseudo: Corresponds to isolated, closed, smooth 

curves, e.g., js. 
Three-tangent: Three curves with common tan- 

gent. Two have same curvature, e.g., j4. 
Arrow: Three curves with distinct tangents. One 

angle > 7~, e.g., j,. 
Y: Three curves with distinct tangents. No angle 

> r, e.g., js. 
Multi: Four or more image curves at the junction. 

The ISG is augmented by storing at each node an 
attribute field corresponding to which one of the 
above classes the junction belongs. 

We can now define precisely what we mean by 
general viewpoint. Consider the set of line draw- 
ings formed by viewing a scene from different 
points of a sufficiently small spherical neighbor- 
hood of the vantage point. If the augmented ISGs 
corresponding to these line drawings are iso- 
morphic, the viewpoint is said to be general. 

l The projection of a neighborhood of an in- 
terior point of a face. 

o The projection of a neighborhood of an in- 
terior point of an edge. 

l The projection of a neighborhood of a vertex. 

These are tackled respectively in sections 8-10. 
As we are dealing with the projection of 

opaque surfaces, we also have to worry about 
the phenomenon of occlusion-obstruction of the 
view of a surface of an object by another object 
(or another part of the same object). This gives 
rise to T-junctions. Here we know that the top of 
the T-junction corresponds to a nearer surface 
occluding another object. Note that there is no 
constraint on the label of the stem of the T- 
junction. 

8 Projection of a Face Neighborhood 

This corresponds to the projection of a single 
C3 surface element. It is an instance of the class 
of mappings from two-dimensional manifolds 
to two-dimensional manifolds. Whitney [38] 
showed that generically there are only two 
singularities-the fold and the cusp. This result is 
discussed in section 8.1. In section 8.2 we study 
Whitney’s theorem in the context of the projec- 
tion mapping. Limbs (e.g., Ci in figure 4) are 
associated with the fold singularity and terminals 
(e.g., j, in figure 4) are associated with cusps. At 
a terminal, we can determine which of the two 
surface patches is nearer. 

8.1 Whitney’s Singularity Theory 

In 1955, Whitney published a landmark paper 

7 Projection of Curved Objects 

We wish to study how curved objects (as defined 
in section 5) project to a line drawing. This is 
done by studying how neighborhoods of different 

i 
1 

kinds of points on the surface project and catalog- 
ing the resulting junctions in the line drawing. 
This can be broken up into three cases: Fig. 5. Labels for a T-junction. 
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[38] on the singularities of mappings5 of open sets 
in E2 into E2. Examples of such mappings are pro- 
jection (orthographic and perspective) of surfaces 
and the Gauss map. Whitney showed that gener- 
ically there are only two kinds of singularities: 
folds lying along curves and isolated cusp points 
lying on the folds. We will explain what this 
means in the context of projection in the next sec- 
tion. In this section we will define various terms 
and try to give a feel for Whitney’s results. 

Such a mapping is defined by the two functions 
u1 = f (x1,x2) and u2 = g(x1,x2) where (xl,xZ) and 
(u1,u2) are the coordinates in the two spaces. Let 
J be the Jacobian of the mapping. A point p is 
said to be a regular if J(p) # 0; otherwise it is 
singular. We are interested in studying the locus 
of the singularities. 

Example 1. Consider the mapping 

Ul = x 12, u2 = x2 

The Jacobian J = 2x1 = 0 ==+ x1 = 0. The straight 
line x1 = 0 is the locus of points where the 
mapping is singular. This is an example of a fold. 

Example 2. Consider the maping 

u1 = Xl3 - x1x2, u2 = x2 

The Jacobian J = 3xi2 - x2 = 0 + x2 = 3xi2. 
This corresponds to two fold curves, one for 
positive x1 and one for negative xi-both in the 

half-plane where x2 I 0. The two fold curves meet 
at the origin at a cusp point. This singularity 
occurs whenever two fold curves come together 
and disappear. 

Our choice of examples was not accidental. 
After suitable coordinate transformations, all 
folds and cusps can be described by the canonical 
forms in examples 1 and 2, respectively. Whitney 
showed that every singularity of a smooth map- 
ping from E2 to E2, after an appropriate small 
deformation, splits into folds and cusps. As we 
discuss in the next section, this generic property 
in the vision context corresponds to general view- 
point. 

51t is assumed that the mappings are at least c3 smooth. This 

explains our choice of c3 piecewise smooth surfaces to define 

curved objects. 

-:yx3’z ;.:.RI. 
s;= -2 $12 
m 

Fig. 6. Two canonical examples. 

Right labelling Wrong labelhng 

Fig. 7. Inferring the labelling from terminals. 

8.2 Singularities of the Projection Mapping 

Projection is a mapping from a surface into a 
plane. One can immediately interpret examples 1 
and 2 as corresponding to the orthographic pro- 
jection of two surfaces of the form y = f(x,z) 
viewed from an infinitely distant point on the 
z-axis. Figure 6 shows the two surfaces. 

For y = z2 the projection of the fold curve is the 
line y = 0. 

For y = z3 - zx the two fold curves have the 
equation 

x = 39 

one for z positive, the other for z negative. 
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By eliminating z we get the equations of the 
projected curves 

This is a semi-cubic parabola with a cusp at the 
origin. Only the positive branch is visible. Note 
that the contour ends concavely. For an extended 
discussion of this, see Koenderink and Van 
Doorn [16]. This fact can be used to determine to 
which side the curve belongs as shown in figure 7. 

