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Abstract

Contextualized representations (e.g. ELMo,

BERT) have become the default pretrained

representations for downstream NLP applica-

tions. In some settings, this transition has ren-

dered their static embedding predecessors (e.g.

Word2Vec, GloVe) obsolete. As a side-effect,

we observe that older interpretability methods

for static embeddings — while more mature

than those available for their dynamic counter-

parts — are underutilized in studying newer

contextualized representations. Consequently,

we introduce simple and fully general meth-

ods for converting from contextualized repre-

sentations to static lookup-table embeddings

which we apply to 5 popular pretrained mod-

els and 9 sets of pretrained weights. Our anal-

ysis of the resulting static embeddings notably

reveals that pooling over many contexts signif-

icantly improves representational quality un-

der intrinsic evaluation. Complementary to an-

alyzing representational quality, we consider

social biases encoded in pretrained represen-

tations with respect to gender, race/ethnicity,

and religion and find that bias is encoded dis-

parately across pretrained models and internal

layers even for models that share the same

training data. Concerningly, we find dramatic

inconsistencies between social bias estimators

for word embeddings.

1 Introduction

Word embeddings (Bengio et al., 2003; Collobert

and Weston, 2008; Collobert et al., 2011) have been

a hallmark of modern natural language processing

(NLP) for many years. Embedding methods have

been broadly applied and have experienced parallel

and complementary innovations alongside neural

network methods for NLP. Advances in embed-

ding quality in part have come from integrating

additional information such as syntax (Levy and

Goldberg, 2014a; Li et al., 2017), morphology (Cot-

terell and Schütze, 2015), subwords (Bojanowski

et al., 2017), subcharacters (Stratos, 2017; Yu et al.,

2017) and, most recently, context (Peters et al.,

2018; Devlin et al., 2019). Due to their tremendous

representational power, pretrained contextualized

representations, in particular, have seen widespread

adoption across myriad subareas of NLP.

The recent dominance of pretrained contextual-

ized representations such as ELMo (Peters et al.,

2018) and BERT (Devlin et al., 2019) has served as

the impetus for exciting and diverse interpretability

research: Liu et al. (2019a); Tenney et al. (2019a)

study what is learned across the layers of these

models, Tenney et al. (2019b); Ethayarajh (2019)

consider what is learned from context, Clark et al.

(2019); Michel et al. (2019) look at specific atten-

tion heads, Hewitt and Manning (2019); Ettinger

(2020) address linguistic understanding such as syn-

tax and negation, and Wallace et al. (2019); Tan and

Celis (2019) address ethical concerns such as secu-

rity (adversarial robustness) and social bias. In fact,

the neologism BERTology was coined specifically

to describe this flurry of interpretability research.1

While these works have provided nuanced fine-

grained analyses by creating new interpretability

schema/techniques, we instead take an alternate ap-

proach of trying to re-purpose methods developed

for analyzing static word embeddings.

In order to employ static embedding inter-

pretability methods to contextualized representa-

tions, we begin by proposing a simple strategy for

converting from contextualized representations to

static embeddings. Crucially, our method is fully

general and assumes only that the contextualized

model maps word sequences to vector sequences.

Given this generality, we apply our method to 9

popular pretrained contextualized representations.

The resulting static embeddings serve as proxies

for the original contextualized model.

1We direct interested readers to a more complete survey
of this work from Rogers et al. (2020).
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We initially examine the representational qual-

ity of these embeddings under intrinsic evaluation.

Our evaluation produces several insights regard-

ing layer-wise lexical semantic understanding and

representational variation in contextualized rep-

resentations. Importantly, our analyses suggest

constructive improvements to potentially improve

downstream practices in using contextualized mod-

els. Simultaneously, we find that our static em-

beddings substantially outperform Word2Vec and

GloVe and therefore suggests our method serves

the dual purpose of being a lightweight mechanism

for generating static embeddings that track with

advances in contextualized representations. Since

static embeddings have significant advantages with

respect to speed, computational resources, and ease

of use, these results have important implications for

resource-constrained settings (Shen et al., 2019),

environmental concerns (Strubell et al., 2019), and

the broader accessibility of NLP technologies.2

Alongside more developed methods for embed-

ding analysis, the static embedding setting is also

equipped with a richer body of work regarding

social bias. In this sense, we view understand-

ing the encoded social bias in representations as

a societally critical special-case of interpretability

research. We employ methods for identifying and

quantifying gender, racial/ethnic, and religious bias

(Bolukbasi et al., 2016; Garg et al., 2018; Manzini

et al., 2019) to our static embeddings. These exper-

iments not only shed light on the properties of our

static embeddings for downstream use but can also

serve as a proxy for understanding latent biases in

the original pretrained contextual representations.

We find that biases in different models and across

different layers are quite disparate; this has impor-

tant consequences on model and layer selection

for downstream use. Further, for two sets of pre-

trained weights learned on the same training data,

we find that bias patterns still remain fairly distinct.

Most surprisingly, our large-scale evaluation makes

clear that existing bias estimators are dramatically

inconsistent with each other.

2 Methods

In order to use a contextualized model like BERT

to compute a single context-agnostic representa-

tion for a given word w, we define two operations.

2A humanist’s outlook on the (in)accessibility of BERT:
https://tedunderwood.com/2019/07/15/

do-humanists-need-bert/

The first is subword pooling: the application of

a pooling mechanism over the k subword repre-

sentations generated for w in context c in order

to compute a single representation for w in c, i.e.

{w1
c , . . . ,w

k
c} 7→ wc. Beyond this, we define con-

text combination to be the mapping from repre-

sentations wc1 , . . . ,wcn of w in different contexts

c1, . . . , cn to a single static embedding w that is

agnostic of context.

Subword Pooling. The tokenization procedure

for BERT can be decomposed into two steps:

performing a simple word-level tokenization and

then potentially deconstructing a word into mul-

tiple subwords, yielding w1, . . . , wk such that

cat(w1, . . . , wk) = w where cat(·) indicates con-

catenation. Then, every layer of the model com-

putes vectors w1
c , . . . ,w

k
c . Given these vectors, we

consider four pooling mechanisms to compute wc:

wc = f(w1

c , . . . ,w
k
c )

f ∈ {min,max,mean, last}

min(·), max(·) are element-wise min/max pooling,

mean(·) is the arithmetic mean and last(·) indi-

cates selecting the last vector, wk
c .

Context Combination. Next, we describe two

approaches for specifying contexts c1, . . . , cn
and combining the associated representations

wc1 , . . . ,wcn .