What does all this imply for the labelling prob- 
lem? The only curves which exist in the projection 
of a smooth surface patch are limbs (folds), and 
the only junctions are terminals (cusps). In the 
line drawing, each,limb projection borders two 
regions, or sometimes two strips of the same re- 
gion. The limb curve lies on the surface patch cor- 
responding to one of these strips and is in front of 
the other surface patch. Which is the nearer patch 
can be determined by looking at the curvature of 
the projection of the limb (in the image plane) at 
a terminal junction as shown in figure 7. If the 
scene consists only of objects bound by single 
smooth surfaces (no edges), then the only junc- 
tions in the line drawing would be T-junctions and 
terminals. 

9 Projection of an Edge Neighborhood 

Locally, an edge e is the intersection of two sur- 
face patches Si and SZ with different tangent 
planes. Consider a point P in the interior of this 
edge. To study how P and its neighborhood in 
S1,S2 project, we have to consider three cases: 

0 No limb through P on either S1,S2. 
l Limb through P on both of Si,&. 
l Limb through P on one of Si,&. 

The first case is easy. Since there is no limb on 
either patch, the projection of both the patches 
are diffeomorphisms. The edge segment in the 
neighborhood of P is the boundary of both 
patches and hence the boundary of both their 

f 
Y 

3 

B 

Fig. 8. The coordinate system. 

projections. The edge segment has the same 
line label (convex, concave, or occluding convex) 
on both sides of P. 

The second case is also easy. As there is a limb 
on Si, the ray from the viewer must lie on the 
tangent plane to Si at P. Similarly it must lie on 
the tangent plane to S2 at P. It therefore must lie 
on their intersection, which is a straight line. In 
other words, the vantage point is constrained to 
lie along a line. That would be a violation6 of the 
general viewpoint assumption stated in section 6. 

The third case is more interesting. Physical ex- 
amples of points of this kind are the points in the 
scene corresponding to junctions A, B, C, and D 
in figure 13. Without loss of generality, we can 
assume that Sr has a limb passing through P. For 
S2 we will assume a general equation and then do 
the case analysis. Cartesian coordinates are intro- 
duced with the origin at P. The eye is along the 
z-axis at z = +m, so that the projection is on a 
plane parallel to the x-y plane (see figure 8). 

For surface Si 

yl = a2z2 + a3zx + aG2 (1) 

Without loss of generality, we have assumed that 

%trictly true only for an infinite precision line drawing. Fi- 

gures 38 and the accompanying discussion in section 16 gives 

an example of what can happen under finite resolution. 
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the x - z plane is tangent to St. 
Now, the limb is given by 

dY1 -=2a2z+a3x=O+z=~ 
dZ 2a2 

By substituting back, we get 

YI = (a4 - $)x2 
2 

This is the equation of the limb on Sr in the neigh- 
borhood of the origin. 

For surface S2 

y2 = boz + blx + b2z2 + b3zx + b4x2 (3) 

As before, any limb on this would be given by 

dY2 - = b. + 2b,z + b3x = 0 + 
dZ 

z= 
-b3x - b. 

2b2 

By substituting back, we get the limb equation 

b,2 
Y2 = - 4b2 

bob, 
__ + (b, - %)x 

2 

b2 + (b4 - -)x2 
% 

Recall that we have assumed that there is no limb 
on this patch passing through P. This implies that 
b. # 0, since x = 0 at P. 

From (1) and (3), the equation of the intersec- 
tion curve of S1 and S,, i.e., the edge, is: 

-boz - blx + (a2 - b2)z2 + 

(a3 - b&x + (a4 - b&x2 = 0 

Fig. 9. The four quadrants. 

Fig. 10. Viewing quadrant 1 

from which 

t;:: 

+ 

dz bl - 2(a4 - 

z= 
bdx - (a3 - Wz 

-b. + 2(a2 - b2)z + (a3 - b3)x 

What we really want is the slope of the tangent 
to the projected edge, i.e., 

-=A!P!.E+dy dy 
dx az dx ax 

Substituting, we get 

4 
z= 

(2a2z + a3x) 
bl - 2(a4 - b4)x - (a3 - b3)z 

-b,, + 2(a2 - bz)z + (a3 - b3)x 

+ (a32 + 2a+x) (4) 

As b. # 0, $ = 0 at P, or stating this in words, 

the slope of the tangent to the intersection curve 
is 0 at P. From (2), the equation of the limb, it is 
easy to see that the slope of its projection is also 0 
at P. This means that the projection of the in- 
tersection curve is tangent to the projection of the 
limb curve. 

We are now ready to list the junctions which 
arise from the projection of a sufficiently small 
neighborhood of P. Let TP1 be the tangent plane 
to St at P. The viewpoint is constrained to lie in 
this plane. Let TP2 be the tangent plane to S2 at 
P. St and S2 divide the three-dimensional space in 
the neighborhood of P into four quadrants as 
shown in figure 9. By putting in solid material in 
various quadrants and viewing from various direc- 
tions in TP1 we can generate all possibilities. The 
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reader will note the similarity of this procedure to 
the procedure used by Huffman [ll] for the 
trihedral world. To begin the case analysis: 

1. Solid material in only one quadrant. This gives 
two subcases: 
a) Solid material in quadrant 1. Depending on 

whether the viewpoint is in the upper or 
lower half-plane, we get the two junctions 
in figure 10. Recall that we had shown 
earlier that the projection of the edge is 
tangent to the projection of the limb. 
Examples of these junctions are A and B in 
figure 13. 

b) Solid material in quandrant 2. This gives us 
the “junction” in figure 11. Note that here 
the limb curve itself is occluded. To help 
visualize the physical situation, examine 
junction C in figure 13. The dotted line 
there corresponds to the hidden limb. 
Unlike the other junctions, this cannot be 
identified directly because it does not 
correspond to any tangent or curvature dis- 
continuity in the line drawing. We have to 
allow for the possibility of this junction 
being present by introducing “phantom” 
nodes on all curved lines in the drawing 
which could correspond to convex edges. 
(This “junction” cannot occur on projec- 
tions of limbs or concave edges.) 

1 I + c 

Fig. 12. One more labelling for a curvature-l. 

Solid material in two quadrants. There are two 
subcases. One is when adjacent quadrants are 
occupied. In that case there is only one surface 
at P. The other case is when opposite quad- 
rants are occupied, for example (1,3) or (2,4). 
In this case, e violates our definition of an 
edge. 
Solid material in three quadrants. In the first 
subcase, let 1 be the empty quadrant. In this 
case P is hidden. If 2 is the empty quadrant, we 
get the junction in figure 12. We get an exam- 
ple of this junction when a cylinder is joined to 
a plane-junction D in figure 13. 

Fig. II. Another “junction”. Fig. 13. Objects corresponding to different junctions. 
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4. Solid material in all four quadrants. Here no 
surfaces are defined. 

10 Projection of a Vertex Neighborhood 

We begin our analysis of the projection of a 
vertex with the observation that, under general 
viewpoint, no limb can pass through a vertex. As 
the vantage point moves, the limb curve moves on 
the surface and it interests the vertex only for a 
particular viewpoint. 

Our next observation is elementary if one is 
familiar with differential geometry. However, for 
completeness, we give a simple proof. 

Theorem. If two surface elements S1 and S2 in- 
tersect along a curve C at the point P, then TP1 
(the tangent plane to S1 at P) and TP2 (the tan- 
gent plane to S2 at P) intersect along a straight 
line 1 such that at P, the projection of 1 on the 
image plane is tangent to the projection of C. 

Proof. Consider the Taylor Series Expansions 
of the graphs of the two surfaces with P as the 
origin. The third- and higher-order terms can be 
ignored without loss of generality. 

yl = a02 + a+ + a# + a3zx + ag2 
y2 = boz + blx + b2z2 + b3zx + b+x2 

First let us find the equation of the edge curve 
along which these surfaces intersect. This is given 

by 

(a0 - bo)z + (a1 - b& + (a2 - b2)z2 

+ (a3 - b3)zx + (a4 - b4)x2 = 0 

from which 

dz 

z=- 

(a1 - b,) + 2(a4 - b4)x + (a3 - b3)z 

(a0 - bo) + 2(a2 - b2)z + (a3 - b,)x 

What we really want is the slope of the tangent 
to the projected curve, i.e., 

dy aydz -- +2X 
dx - azdx ax 

Substituting, we get 

4 -=-(ao+2azz+ag) 
dx 

(a1 - b,) + 2(a4 - b4)x + (a3 - b3)z 
(a0 - b,) + 2(a2 - b2)z + (a3 - b3)x 

+ (a1 + a3z + 2aG) 

At the origin, this simplifies to 

4 aoh - albo 
z= a0 - bo 

Now consider the equations of the two tangent 
planes 

y1 = aoz + alx 
y2 = boz + b,x 

The equation of the intersecting line is given by 

(a0 - bo)z + (al - bl)x = 0 

Using this to eliminate z, we get 

aoh - ado 
Y= 

a0 - h 

X (6) 

which has the same slope as (5). 
This result has an immediate consequence. The 

projection of a vertex locally looks like the pro- 
jection of an equivalent polyhedral vertex formed 
by replacing each of the surface elements by their 
tangent planes. This results in a great simplifi- 
cation in the analysis, as all the results on 
polyhedral junction labelling become relevant. 
Find the equivalent straight line junction by re- 
placing each image curve at the junction by its 
tangent and look up (or derive) its labelling possi- 
bilities from a polyhedral junction catalog. For 
example, if it is known a priori that exactly three 
surface elements meet at a vertex, then the label- 
ling possibilities are exactly those of the Huff- 
man-Clowes set (see figure 14). As we want to 
deal with a more general class, further analysis 
wiil be necessary as in the next subsection. 

10.1 Labelling Polyhedral Junctions 

In section 4, we listed the most significant pieces 
of work on this problem-starting with Huffman- 
Clowes labelling for the trihedral world and 
Mackworth’s gradient space approach for deal- 
ing with arbitrary number of surfaces meeting 
at a vertex. We also noted Draper’s empirical 
observations on the combinatorial explosion in 
the number of alternative interpretations when no 
restrictions are made on the number of surfaces 
meeting at a vertex. 

It is clear that we need some way of pruning 
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Fig. 14. Equivalent polyhedral junction. 

these weird interpretations. Kanade’s heuristics 
unfortunately are applicable only to the classes of 
objects which have parallel edges and faces with 
axes of symmetry. We need a criterion which 
is more generally applicable. Several attempts 
[1,3] have been made to find simplicity criteria/ 
minimization schemes to find the psychologically 
preferred interpretations of line drawings. Most 
of these approaches are limited to isolated image 
curves. Instead of attempting to find grand global 
simplicity criteria, we limited ourselves to local 
simplicity. Based on the observation that all the 
highly counter-intuitive interpretations involve 
a number of hidden faces, we develop our 
criterion-for each junction find the vertex inter- 
pretations with the minimum number of faces 
meeting at the vertex. The interpretation should 
be stable under general viewpoint. Now for 
polyhedra, at a vertex there are exactly two faces 
sharing an edge, and exactly two edges bounding 
a face. It follows that the number of edges at a 
vertex is equal to the number of faces incident 
at the vertex. Therefore we have an equivalent 
version of the rule-find interpretations involving 
the minimum number of edges. 