• Decontextualized: For a word w, we use a

single context c1 = w. That is, we feed the

single word w into the pretrained model and

use the outputted vector as the representation

of w (applying subword pooling if the word

is split into multiple subwords).

• Aggregated: Since the Decontextualized

strategy presents an unnatural input to the

pretrained encoder, which likely never en-

countered w in isolation, we instead aggre-

gate representations of w across multiple con-

texts. In particular, we sample n sentences

from a text corpus D (see §A.2) each of which

contains the word w, and compute the vec-

tors wc1 , . . . ,wcn . Then, we apply a pooling

strategy to yield a single representation that

aggregates representations across contexts:

w = g(wc1 , . . . ,wcn); g ∈ {min,max,mean}

3 Setup

We begin by verifying that the resulting static em-

beddings that we derive retain their representational

https://tedunderwood.com/2019/07/15/do-humanists-need-bert/
https://tedunderwood.com/2019/07/15/do-humanists-need-bert/
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strength, to some extent. We take this step to ensure

that properties we observe of the static embeddings

can be attributed to, and are consistent with, the

original contextualized representations. Inspired

by concerns with probing methods/diagnostic clas-

sifiers (Liu et al., 2019a; Hewitt and Liang, 2019)

regarding whether learning can be attributed to

the classifier and not the underlying representation,

we employ an exceptionally simple parameter-free

method for converting from contextualized to static

representations to ensure that any properties ob-

served in the latter are not introduced via this pro-

cess.

When evaluating static embedding performance,

we consider Word2Vec (Mikolov et al., 2013) and

GloVe (Pennington et al., 2014) embeddings as

baselines since they have been the most promi-

nent pretrained static embeddings for several years.

Similarly, we begin with BERT as the contextual-

ized model as it is currently the most prominent

in downstream use among the growing number of

alternatives. We provide identical analyses for 4

other contextualized model architectures (GPT-2

(Radford et al., 2019), XLNet (Yang et al., 2019),

RoBERTa (Liu et al., 2019b), DistilBERT (Sanh

et al., 2019)) and, in total, 9 sets of pretrained

weights. All models, weights, and naming con-

ventions used are enumerated in Appendix C and

Table 9. Additional representation quality results

appear in Tables 4–7 and Figures 4–10. We pri-

marily report results for bert-base-uncased;

further results for bert-large-uncased ap-

pear in Figure 3.

4 Representation Quality

4.1 Evaluation Details

To assess the representational quality of our static

embeddings, we evaluate on several word similar-

ity and word relatedness datasets.3 We consider

4 such datasets: RG65 (Rubenstein and Goode-

nough, 1965), WS353 (Agirre et al., 2009), SIM-

LEX999 (Hill et al., 2015) and SIMVERB3500

(Gerz et al., 2016) (see §A.4 for more details).

Taken together, these datasets contain 4917 exam-

ples and specify a vocabulary V of 2005 unique

words. Each example is a pair of words (w1, w2)
with a gold-standard annotation (provided by one

or more humans) of the semantic similarity or relat-

edness between w1 and w2. A word embedding is

evaluated by the relative correctness of its ranking

3Concerns with this decision are discussed in §A.3.

Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636
GloVe - 0.6873 0.6073 0.3705 0.2271

BERT-12 (1) 500K 0.7206 0.7038 0.5019 0.3550
BERT-24 (1) 500K 0.7367 0.7074 0.5114 0.3687
BERT-24 (6) 500K 0.7494 0.7282 0.5116 0.4062

BERT-12 10K 0.5167 (1) 0.6833 (1) 0.4573 (1) 0.3043 (1)
BERT-12 100K 0.6980 (1) 0.7023 (1) 0.5007 (3) 0.3494 (3)
BERT-12 500K 0.7262 (2) 0.7038 (1) 0.5115 (3) 0.3853 (4)
BERT-12 1M 0.7242 (1) 0.7048 (1) 0.5134 (3) 0.3948 (4)
BERT-24 100K 0.7749 (2) 0.7179 (6) 0.5044 (1) 0.3686 (9)
BERT-24 500K 0.7643 (2) 0.7282 (6) 0.5116 (6) 0.4146 (10)
BERT-24 1M 0.7768 (2) 0.7301 (6) 0.5244 (15) 0.4280 (10)

Table 1: Performance of distilled BERT embeddings.

f and g are set to mean and (#) indicates the layer the

embeddings are distilled from. Bold indicates best per-

formance for a given dataset of embeddings depicted.

Model RG65 WS353 SIMLEX999 SIMVERB3500

BERT-12 0.6980 (1) 0.7023 (1) 0.5007 (3) 0.3494 (3)

BERT-24 0.7749 (2) 0.7179 (6) 0.5044 (1) 0.3686 (9)

GPT2-12 0.5156 (1) 0.6396 (0) 0.4547 (2) 0.3128 (6)

GPT2-24 0.5328 (1) 0.6830 (0) 0.4505 (3) 0.3056 (0)

RoBERTa-12 0.6597 (0) 0.6915 (0) 0.5098 (0) 0.4206 (0)

RoBERTa-24 0.7087 (7) 0.6563 (6) 0.4959 (0) 0.3802 (0)

XLNet-12 0.6239 (1) 0.6629 (0) 0.5185 (1) 0.4044 (3)

XLNet-24 0.6522 (3) 0.7021 (3) 0.5503 (6) 0.4545 (3)

DistilBERT-6 0.7245 (1) 0.7164 (1) 0.5077 (0) 0.3207 (1)

Table 2: Performance of static embeddings from dif-

ferent pretrained models. f and g are set to mean,

N = 100K, and (#) indicates the layer the embeddings

are distilled from. Bold indicates best performance for

a given dataset of embeddings depicted.

of the similarity/relatedness of all examples in a

dataset with respect to the gold-standard ranking

using the Spearman ρ coefficient. Embedding pre-

dictions are computed using cosine similarity.

4.2 Results

Pooling Strategy. In Figure 1, we show the

performance on all 4 datasets for the resulting

static embeddings. For embeddings computed

using the Aggregated strategy, representations are

aggregated over N = 100K sentences where N is

the number of total contexts for all words (§A.5).

Across all four datasets, we see that g = mean is

the best-performing pooling mechanism within

the Aggregated strategy and also outperforms

the Decontexualized strategy by a substantial

margin. Fixing g = mean, we further observe that

mean pooling at the subword level also performs

best (the dark green dashed line in all plots). We

further find that this trend consistently holds across

pretrained models.