An example will make this clearer. Consider an 
arrow junction as shown in figure 14. Each of the 
three lines which meet at the junction is the pro- 
jection of an edge which is incident on the corre- 
sponding vertex. From our simplicity rule, we try 
to find vertex interpretations which require only 
three edges-or equivalently only three faces 

Equivalent Straight Line 

Junction for jl is arrow 

Labelling Possibilities 

+ +(f 

meeting at the vertex. This means that, for the 
arrow, our local labelling possibilities are the 
same as that for the Huffman-Clowes scheme for 
the trihedral world. By the same reasoning, for 
the Y-junction, we get the same three labelling 
possibilities as in the Huffman-Clowes scheme. 
For L-junctions, we need three faces as well- 
there are no legal interpretations with two faces. 
Here again, the labelling possibilities are the 
same as that of the Huffman-Clowes scheme. 

For higher-order junctions with four and more 
lines meeting at the junction, we need n faces 
meeting at the vertex if there are n lines meeting 
at the junction. We need a way to generate the 
labelling possibilities for such higher-order junc- 
tions as may occur in a line drawing, e.g., in over- 
head views of square pyramids. Our algorithm to 
do this is based on a gradient space construction 
reminiscent of those used by Mackworth [19] and 
Huffman [12]. To help in enforcing the minimum 
number of faces rule, we need the following 
theorem which is proved in Malik [24]. 

Theorem. If there are n lines meeting at a junc- 
tion, n 2 3, all the labelling possibilities for the 
junction which correspond to the minimum num- 
ber of faces at the vertex, correspond to either 
zero or one hidden face at the junction. 

Now we are ready to generate the labelling pos- 
sibilities. To do this, first consider the simpler 
case-all the labels are connect. If a labelling is 
legal, it should be possible to construct a reciproc- 
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RECIPROCAL FIGUSE 

Fig. 15. Generating junction labelling possibilities. 

al figure in gradient space. 
Instead of treating this as a geometric construc- 

tion with ruler and pencil, we can use vector nota- 
tion. Let u1,u2,. . . ,u, be the (outward) pointing 
vectors corresponding to the lines which meet at 
the junction. Let v1,v2,. . . ,v, be unit vectors 
perpendicular to these lines corresponding to a 
counterclockwise rotation by 90 degrees. Con- 
sider the vector equation 

llV1 + I972 + . . . + lnVn = 0 (7) 

where 11,12, . . . ,Z,, are II scalars. If the reciprocal 
figure is constructible, it corresponds to a solution 
of this equation. Figure 1.5 illustrates this. Here 
equation (7) has a solution with Zl,Z2,Z3,Zrl all > 0; 
and the all convex labelling for the junction is le- 
gal. Note that our “n faces for 12 lines” assumption 
is implicitly buried in this equation. If there were 
hidden lines corresponding to two hidden faces 
meeting, they would have given rise to additional 
terms on the left-hand side of the equation. 

This equation being a two-dimensional vector 
equation is actually two linear equations in the n 
unknowns 11,12,. . . ,Z,,. A convex (concave) 
labelling for a line implies that the corresponding 
variable li > 0 (< 0). Given a proposed labelling 
for the lines meeting at the junction, we have a 
system of n + 2 linear constraints (2 equality con- 
straints and IZ inequality constraints). If the sys- 
tem has a feasible solution, the labelling is legal; 
else it is not. A naive approach to finding all 
possible legal labellings would be to construct 2” 
linear programming problems corresponding to 
the 2” possible labellings, and then determining 
for each problem the existence of a feasible solu- 

Ai t 
- 
\:/ - 

Fig. 16. Generating junctions with occlude labels. 
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tion. Of course, one can do much better than 
that-a fast algorithm is described in Malik [24]. 

By changing the signs of all the variables in the 
linear system described above, we see that label- 
lings come in pairs. This is another way of ex- 
plaining the Necker ambiguity corresponding to 
the convex/concave reversal. 

To find the legal labellings corresponding to 
one hidden face is easy. Take a legal all (convex/ 
concave) edge labelling. Each pair of adjacent 
lines at the junction define a sector. Consider a 
sector defined by two lines A and B which have 
been labelled concave. Consider the face defined 
by the corresponding edges. If this face were hid- 
den, i.e., both these lines corresponded to convex 
occluding edges instead of concave edges, the re- 
ciprocal figure would remain the same. One can 
therefore label A and B as occluding convex 
edges-with the direction of the arrow such that 
the sector defined by A and B is to the left. Figure 
16 shows this procedure. 

This hierarchical determination of labelling 
possibilities-first between convex and every- 
thing else in the solution of equation (7) and then 
subsequent refinement-is also a good strategy 
for doing consistency checking. This is discussed 
in section 12.2. 

11 The Junction Catalog 

The results of the analysis in sections 7-10 can be 
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Fig. 17. The Junction Catalog for Piecewise Smooth Surfaces. 

summarized in the catalog in figure 17. 

12 Labelling and Constraint Satisfaction 
Problems 

Ignoring for the moment the invisible “junction” 
in figure 11, conceptually the labelling algorithm 
is straightforward. The local possibilities at each 

junction with I 3 lines have been enumerated in 
section 11 and, for multi junctions, the labellings 
can be computed by the procedure described in 
section 10.1. Consistency is forced by requiring 
the label at each end of the line to be the same.7 
This makes the problem just a particular instance 
of the class of constraint satisfaction problems. 
Mackworth [20] presented a unified framework 
for these problems and defined a class of algo- 

‘Except that the “invisible” junctions have to be allowed for 

in some way. 
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rithms useful for solving them. Mackworth 
and Freuder [21] analyzed the time complexity 
of these algorithms. Adequate background for 
understanding our paper may be found in section 
12.1. In section 12.2, we develop the notion of 
collapsed constraint satisfaction problems which 
can lead to great speedup for certain kinds of 
problems-line labelling being one of them. A 
strategy for dealing with “invisible” junctions is 
formulated in section 13. These ideas are used to 
develop the algorithm which is described in sec- 
tion 14. The algorithm was implemented and the 
results of some test runs are presented in section 
1.5. 

12.1 Constraint Satisfaction Problems 

Following Mackworth [20], a constraint satisfac- 
tion problem (CSP) may be defined as follows: 
Given a set of n variables (vi, . . . v,) with asso- 
ciated domains (Di, . . . D,) and a set of con- 
straining relations each involving a subset of the 
variables, find all possible n-tuples such that each 
n-tuple is an instantiation of the n variables 
satisfying the relations. We will limit ourselves 
to CSPs where the domains are discrete, finite 
sets and the relations (predicates) are unary and 
binary. We will use Pi to denote the unary pre- 
dicate to be satisfied by vi and P, to denote the 
binary predicate to be satisfied by vLvj. It will be 
required that Pij(Vi, Vi) E Pji(vj,vi). TO put line 
labelling in this framework, we let the variables 
correspond to the junctions in the line drawing. 
The initial variable domains are simply the possi- 
ble interpretations for the junctions (for an L- 
junction this set will have six elements) and the 
binary predicates simply require each curve to 
have the same label at both ends. Waltz’s filtering 
algorithm-one of the earliest attempts to reduce 
unnecessary search in solving CSPs-was de- 
veloped in this context. 

A straightforward approach to solve a CSP is 
backtracking. The variables are sequentially in- 
stantiated from ordered representations of their 
domains. As soon as all the variables of any predi- 
cate are instantiated, its truth value is tested. If it 
is true the process of instantiation and testing con- 
tinues, but if it is false the process fails back to the 
last variable instantiated that has untried values in 

its domain and reinstantiates it to its next value. 
Backtracking can be grossly inefficient and a solu- 
tion tends to be exponential both in the worst and 
average case. 

Several CSPs are known to be NP-complete- 
in particular Huffman-Clowes labelling for 
trihedral scenes [ 151. It is unlikely therefore that a 
polynomial time algorithm exists for solving 
general CSPs. Accordingly, the class of network 
consistency algorithms-Waltz filtering being a 
canonical example-was invented. These algo- 
rithms do not solve a CSP completely, but they 
eliminate, once and for all, local inconsistencies 
that cannot participate in any global solutions. 
These inconsistencies would otherwise have been 
repeatedly discovered in any backtrack solution. 
A clear treatment of these algorithms may be 
found in Mackworth [20] and in Mackworth and 
Freuder [21]. 

In the next section, we develop the notion of 
collapsed constraint satisfaction problems which 
can lead to great speedup for the line labelling 
problem. 

12.2 Collapsed Constraint Satisfaction Problems 

Consider the problem of finding a Huffman- 
Clowes labelling for the line drawing in figure 18. 
The edges are to be labelled from the set { + , -, 
-+, t,}. Let us use the label nonconvex denoted 
by “!” for any label in the set { - , +, t,} . This 
gives us the collapsed label set shown in figure 19. 

Consider the CSP associated with the new 
labelling problem. The size of each Di is now 
smaller, as shown in table 2. Consequently, we 
would expect to take less time for solving this 
collapsed CSP. One can actually make a stronger 
statement. A connected subgraph containing only 
arrow and Y-nodes can be labelled in exactly two 
ways, without any backtracking. Consider the 
subgraph ABCDEFGH is figure 18. As soon as 
any of the nodes in this graph are labelled (two 
ways), the rest of the nodes are labelled uniquely 
by constraint propagation. For example, if A is 
labelled as an arrow with the middle line a “+“, B 
must be labelled as a Y-junction with all lines 
labelled “+“. That implies in turn that D must be 
labelled as an arrow with the middle line “!” and 
so on until all the nodes ABCDEFGH are la- 
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THE ARROW-Y PATH HAS EXACTLY 
TWO LABELLINGS, WHICH CAN BE 
DETERMINED WITHOUT ANY BACKTRACKING 

Fig. 18. A test figure. 

i 
+ 

/ 
!  

Fig. 19. A collapsed label set. 

belled. To see that this always works, we note 
that for, both arrow and Y-nodes, as soon as one 
of the arcs leading to it is labelled, the node is 
forced a unique label. The two labellings for an 
arrow-Y subgraph are related by a Necker flip. 
After labelling the arrow-Y subgraph, we try to 
label the nodes which are connected to it by an 
arc. The attempt to find a consistent labelling for 
these may lead to a unique determination of the 
labelling for the arrow-Y subgraph. In figure 18, 

Fig. 20. Refining a coarse labelling. 

this happens to be the case and we obtain a 
unique labelling for the figure without any back- 
track search. We can now go back to our original 
problem-finding a labelling from the Huffman- 
Clowes set. Figure 20 shows the (now fewer) op- 
tions for some nodes. At A there are two pos- 
sibilities (originally three), at E there are now 
four options (as opposed to five), and at J there 
has been a reduction from six labelling possibili- 
ties to four. In fact in this figure the options at 
each node are strictly fewer, guaranteeing that 
the CSP is easier to solve. 

We will now study this approach in a general 
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Table 2. Reduction in D;. 

Junction Di for H-C set Di for collapsed 
label set 

L 6 3 

Arrow 3 2 

Y 5 2 

setting. Let A be a constraint satisfaction problem 
(CSP) with the set of variables (vi,. . . ,v,) with 
associated domains (Or,. . . ,D,), unary predi- 
cates Pi and binary predicates P,. Construct a 
new constraint satisfaction problem A’ with a set 
of variables (vi’, . . . ,vn’) with associated do- 
mains (Di’, . . . D,‘) such that for all i, Di’ is 
a partition8 of Di. The unary predicates Pi’ and 
binary predicates P,’ satisfy the following: 

Pi’(Vj’) E 3X.X E Vi’ A P,(X) 
Pij’(Vi’,Vj’) E 3XY.X E Vi’ A Y E Vj’ A Plj(X,Y) 

To verify that the collapsed version of 
Huffman-Clowes labelling described earlier is a 
collapsed CSP according to our definition, consid- 
er figure 21. The collapsed labels for the arrow 
are easily seen to correspond to a partition of the 
original Huffman-Clowes labels. This process can 
be repeated for the other kinds of nodes. To be 
more formal, the collapsing process defines 
equivalence classes of line labels and induced 
equivalence classes of junction labels. These 
equivalence classes partition each Di. 