Number of Contexts. In Table 1, we see that

performance for both BERT-12 and BERT-24

steadily increases across all datasets with increas-
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Figure 1: Layer-wise performance of distilled BERT-12 embeddings for all pairs (f, g) with N = 100K.

ing N ; this trend holds for the other 7 pretrained

models. In particular, in the largest setting with

N = 1M, the BERT-24 embeddings distilled

from the best-performing layer for each dataset

drastically outperform both Word2Vec and GloVe.

However, this can be seen as an unfair comparison

given that we are selecting specific layers for

specific datasets. As the middle band of Table 1

shows, we can fix a particular layer for all datasets

and still outperform both Word2Vec and GloVe on

all datasets.

Relationship between N and model layer. In

Figure 1, there is a clear preference towards the

first quarter of the model’s layers (layers 0-3)

with a sharp drop-off in performance immediately

thereafter. A similar preference for the first quarter

of the model is observed in models with a different

number of layers (Figure 3, Figure 10). Given

that our intrinsic evaluation is centered on lexical

semantic understanding, this appears to be largely

consistent with the findings of Liu et al. (2019a);

Tenney et al. (2019a) regarding where lexical

semantic information is best encoded in pretrained

contextualized models. However, as we pool

over a larger number of contexts, Table 1 reveals

an interesting relationship between N and the

best-performing layer. The best-performing layer

monotonically (with a single exception) shifts

to be later and later within the pretrained model.

Since the later layers did not perform better for

smaller values of N , these layers demonstrate

greater variance with respect to the layer-wise

distributional mean and reducing this variance

improves performance.4 Since later layers of the

4Shi et al. (2019) concurrently propose a different ap-

model are generally preferred by downstream

practitioners (Zhang et al., 2020), our findings

suggest that downstream performance could be

further improved by considering variance reduction

as we suggest; Ethayarajh (2019) also provides

concrete evidence of the tremendous variance in

the later layers of deep pretrained contextualized

models.

Cross-Model Results. Remarkably, we find that

most tendencies we observe generalize well to all

other pretrained models we study (specifically the

optimality of f = mean, g = mean, the improved

performance for larger N , and the layer-wise ten-

dencies with respect to N ). This is particularly

noteworthy given that several works have found

that different contextualized models pattern sub-

stantially differently (Liu et al., 2019a; Ethayarajh,

2019).

In Table 2, we summarize the performance of

all models we studied. All of the models consid-

ered were introduced during a similar time period

and have comparable properties in terms of down-

stream performance. In spite of this, we observe

that their static analogues perform radically dif-

ferently. For example, several do not reliably out-

perform Word2Vec and GloVe despite outperform-

ing Word2vec and GloVe reliably in downstream

evaluation. Future work may consider whether

the reduction to static embeddings affects different

models differently and whether this is reflective

of the quality of context-agnostic lexical seman-

tics from other types of linguistic knowledge (e.g.

context modelling, syntactic understanding, and

semantic composition). In general, these results

proach with similar motivations.
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provide further evidence to suggest that linguis-

tic understanding captured by different pretrained

weights may be substantially different, even for

models with near-identical Transformer (Vaswani

et al., 2017) architectures.

Somewhat surprisingly, in Table 2, DistilBert-

6 outperforms BERT-12 on three out of the four

datasets despite being distilled (Ba and Caruana,

2014; Hinton et al., 2015) from BERT-12. Analo-

gously, RoBERTa, which was introduced as a direct

improvement over BERT, does not reliably outper-

form the corresponding BERT models.

5 Bias

Bias is a complex and highly relevant topic in devel-

oping representations and models in NLP and ML.

In this context, we study the social bias encoded

within our static word representations as a proxy for

understanding biases of the source contextualized

representations. As Kate Crawford argued for in

her NIPS 2017 keynote, while studying individual

models is important given that specific models may

propagate, accentuate, or diminish biases in differ-

ent ways, studying the representations that serve as

the starting point and that are shared across models

(which are used for possibly different tasks) allows

for more generalizable understanding of bias (Baro-

cas et al., 2017).

In this work, we simultaneously consider mul-

tiple axes of social bias (i.e. gender, race, and re-

ligion) and multiple proposed methods for com-

putationally quantifying these biases. We do so

precisely because we find that existing NLP liter-

ature has primarily prioritized gender (which may

be a technically easier setting and is starkly incom-

plete in terms of social biases of interest). Further,

as we will show, different computational specifi-

cations of bias that evaluate the same underlying

social phenomena yield markedly different results.

As a direct consequence, we strongly caution that

the results must be taken with respect to the def-

initions of bias being applied. Further, we note

that an embedding which receives low bias scores

cannot be assumed to be (nearly) unbiased. Instead,

it satisfies the significantly weaker condition that

under existing definitions the embedding exhibits

low bias and perhaps additional (more nuanced)

definitions are needed.

5.1 Definitions

Bolukbasi et al. (2016) introduced a measure of

gender bias which assumes access to a set P =
{(m1, f1), . . . , (mn, fn)} of (male, female) word

pairs where mi and fi only differ in gender (e.g.

‘men’ and ‘women’). They compute a gender direc-

tion g:

g = PCA
(

[m1 − f1, . . . ,mn − fn]
)

[0]

where [0] indicates the first principal component.

Then, given a set N of target words that we are

interested in evaluating the bias with respect to,

Bolukbasi et al. (2016) specifies the bias as:

bias
BOLUKBASI

(N ) = mean
w∈N

| cos (w,g) |

This definition is only inherently applicable to bi-

nary bias settings, i.e. where there are exactly two

protected classes. Multi-class generalizations are

difficult to realize since constructing P requires

aligned k-tuples whose entries only differ in the un-

derlying social attribute and this becomes increas-

ingly challenging for increasing k. Further, this

definition assumes the first principal component

explains a large fraction of the observed variance.

Garg et al. (2018) introduced a different def-

inition that is not restricted to gender and as-

sumes access to sets A1 = {m1, · · · ,mn} and

A2 = {f1, · · · , fn′} of representative words for

each of the two protected classes. For each class,

µi = mean
w∈Ai

w is computed. Garg et al. (2018)

computes the bias in two ways:

bias
GARG-EUC

(N ) = mean
w∈N

‖w − µ1‖2 − ‖w − µ2‖2

bias
GARG-COS

(N ) = mean
w∈N

cos(w, µ1)− cos(w, µ2)

Compared to the definition of Bolukbasi et al.

(2016), these definitions may be more general as

constructing P is strictly more difficult than con-

structing A1,A2 (as P can always be split into

two such sets but the reverse is not generally true)

and Garg et al. (2018)’s definition does not rely

on the first principal component explaining a large

fraction of the variance. However, unlike the first

definition, Garg et al. (2018) computes the bias

in favor of/against a specific class (meaning if

N = {‘programmer’, ‘homemaker’} and ‘pro-

grammer’ was equally male-biased as ‘homemaker’

was female-biased, then under the definition of

Garg et al. (2018), there would be no bias in ag-

gregate). To permit comparison, we insert absolute

values around each term in the mean over N .