It is easy to see that any solution of the original 
CSP A is mapped to a solution of the collapsed 
CSP A’. Note that more than one solution of A 
may be mapped to the same solution of A’ and 
that it is possible that a solution of the collapsed 
CSP may not correspond to any solution of the 
original CSP. 

At this point we would like to trace the history 
of the idea of using collapsed CSPs. Mackworth, 
in his PhD thesis, used a collapsed label set, 
although it was different from the one in figure 19. 

*Recall that the partition n of a set X is a set of subsets of X 
such that 
1. For each x E X, x is an element of exactly one S E nT. 
2. 4L7-f. 

COLLAPSED 

LABEL SET ! 

A 

! 

+ 

Fig. 21. Collapsing arrow labels. 

He used the collapsed label “connect” for the set 
{ + , -} and “occlude” for the set {t,-+} . We feel 
that our way of collapsing the label set is probably 
more useful in cutting down search (particularly 
noticeable for arrow-Y subgraphs). 

Recently Mackworth, Mulder, and Havens [22] 
defined a hierarchical arc consistency algorithm 
HAC intended to exploit hierarchically structured 
domains (like in line labelling). Our work [23,24] 
was done independently. HAC is intended 
primarily for the first stage of solving a CSP- 
preprocessing by network consistency algorithms. 
Mackworth et al. analyze the complexity of their 
algorithm showing improved best and worst case 
performance when the domains obey certain 
restrictions. Our arguments, on the other hand, 
were merely heuristic. 

Obviously, the idea of solving collapsed CSPs 
can be applied recursively. The four edge labels 
{ + , - ,+ ,t,} could be regarded as a single label 
in an attempt to just label each line as either an 
edge or a limb. The collapsed label set for this is 
really simple. Except for the curvature-L and T- 
junctions, every junction has a unique label. At 
the next stage, one distinguishes between edges to 
be labelled + and !. 

13 Dealing with Invisible Junctions 

If there were no “junctions” like the one in figure 
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Fig. 22. Transition possibilities at an invisible junction. 

Fig. 23. An object with even number of transitions. 

11, all lines would have the same label at each 
end. For the projection of a convex edge, the 
label could change from + to + or vice versa. On 
the occluding side of the junction, whether the 
label is + or t is determined by the sign of the 
curvature of the line, as shown in figure 22. To 

understand the justification for this, the reader is 
referred to the derivation in section 9. 

First we consider the case of image curves 
which have the same sign of curvature through- 
out. If there occur 0, 2, or any even number of 
such transitions, then the labels on both ends of 
the line are the same. Otherwise, they change as 
indicated in figure 22. Figure 23 shows an object 
with a curve for which the label changes twice. As 
we are trying to solve the sparse labelling prob- 
lem, we are interested only in the labels at the 
junctions. One can model all the cases by intro- 
ducing a phantom node with the labelling pos- 
sibilities shown in figure 24. The junctions with 
concave and limb labels are included to handle 
correctly the case when a phantom node is 
introduced on a limb or concave edge. 

Next consider the case of a curve like AD in 
figure 25 where the sign of the curvature changes 
at some interior points B and C. In this case we 
segment at B and C, and introduce one phantom 
node in each of the curve segments. The possible 
labels for each phantom node are as described 
earlier. At the knot points B and C, the line label 
is preserved. Figure 26 is an example of an object 
which can be labelled correctly by this procedure. 

14 The Labelling Algorithm 

If one is only interested in input-output behavior, 
a simple and yet functionally correct algorithm 
can be implemented by (a) introducing phantom 
nodes on each arc as described in section 13, 
followed by (b) backtrack search for all consis- 
tent labellings. If one is also interested in reducing 
the running time of the algorithm, more care is 
needed. In this section we will describe our algo- 

Fig. 24. Labelling possibilities for a phantom node. 



Malik 

Fig. 25. Changing signs of curvature. 

Fig. 26. An object where more than one phantom node is 

needed on a curve. 

rithm which tries to reduce backtrack search as far 
as possible by exploiting the notion of collapsed 
label sets. We will illustrate the algorithm by trac- 
ing through it labelling the scene in figure 27. 

1. Split the ISG at T-junctions and find con- 
nected components. Each component can then 
be labelled independently. In figure 27, there 
is only one connected component. In scenes 
with multiple objects, there would be several 
components with distinct objects belonging to 
distinct components. 

2. Label the drawing with the label set {limb, 
edge}. For each of these labelling, perform 
steps 3-6 below. This produces the labelling at 
the top of figure 27. 

3. Introduce phantom nodes on arcs correspond- 
ing to curved edges according to the procedure 
suggested in the previous section.9 This is 

90ne additional trick: It can be shown that if the outer curve 

of a three-tangent junction has the same sign of curvature 

throughout, there can not be an invisible junction on it. As a 

consequence, no phantom node is introduced on AB. 

Fig. 27. Tracing through the algorithm. 

shown in the bottom half of figure 27, where 
the symbol 0 is used to denote phantom nodes. 

4. Label the edges with the label set (convex2, 
nonconvex2). For each of these labellings 
perform steps 5-6. We get the two labellings in 
the top half of figure 28. They correspond to 
the two labellings for the arrow at C. The 
other arrow-Y path is labelled uniquely. 

5. For each junction, find labelling possibilities 
consistent with the previously assigned coarse 
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Fig. 28. Tracing through the algorithm contd. 

6. 

labels. This is a straightforward process using 
the catalog in figure 17 augmented with the 
labelling possibilities for a phantom node from 
figure 24. 

Perform a node and arc consistency filtering 
followed by a backtrack search to generate all 
labellings. Figure 28 shows the results. Left to 
right, the three labellings correspond to our 
intuitive interpretations-an object (a) lying 
on its side, (b) resting on its bottom face, and 

(c) floating in air. 

The algorithm described above was im- 
plemented in Zetalisp on the Symbolics-3600. 
The implementation is fairly straightforward. A 
line drawing is represented as a set of points with 
their coordinates and a set of curves with 
appropriate directional and connectivity informa- 
tion. This information is read in from a file and 
the image structure graph constructed. In this 
process, each junction is classified appropriately 
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as an arrow, three-tangent, etc. The behaviour of 
the program after this stage is aptly described by 
the algorithm stated above. 

15 Some Typical Results 

The computer implementation of the algorithm 
was tested on several hand-input line drawings. 
The objective of this was to seek answers to the 
following questions: 

1. Do phantom nodes cause a combinatorial ex- 
plosion in the number of labellings generated? 
One could argue that, since potentially for 
each curved edge the label could be different 
at the two ends, what used to be the main 
source of constraint propagation in polyhedral 
scene labelling is no longer available. 

2. Is the “minimum number of surfaces at a 
vertex” rule (section 10.1) really useful? For 
junctions with three lines or less, this reduces 
to Huffman-Clowes labelling which gives good 
results where it is applicable. What about 
higher-order junctions? We would like the 
algorithm to come up with labellings which 
correspond to the interpretations found by 
human observers. 

Fig. 29. Possible labellings of a curved object. 

3. In the worst case, the time complexity of our 
algorithm is exponential. How good is it in 
practice? How useful is the idea of using 
collapsed label sets to cut down search? 

Figures 29-34 give the labellings found for some 
scenes. Table 3 presents the results of these runs. 
For figure 31, which is a multiple-object scene, 
the object analyzed is the house. For figure 33, 
the object analyzed is the “pinched pyramid”- 
the figure which has an eight line junction in it. 
Recall that, for multiple object scenes, the algo- 
rithm labels each line drawing component inde- 
pendently, and hence it is only worthwhile to ask 
the questions mentioned above for single objects 
rather than whole scenes. 

First, let us study whether the labellings found 
satisfy the desirable requirement of being few and 
corresponding to human intuition. The most 
typical ambiguity is that between concave edges Fig. 30. Possible labellings of a curved object. 

loThis construction was pointed out to me by Christos Papadi- 

mitriou. 
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Fig. 31. Possible labellings of a curved object. 

and convex occluding edges. A tetrahedron stuck 
to a wall, a tetrahedron stuck to the table, and a 
tetrahedron floating in air can give rise to the 
same line drawing but correspond to three dif- 
ferent labellings. This is a fundamental ambiguity 
and cannot be resolved without appealing to 
support reasoning. The drawing in figure 30 is a 
good example. The house in figure 31 has four 
labellings-two which correspond to the house 
resting on the ground and two which correspond 
to the house floating in air. For each of these 
cases, the two labellings correspond to the edge 
AB being convex or concave-certainly a very 

intuitive result. Figure 32a and b are variations of 
the same object-in figure 32a the edges 1,2, and 
3 are straight and, in Figure 32b, they are curved. 
In both the figures, the left-most labelling is the 
intuitive one, but one can visualize physical 
realizations for the other interpretations. Figure 
33 with its single labelling was a pleasant surprise. 
Figure 34 has the maximum number of labellings 
found-ten. Of these, the top six are just in- 
stances of the concave/occluding edge ambiguity. 
The bottom four are more unusual. They cor- 
respond to an invisible junction in the edge AB. 
The physical objects corresponding to these 
four labellings are quite counter-intuitive but 
constructiblelO nevertheless. We will try to help 
the reader visualize an object corresponding to 
the labelling L in figure 34. In figure 35, is shown 
a dotted line corresponding to the position of the 
invisible limb corresponding to the invisible junc- 
tion on AB. Figure 36 shows what the object 
looks like when viewed from another direction- 
along the arrow in figure 35. 

Now let us study the time complexity of the 
algorithm. This is done in table 3. The times given 
are in seconds for the Symbolics-3600 imple- 
mentation. In the column called “useful coarse 
labels,” the notation IZ of m means that of the m 
coarse labellings obtained at step 4 of the algo- 
rithm (section 14), IZ yielded a legal final labelling. 
There is a marked increase in time taken with the 
number of edges meeting at a junction in figures 
32 and 33. Figure 32a and b differ only in that 
three of the stright lines in figure 32a become 
curved in figure 32b, resulting in the introduction 
of more pseudo-junctions by the algorithm. That 
adds three extra nodes and three extra arcs to the 
image structure graph with consequent increase 
in time complexity. Also to be noted is the 
usefulness/lack of usefulness of coarse labels. In 
figure 34, so many phantom nodes need to be 
introduced that there are no long arrow-Y sub- 
graphs. Coarse labels prove pretty useless under 
these circumstances. 

16 Performance Evaluation 

We will now evaluate the labelling scheme with 
respect to its performance on a set of “self- 
evident” criteria. 
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Fig. 32. Possible labellings of a curved object. 

Fig. 33. Possible labellings of a curved object. 
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Fig. 34. Possible labellings of a curved object. 