Manzini et al. (2019) introduced a definition for

quantifying multi-class bias which assumes access
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to sets of representative words A1, . . . ,Ak
5:

bias
MANZINI

(N ) = mean
w∈N

mean
i∈{1,...,k}

mean
a∈Ai

cos(w,a)

5.2 Results

Inspired by the results of Nissim et al. (2020), in

this work we transparently report social bias in ex-

isting static embeddings as well as the embeddings

we produce. In particular, we exhaustively report

the measured bias for all 3542 valid (pretrained

model, layer, social attribute, bias definition, target

word list) 5-tuples — all possible combinations of

static embeddings and bias measures considered.

The results for models beyond BERT appear in

Figures 11–18.

We specifically report results for binary gender

(male, female), two-class religion (Christianity,

Islam) and three-class race (white, Hispanic, and

Asian), directly following Garg et al. (2018). We

study bias with respect to target word lists of pro-

fessions Nprof and adjectives Nadj . These results

are by no means intended to be comprehensive

with regards to the breadth of bias socially and

only address a restricted subset of social biases

which notably does not include intersectional

biases. The types of biases being evaluated for are

taken with respect to specific word lists (which are

sometimes subjective albeit being peer-reviewed)

that serve as exemplars and definitions of bias are

grounded in the norms of the United States. All

word lists are provided in Appendix B and are

sourced in §A.6.

Layer-wise Bias Trends. In Figure 2, we report

layer-wise bias across all (attribute, definition)

pairs. We clearly observe that for every social

attribute, there is a great deal of variation across

the layers in the quantified amount of bias for a

fixed bias estimator. Further, while we are not

surprised that different bias measures for the same

social attribute and the same layer assign different

absolute scores, we observe that they also do

not agree in relative judgments. For gender, we

observe that the bias estimated by the definition

of Manzini et al. (2019) steadily increases before

peaking at the penultimate layer and slightly

decreasing thereafter. In contrast, under bias
GARG-EUC

5We slightly modify the definition of Manzini et al. (2019)
by (a) using cosine similarity where they use cosine distance
and (b) inserting absolute values around each term in the mean

over N . We make these changes to introduce consistency with
the other definitions and to permit comparison.

we see a distribution with two peaks corresponding

to layers at the start or end of the pretrained model

with less bias within the intermediary layers. For

estimating the same quantity, bias
GARG-COS

is mostly

uniform across the layers. Similarly, in looking at

the religious bias, we see similar inconsistencies

with the bias increasing monotonically from

layers 2 through 8 under bias
MANZINI

, decreasing

monotonically under bias
GARG-EUC

, and remaining

roughly constant under bias
GARG-COS

. In general, while

the choice of N (and the choice of Ai for gender)

does affect the absolute bias estimates, the relative

trends across layers are fairly robust to these

choices for a specific definition.

Consequences. Taken together, our analysis

suggests a concerning state of affairs regarding

bias quantification measures for (static) word

embeddings. In particular, while estimates

are seemingly stable to some types of choices

regarding word lists, bias scores for a particular

word embedding are tightly related to the definition

being used and existing bias measures are markedly

inconsistent with each other. We find this has

important consequences beyond understanding the

social biases in our representations. Concretely, we

argue that without certainty regarding the extent to

which embeddings are biased, it is impossible to

properly interpret the meaningfulness of debiasing

procedures (Bolukbasi et al., 2016; Zhao et al.,

2018a,b; Sun et al., 2019) as we cannot reliably es-

timate the bias in the embeddings both before and

after the procedure. This is further compounded

with the existing evidence that current intrinsic

measures of social bias may not handle geometric

behavior such as clustering (Gonen and Goldberg,

2019).

Cross-Model Bias Trends. In light of the above,

next we compare bias estimates across different

pretrained models in Table 3. Given the conflicting

scores assigned by different definitions, we retain

all definitions along with all social attributes in

this comparison. However, we only consider target

words given by Nprof due to the aforementioned

stability (and for visual clarity) with results for

Nadj appearing in Table 8. Since we do not

preprocess or normalize embeddings, the scores

using bias
GARG-EUC

are incomparable (and may be

improper to compare in the layer-wise case) as
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Figure 2: Layer-wise bias of distilled BERT-12 embeddings for f = mean, g = mean, N = 100K.

Gender Race Religion

B, P GE, P GC, P M, P GE GC M M GE GC M

Word2Vec 0.0503 0.1758 0.075 0.2403 0.1569 0.0677 0.2163 0.0672 0.0907 0.053 0.14

GloVe 0.0801 0.3534 0.0736 0.1964 0.357 0.0734 0.1557 0.1171 0.2699 0.0702 0.0756

BERT-12 0.0736 0.3725 0.0307 0.3186 0.2868 0.0254 0.3163 0.2575 1.2349 0.0604 0.2955

BERT-24 0.0515 0.6418 0.0462 0.234 0.4674 0.0379 0.2284 0.1956 0.6476 0.0379 0.2316

GPT2-12 0.4933 25.8743 0.0182 0.6464 2.0771 0.0062 0.7426 0.6532 4.5282 0.0153 0.776

GPT2-24 0.6871 40.1423 0.0141 0.8514 2.3244 0.0026 0.9019 0.8564 8.9528 0.0075 0.9081

RoBERTa-12 0.0412 0.2923 0.0081 0.8546 0.2077 0.0057 0.8551 0.8244 0.4356 0.0111 0.844

RoBERTa-24 0.0459 0.3771 0.0089 0.7879 0.2611 0.0064 0.783 0.7479 0.5905 0.0144 0.7636

XLNet-12 0.0838 1.0954 0.0608 0.3374 0.6661 0.042 0.34 0.2792 0.8537 0.0523 0.318

XLNet-24 0.0647 0.7644 0.0407 0.381 0.459 0.0268 0.373 0.328 0.8009 0.0505 0.368

DistilBERT-6 0.0504 0.5435 0.0375 0.3182 0.3343 0.0271 0.3185 0.2786 0.8128 0.0437 0.3106

Table 3: Social bias encoded within different pretrained models with respect to a set of professions Nprof . Param-

eters are discussed in the supplement. Lowest bias in a particular column is denoted in bold.

they are sensitive to the absolute norms of the

embeddings.6 Further, we note that bias
BOLUKBASI

may

not be a reliable indicator since the first principal

component explains less than 35% of the variance

for the majority of distilled embedding (Zhao et al.