1. We should be able to handle a broad range of 

objects-n faces meeting at a vertex with each face 
a portion of a general surface. The class of objects 
that can be handled is defined in section 5. We 
will let the reader evaluate our success-an ex- 
tended discussion may be found in Malik [24]. 
Two particular problem cases are interesting: 

a) The apex of a cone: Consider the labelling 
shown in figure 37. Our scheme regards this 
as an illegal labelling. If Ss is a flat surface, 
and S1,S2 are conical cavities, this is a valid 
labelling. When conical “surfaces” are 
allowed, one can generate almost any label- 

Fig. 35. A hard to visualize labelling. 

Fig. 36. The object in figure 35 viewed from another angle. 

ling. Clearly this would be an unacceptable 
state of affairs. It is our opinion that conical 
“surfaces” may have to be handled by pro- 
cessing at some other level, using other line 
drawing cues or image intensity informa- 
tion. The problems arise only when the apex 
of the cone is included-conical surfaces 
minus the apex are acceptable. 

b) General viewpoint: The upper half of figure 
38 shows line drawings of two objects 
viewed under general viewpoint and a suf- 
ficiently high-precision imaging situation. 
When the line drawing is obtained as the 
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Table 3. Results of some test runs. 

Fig. 33 11 18 lof 4 1 1.87 1 

Fig. 34 11 16 lof16 10 0.32 10 

Fig. 37. Allowing conical “surfaces”. 

Fig. 38. Merging junctions. 

output of a process with limited resolution, 
junctions 1 and 2 would get merged and so 
would junctions 3 and 4. This would result 
in the drawing in the lower half of figure 38. 
This drawing would not be labelled correct- 
ly by our scheme. 

Fig. 39. Edge detector output compared with idealized line 

drawings. 
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To solve this problem in the context of 
known objects, one could suitably augment 
the junction catalog. This is clearly not a 
satisfactory solution for handling general 
scenes. Another approach would be to 
consider variants of the general viewpoint 
assumption. Our definition of general view- 
point was that the vantage point could move 
in a spherical neighborhood without chang- 
ing the line drawing. One could relax this by 
allowing viewpoints confined to a plane. 
Alternatively, one could consider some 
numerical measure of stability of viewpoint. 
More work is needed on this problem. 

2. When given a line drawing of a legal scene, the 
scheme should find (a) all the legal labellings, and 
(b) only legal labellings. Our construction of a 
junction catalog for the class of scenes defined in 
section 5 is as rigorous as the Huffman-Clowes 
construction for the trihedral world. We could 
therefore make the same claim-all the legal 
labellings will be found-except for one signif- 
icant difference. Our scheme can find only the 
subset of legal labellings which correspond to a 
minimum number of faces interpretation at each 
vertex. It is not too difficult to modify the scheme 
so as to ignore this restriction. However, we feel 
that the resulting gain in geometric adequacy is 
not worth the loss of practical usefulness. 

We conjecture that our scheme finds only legal 
labellings; i.e., corresponding to any sparse 
labelling found by our algorithm, some legal 
scene can be found. We do not have a rigorous 
result to prove this. However heuristic arguments 
and the results of all our test runs support this 
conjecture. 

3. The scheme should be robust with respect to 
errors in the input line drawing. This is the major 
weakness of our algorithm at least in the basic 
form presented in section 14. Our algorithm was 
tested on hand-input line drawings as opposed to 
real edge data. To deal with the output of current 
edge detectors, the scheme should be able to cope 
with missing edges, spurious edges, missing junc- 
tions, improperly classified junctions, etc. Figure 
39 illustrates this-the top half shows the output 

from an edge detection and linking scheme [27], 
and the bottom half shows what output we would 

like to have. 
Certain kinds of junctions are more trouble- 

some than others. To distinguish between an 
L-junction and a curvature-L junction is really 
asking for too much. We can adapt our algorithm 
to handle this in a fairly easy way. Instead of hav- 
ing entries for two kinds of junctions-the L and 
the curvature-L-consider a hybrid junction 
which has the labelling possibilities of both the L 
and the curvature-L (just take the union of the 
appropriate rows in figure 17). The use of this 
modified catalog would result in our getting more 
legal labellings for the drawing, compared with 
the scheme described in the rest of this thesis. 
Another source of error could be the mis- 
classification of junctions. An arrow junction, a 
Y-junction, a three-tangent junction and a 
T-junction are discriminated by looking at the 
angles formed by the lines at the junction. With 
linking and curve fitting, a good edge detector 
should get the correct classification most of the 
time. If (by estimating the signal-to-noise ratio 
and some additional calculation) one can come up 
with numbers for the reliability of each junction 
classification, then one can use probability com- 
bination rules/fuzzy logic techniques to compute 
estimates of the reliability of various labellings of 
the line drawing. 

The labelling algorithm developed in section 14 
lacks robustness primarily because of the 100% 
confidence it assumes in the reliability of each 
junction. However, the junction catalog could be 
used as part of a more realistic algorithm, along 
the lines of earlier work [9,32] for polyhedral 
labelling. The ideas mentioned in the previous 
paragraphs could be incorporated into such an 
algorithm. Our junction catalog is small enough 
to permit the trial-and-error process inherent in a 
heuristic scheme. Needless to say, our statements 
here are mere statements of hope, until they are 
corroborated by an implementation tested on 
realistic input. 

We would like to point out that, to appreciate 
the work in this paper, one has to make a distinc- 
tion between two steps: (a) analyzing the geomet- 
ric constraints and (b) developing an algorithm to 
exploit the constraints. In this paper, these two 
steps were performed in sections 7-10 and section 
14, respectively. While the two steps are closely 
related, they are in fact logically distinct. Lack of 
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robustness in the presence of noisy input is a 
serious, perhaps fatal, problem for the algorithm 
outlined in section 14; it is irrelevant as far as the 
analysis of geometric constraints is concerned. 
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