(2019a) show similar findings for ELMo). For

bias
MANZINI

and bias
GARG-COS

, we find that all distilled static

embeddings have substantially higher scores under

bias
MANZINI

but generally lower scores under bias
GARG-COS

when compared to Word2Vec and GloVe. Interest-

ingly, we see that under bias
MANZINI

both GPT-2 and

RoBERTa embeddings consistently get high scores

when compared to other distilled embeddings

but under bias
GARG-COS

they are deemed the least biased.

Data alone does not determine bias. Com-

paring the results for BERT-12 and BERT-24

(full layer-wise results for BERT-24 appear in

Figure 11) reveals that bias trends for BERT-12

and BERT-24 are starkly different for any fixed

6When we normalized using the Euclidean norm, we
found the relative results to reliably coincide with those for
bias

GARG-COS

which is consistent with Garg et al. (2018).

bias measure. What this indicates is the bias

observed in contextualized models is not strictly

determined by the training data (as these models

share the same training data as do all other 12 and

24 model pairs) and must also be a function of the

architecture, training procedure, and/or random

initialization.

Takeaways. Ultimately, given the aforementioned

issues regarding the reliability of bias measures, it

is difficult to arrive at clear consensus of the how

the bias encoded compares between our distilled

representations and prior static embeddings. What

our analysis does resolutely reveal is a pronounced

and likely problematic effect of existing bias defi-

nitions on the resulting bias estimates.

6 Related Work

Contextualized → Static. Recently, Akbik et al.

(2019) introduced an approach that gradually ag-

gregates representations during training to accu-

mulate global information and demonstrated im-

provements over only contextualized representa-

tions for NER. May et al. (2019) instead syntheti-
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cally construct a single semantically-bleached sen-

tence which is fed into a sentence encoder to yield

a static representation. In doing so, they intro-

duce SEAT as a means for studying biases in sen-

tence encoders by applying WEAT (Caliskan et al.,

2017) to the resulting static representations. This

approach appears inappropriate for quantifying bias

in sentence encoders7 as sentence encoders are

trained on semantically-meaningful sentences and

semantically-bleached constructions are not rep-

resentative of this distribution and their templates

heavily rely on deictic expressions which are diffi-

cult to adapt for certain syntactic categories such as

verbs (as required for SIMVERB3500 especially).

Given these concerns, our reduction method may

be preferable for use in estimation of bias in con-

textualized representations. Due to the fact that we

use mean-pooling, our approach may lend itself to

interpretations of the bias in a model on average

across contexts.

Ethayarajh (2019) considers a similar method to

ours where pooling is replaced by PCA. While this

work demonstrated contextualized representations

are highly contextual, our work naturally explores

the complementary problem of what value can

be extracted from the static analogue of these

representations.

Bias. Social bias in NLP has been primarily eval-

uated in three ways: (a) using geometric similar-

ity between embeddings (Bolukbasi et al., 2016;

Garg et al., 2018; Manzini et al., 2019), (b) adapt-

ing psychological association tests (Caliskan et al.,

2017; May et al., 2019), and (c) considering down-

stream behavior (Zhao et al., 2017, 2018a, 2019a;

Stanovsky et al., 2019).8 Our bias evaluation is

in the style of (a) and we consider multi-class so-

cial bias in the lens of gender, race, and religion

whereas prior work has centered on binary gender.

Additionally, while most prior work has discussed

the static embedding setting, recent work has con-

sidered sentence encoders and contextualized mod-

els. Zhao et al. (2019a) consider gender bias in

ELMo when applied to coreference systems and

Kurita et al. (2019) extend these results by lever-

aging the masked language modeling objective of

BERT. Similarly, Basta et al. (2019) considers in-

trinsic gender bias in ELMo via gender-swapped

7The authors also identified several empirical concerns
that draw the meaningfulness of this method into question.

8Sun et al. (2019) provides a taxonomy of the work to-
wards understanding gender bias within NLP.

sentences. When compared to these approaches,

we study a broader class of biases under more than

one bias definition and consider more than one

model. Further, while many of these approaches

generally neglect reporting bias values for different

layers of the model, we show this is crucial as bias

is not uniformly distributed throughout model lay-

ers and practitioners often do not use the last layer

of deep Transformer models (Liu et al., 2019a;

Zhang et al., 2020; Zhao et al., 2019b).9

7 Future Directions

Our work furnishes multiple insights about pre-

trained contextualized models that suggest changes

(subword pooling, layer choice, beneficial variance

reduction via averaging across contexts) to improve

downstream performance. Recent models have

combined static and dynamic embeddings (Peters

et al., 2018; Bommasani et al., 2019; Akbik et al.,

2019) and our representations may also support

drop-in improvements in these settings.

While not central to our goals, we discovered

that our static embeddings substantially outper-

form Word2Vec and GloVe under intrinsic eval-

uation. Future research may consider downstream

gains as improved static embeddings are critical for

resource-constrained settings and may help address

environmental concerns in NLP (Strubell et al.,

2019), machine learning (Canziani et al., 2016),

and the broader AI community (Schwartz et al.,

2019). Future research could explore weighting

schema in the averaging process analogous to SIF

(Arora et al., 2017) for sentence representations

computed via averaging (Wieting et al., 2016).

The generality of the proxy analysis method

implies that other interpretability methods for

static embeddings can also be considered. Fur-

ther, post-processing approaches beyond analy-

sis/interpretability such as dimensionality reduc-

tion may be particularly intriguing given that this

is often challenging to perform within large multi-

layered networks like BERT (Sanh et al., 2019)

but has been successfully demonstrated for static

embeddings (Nunes and Antunes, 2018; Mu and

Viswanath, 2018; Raunak et al., 2019).

Future work may revisit the choice of the corpus

D from which contexts are drawn. For downstream

use, setting D to be the target domain may serve

as a lightweight domain adaptation strategy similar

to findings for averaged word representations for

9This is the only layer studied in Kurita et al. (2019).
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out-of-domain settings (Wieting et al., 2016).

8 Discussion and Open Problems

While our work demonstrates that contextualized

representations retain substantial representational

power even when reduced to be noncontextual, it

is unclear what information is lost. After all, con-

textualized representations have been so effective

precisely because they are tremendously contextual

(Ethayarajh, 2019). As such, the validity of treating

the resulting static embeddings as reliable proxies

for the original contextualized model still remains

open.

On the other hand, human language process-

ing has often been conjectured to have both

context-dependent and context-independent proper-

ties (Barsalou, 1982; Rubio-Fernández, 2008; De-

praetere, 2014, 2019). Given this divide, our ap-

proach may provide an alternative mechanism for

clarifying how these two properties interact in the

computational setting from both an interpretability

standpoint (i.e. comparing results for analyses on

the static embeddings and the original contextual-

ized representations) and a downstream standpoint

(i.e. comparing downstream performance for mod-

els initialized using the static embeddings and the

original contextualized representations). However,

the precise relationship between the role of context

in human language processing and computational

language processing remains unclear.

Theoretical explanation for the behavior we ob-

serve in two settings is also needed. First, it is

unclear why learning contextualized representa-

tions and then reducing them to static embeddings

drastically outperforms directly learning static em-

beddings. In particular, the GloVe embeddings

we use are learned using 6 billion tokens whereas

the BERT representations were trained on roughly

half as much data (3.3 billion tokens). Perhaps

the behavior is reminiscent of the benefits of mod-

elling in higher dimensional settings temporarily as

is seen in other domains (e.g. the kernel trick and

Mercer’s theorem for learning non-linear classifiers

using inner product methods): begin by recasting

the problem in a more expressive space (contextual-

ized representations) and then project/reduce to the

original space (static embeddings). Second, the rea-

son for the benefits of the variance reduction that

we observe are unclear. Given that best-performing

mechanism is to average over many contexts, it

may be that approaching the asymptotic mean of

the distribution across contexts is desirable/helps

combat the anisotropy that exists in the original

contextualized space (Ethayarajh, 2019).

9 Conclusion

In this work, we consider how methods developed

for analyzing static embeddings can be re-purposed

for understanding contextualized representations.

We introduce simple and effective procedures for

converting from contextualized representations to

static word embeddings. When applied to pre-

trained models like BERT, we find the resulting

embeddings are useful proxies that provide insights

into the pretrained model while simultaneously out-

performing Word2Vec and GloVe substantially un-

der intrinsic evaluation. We further study the ex-

tent to which various social biases (gender, race,

religion) are encoded, employing several different

quantification schemas. Our large-scale analysis re-

veals that bias is encoded disparately across differ-

ent popular pretrained models and different model

layers. Our findings also have significant impli-

cations with respect to the reliability of existing

protocols for estimating bias in word embeddings.

10 Reproducibility

All data, code and visualizations are made pub-

licly available.10 Further details are explictly and

comprehensively reported in Appendix A.
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A Reproducibility Details

A.1 Additional Results

We provide layerwise model performance for all ad-

ditional models in Figures 3-10 with corresponding

tables for different N values (Tables 4-7). Simi-

larly, we provide layerwise bias estimates for all

additional models in Figures 11-18. Results for

target words specified as adjectives are given in

Table 8.

A.2 Data

We use English Wikipedia as the corpus D in con-

text combination for the Aggregated strategy. The

specific subset of English Wikipedia11 used was

lightly preprocessed with a simple heuristic to re-

move bot-generated content. Individual Wikipedia

documents were split into sentences using NLTK

(Loper and Bird, 2002). We chose to exclude sen-

tences containing fewer than 7 sentences or greater

than 75 tokens (token counts we computed using

the NLTK word tokenizer) though we did not find

this filtering decision to be particularly impactful

in initial experiments.

The specific pretrained Word2Vec12 and GloVe13

embeddings used were both 300 dimensional. The

Word2Vec embeddings were trained on approxi-

mately 100 billion words from Google News and

the GloVe embeddings were trained on 6 billion

tokens from Wikipedia 2014 and Gigaword 5. We

chose the 300-dimensional embeddings in both

cases as we believed they were the most frequently

used and generally the best performing on both

intrinsic evaluations (Hasan and Curry, 2017) and

downstream tasks.

A.3 Evaluation Decisions

In this work, we chose to conduct intrinsic evalu-

ation experiments that focused on word similarity

and word relatedness. We did not consider the re-

lated evaluation of lexical understanding via word

11https://blog.lateral.io/2015/06/

the-unknown-perils-of-mining-wikipedia/
12https://drive.google.com/file/d/

0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
13https://nlp.stanford.edu/projects/

glove/

analogies as they have been shown to decompose

into word similarity subtasks (Levy and Goldberg,

2014b) and there are significant concerns about

the validity of these analogies tests (Nissim et al.,

2020). We acknowledge that word similarity and

word relatedness tasks have also been heavily scru-

tinized (Faruqui et al., 2016; Gladkova and Drozd,

2016). A primary concern is that results are highly

sensitive to (hyper)parameter selection (Levy et al.,

2015). In our setting, where the parameters of the

embeddings are largely fixed based on which pre-

trained models are publicly released and where we

exhaustively report the impact of most remaining

parameters, we find these concerns to still be valid

but less relevant.

To this end, prior work has considered vari-

ous preprocessing operations on static embeddings

such as clipping embeddings on an elementwise

basis (Hasan and Curry, 2017) when performing

intrinsic evaluation. We chose not to study these

preprocessing choices as they create discrepancies

between the embeddings used in intrinsic evalua-

tion and those used in downstream tasks (where

this form of preprocessing is generally not consid-

ered) and would have added additional parameters

implicitly. Instead, we directly used the computed

embeddings from the pretrained model with no

changes throughout this work.

A.4 Representation Quality Dataset Trends

Rubenstein and Goodenough (1965) introduced

a set of 65 noun-pairs and demonstrated strong

correlation (exceeding 95%) between the scores

in their dataset and additional human validation.

Miller and Charles (1991) introduced a larger col-

lection of pairs which they argued was an improve-

ment over RG65 as it more faithfully addressed

semantic similarity. Agirre et al. (2009) followed

this work by introducing a even more pairs that

included those of Miller and Charles (1991) as a

subset and again demonstrated correlations with

human scores exceeding 95%. Hill et al. (2015)

argued that SIMLEX999 was an improvement in

coverage over RG65 and more correctly quantified

semantic similarity as opposed to semantic relat-

edness or association when compared to WS353.

Beyond this, SIMVERB3500 was introduced by

Gerz et al. (2016) to further increase coverage over

all predecessors. Specifically, it shifted the focus

towards verbs which had been heavily neglected

in the prior datasets which centered on nouns and

https://blog.lateral.io/2015/06/the-unknown-perils-of-mining-wikipedia/
https://blog.lateral.io/2015/06/the-unknown-perils-of-mining-wikipedia/
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


4772

adjectives.

A.5 Experimental Details

We used PyTorch (Paszke et al., 2017) through-

out this work with the pretrained contextual

word representations taken from the Hugging-

Face pytorch-transformers repository14.

Tokenization for each model was conducted

using its corresponding tokenizer, i.e. re-

sults for GPT2 use the GPT2Tokenizer in

pytorch-transformers.

For simplicity, throughout this work, we introduce

N as the total number of contexts used in dis-

tilling with the Aggregated strategy. Concretely,

N =
∑

wi∈V
ni where V is the vocabulary used

(generally the 2005 words in the four datasets con-

sidered). As a result, in finding contexts, we filter

for sentences in D that contain at least one word in

V . We choose to do this as this requires a number

of candidate sentences upper bounded with respect

to the most frequent word in V as opposed to fil-

tering for a specific value for n which requires a

number of sentences scaling in the frequency of the

least frequent word in V .

The N samples from D for the Aggregated strat-

egy were sampled uniformly at random. Accord-

ingly, as the aforementioned discussion suggests,

for word wi, the number of examples ni which con-

tain wi scales in the frequency of wi in the vocabu-

lary being used. As a consequence, for small values

of N , it is possible that rare words would have no

examples and computing a representation w using

the Aggregated strategy would be impossible. In

this case, we back-offed to using the Decontextu-

alized representation for wi.

Given this concern, in the bias evaluation, we fix

ni = 20 for every wi. In initial experiments, we

found the bias results to be fairly stable when choos-

ing values ni ∈ {20, 50, 100}. The choice of ni

would correspond to N = 40100 (as the vocabu-

lary size was 2005) in the representation quality

section in some sense (however this assumes a uni-

form distribution of word frequency as opposed

to a Zipf distribution). The embeddings in the

bias evaluation are drawn from layer ⌊X
4
⌋ using

f = mean, g = mean as we found these to be the

best performing embeddings generally across pre-

trained models and datasets in the representational

quality evaluation.

14https://github.com/huggingface/

pytorch-transformers

A.6 Word Lists

The set of gender-paired tuples P were taken from

Bolukbasi et al. (2016). In the gender bias section,

P for definitions involving sets Ai indicates that P
was split into equal-sized sets of male and female

work. For the remaining gender results, the sets

described in Appendix B were used. The various

attribute sets Ai and target sets Nj were taken from

Garg et al. (2018) which can be further sourced to a

number of prior works in studying social bias. We

remove any multi-word terms from these lists.

B Word Lists

Nprof = {‘accountant’, ‘acquaintance’, ‘ac-

tor’, ‘actress’, ‘administrator’, ‘adventurer’, ‘ad-

vocate’, ‘aide’, ‘alderman’, ‘ambassador’, ‘an-

alyst’, ‘anthropologist’, ‘archaeologist’, ‘arch-

bishop’, ‘architect’, ‘artist’, ‘artiste’, ‘assassin’,

‘astronaut’, ‘astronomer’, ‘athlete’, ‘attorney’, ‘au-

thor’, ‘baker’, ‘ballerina’, ‘ballplayer’, ‘banker’,

‘barber’, ‘baron’, ‘barrister’, ‘bartender’, ‘bi-

ologist’, ‘bishop’, ‘bodyguard’, ‘bookkeeper’,

‘boss’, ‘boxer’, ‘broadcaster’, ‘broker’, ‘bureau-

crat’, ‘businessman’, ‘businesswoman’, ‘butcher’,

‘cabbie’, ‘cameraman’, ‘campaigner’, ‘captain’,

‘cardiologist’, ‘caretaker’, ‘carpenter’, ‘cartoon-

ist’, ‘cellist’, ‘chancellor’, ‘chaplain’, ‘charac-

ter’, ‘chef’, ‘chemist’, ‘choreographer’, ‘cine-

matographer’, ‘citizen’, ‘cleric’, ‘clerk’, ‘coach’,

‘collector’, ‘colonel’, ‘columnist’, ‘comedian’,

‘comic’, ‘commander’, ‘commentator’, ‘commis-

sioner’, ‘composer’, ‘conductor’, ‘confesses’, ‘con-

gressman’, ‘constable’, ‘consultant’, ‘cop’, ‘corre-

spondent’, ‘councilman’, ‘councilor’, ‘counselor’,

‘critic’, ‘crooner’, ‘crusader’, ‘curator’, ‘custo-

dian’, ‘dad’, ‘dancer’, ‘dean’, ‘dentist’, ‘deputy’,

‘dermatologist’, ‘detective’, ‘diplomat’, ‘director’,

‘doctor’, ‘drummer’, ‘economist’, ‘editor’, ‘educa-

tor’, ‘electrician’, ‘employee’, ‘entertainer’, ‘en-

trepreneur’, ‘environmentalist’, ‘envoy’, ‘epidemi-

ologist’, ‘evangelist’, ‘farmer’, ‘filmmaker’, ‘fi-

nancier’, ‘firebrand’, ‘firefighter’, ‘fireman’, ‘fish-

erman’, ‘footballer’, ‘foreman’, ‘gangster’, ‘gar-

dener’, ‘geologist’, ‘goalkeeper’, ‘guitarist’, ‘hair-

dresser’, ‘handyman’, ‘headmaster’, ‘historian’,

‘hitman’, ‘homemaker’, ‘hooker’, ‘housekeeper’,

‘housewife’, ‘illustrator’, ‘industrialist’, ‘infielder’,

‘inspector’, ‘instructor’, ‘inventor’, ‘investigator’,

‘janitor’, ‘jeweler’, ‘journalist’, ‘judge’, ‘jurist’, ‘la-

borer’, ‘landlord’, ‘lawmaker’, ‘lawyer’, ‘lecturer’,

‘legislator’, ‘librarian’, ‘lieutenant’, ‘lifeguard’,

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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Figure 3: Layerwise performance of BERT-24 static embeddings for all possible choices of f, g

Figure 4: Layerwise performance of GPT2-12 static embeddings for all possible choices of f, g

‘lyricist’, ‘maestro’, ‘magician’, ‘magistrate’, ‘man-

ager’, ‘marksman’, ‘marshal’, ‘mathematician’,

‘mechanic’, ‘mediator’, ‘medic’, ‘midfielder’, ‘min-

ister’, ‘missionary’, ‘mobster’, ‘monk’, ‘musi-

cian’, ‘nanny’, ‘narrator’, ‘naturalist’, ‘negotiator’,

‘neurologist’, ‘neurosurgeon’, ‘novelist’, ‘nun’,

‘nurse’, ‘observer’, ‘officer’, ‘organist’, ‘painter’,

‘paralegal’, ‘parishioner’, ‘parliamentarian’, ‘pas-

tor’, ‘pathologist’, ‘patrolman’, ‘pediatrician’, ‘per-

former’, ‘pharmacist’, ‘philanthropist’, ‘philoso-

pher’, ‘photographer’, ‘photojournalist’, ‘physi-

cian’, ‘physicist’, ‘pianist’, ‘planner’, ‘playwright’,

‘plumber’, ‘poet’, ‘policeman’, ‘politician’, ‘poll-

ster’, ‘preacher’, ‘president’, ‘priest’, ‘principal’,

‘prisoner’, ‘professor’, ‘programmer’, ‘promoter’,

‘proprietor’, ‘prosecutor’, ‘protagonist’, ‘protege’,

‘protester’, ‘provost’, ‘psychiatrist’, ‘psychologist’,

‘publicist’, ‘pundit’, ‘rabbi’, ‘radiologist’, ‘ranger’,

‘realtor’, ‘receptionist’, ‘researcher’, ‘restaura-

teur’, ‘sailor’, ‘saint’, ‘salesman’, ‘saxophonist’,

‘scholar’, ‘scientist’, ‘screenwriter’, ‘sculptor’,

‘secretary’, ‘senator’, ‘sergeant’, ‘servant’, ‘service-

man’, ‘shopkeeper’, ‘singer’, ‘skipper’, ‘socialite’,

‘sociologist’, ‘soldier’, ‘solicitor’, ‘soloist’, ‘sports-

man’, ‘sportswriter’, ‘statesman’, ‘steward’, ‘stock-

broker’, ‘strategist’, ‘student’, ‘stylist’, ‘substitute’,

‘superintendent’, ‘surgeon’, ‘surveyor’, ‘teacher’,

‘technician’, ‘teenager’, ‘therapist’, ‘trader’, ‘trea-

surer’, ‘trooper’, ‘trucker’, ‘trumpeter’, ‘tutor’, ‘ty-

coon’, ‘undersecretary’, ‘understudy’, ‘valedicto-

rian’, ‘violinist’, ‘vocalist’, ‘waiter’, ‘waitress’,

‘warden’, ‘warrior’, ‘welder’, ‘worker’, ‘wrestler’,

‘writer’}

Nadj = {‘disorganized’, ‘devious’, ‘impression-

able’, ‘circumspect’, ‘impassive’, ‘aimless’, ‘ef-

feminate’, ‘unfathomable’, ‘fickle’, ‘inoffensive’,

‘reactive’, ‘providential’, ‘resentful’, ‘bizarre’, ‘im-

practical’, ‘sarcastic’, ‘misguided’, ‘imitative’,
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Figure 5: Layerwise performance of GPT-24 static embeddings for all possible choices of f, g

Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636

GloVe - 0.6873 0.6073 0.3705 0.2271

GPT2-12 10000 0.2843 (0) 0.4205 (1) 0.2613 (2) 0.1472 (6)

GPT2-12 50000 0.5000 (2) 0.5815 (1) 0.4378 (2) 0.2607 (2)

GPT2-12 100000 0.5156 (1) 0.6396 (0) 0.4547 (2) 0.3128 (6)

GPT2-24 10000 0.3149 (0) 0.5209 (0) 0.2940 (0) 0.1697 (0)

GPT2-24 50000 0.5362 (2) 0.6486 (0) 0.4350 (0) 0.2721 (0)

GPT2-24 100000 0.5328 (1) 0.6830 (0) 0.4505 (3) 0.3056 (0)

Table 4: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f and g are set

to mean for all GPT2-models and (#) indicates the layer the embeddings are distilled from. Bold indicates best

performing embeddings for a given dataset.

‘pedantic’, ‘venomous’, ‘erratic’, ‘insecure’, ‘re-

sourceful’, ‘neurotic’, ‘forgiving’, ‘profligate’,

‘whimsical’, ‘assertive’, ‘incorruptible’, ‘individ-

ualistic’, ‘faithless’, ‘disconcerting’, ‘barbaric’,

‘hypnotic’, ‘vindictive’, ‘observant’, ‘dissolute’,

‘frightening’, ‘complacent’, ‘boisterous’, ‘pre-

tentious’, ‘disobedient’, ‘tasteless’, ‘sedentary’,

‘sophisticated’, ‘regimental’, ‘mellow’, ‘deceit-

ful’, ‘impulsive’, ‘playful’, ‘sociable’, ‘method-

ical’, ‘willful’, ‘idealistic’, ‘boyish’, ‘callous’,

‘pompous’, ‘unchanging’, ‘crafty’, ‘punctual’,

‘compassionate’, ‘intolerant’, ‘challenging’, ‘scorn-

ful’, ‘possessive’, ‘conceited’, ‘imprudent’, ‘du-

tiful’, ‘lovable’, ‘disloyal’, ‘dreamy’, ‘apprecia-

tive’, ‘forgetful’, ‘unrestrained’, ‘forceful’, ‘sub-

missive’, ‘predatory’, ‘fanatical’, ‘illogical’, ‘tidy’,

‘aspiring’, ‘studious’, ‘adaptable’, ‘conciliatory’,

‘artful’, ‘thoughtless’, ‘deceptive’, ‘frugal’, ‘re-

flective’, ‘insulting’, ‘unreliable’, ‘stoic’, ‘hys-

terical’, ‘rustic’, ‘inhibited’, ‘outspoken’, ‘un-

healthy’, ‘ascetic’, ‘skeptical’, ‘painstaking’, ‘con-

templative’, ‘leisurely’, ‘sly’, ‘mannered’, ‘outra-

geous’, ‘lyrical’, ‘placid’, ‘cynical’, ‘irresponsible’,

‘vulnerable’, ‘arrogant’, ‘persuasive’, ‘perverse’,

‘steadfast’, ‘crisp’, ‘envious’, ‘naive’, ‘greedy’,

‘presumptuous’, ‘obnoxious’, ‘irritable’, ‘dishon-

est’, ‘discreet’, ‘sporting’, ‘hateful’, ‘ungrateful’,

‘frivolous’, ‘reactionary’, ‘skillful’, ‘cowardly’,

‘sordid’, ‘adventurous’, ‘dogmatic’, ‘intuitive’,

‘bland’, ‘indulgent’, ‘discontented’, ‘dominating’,

‘articulate’, ‘fanciful’, ‘discouraging’, ‘treacher-

ous’, ‘repressed’, ‘moody’, ‘sensual’, ‘unfriendly’,

‘optimistic’, ‘clumsy’, ‘contemptible’, ‘focused’,

‘haughty’, ‘morbid’, ‘disorderly’, ‘considerate’,

‘humorous’, ‘preoccupied’, ‘airy’, ‘impersonal’,

‘cultured’, ‘trusting’, ‘respectful’, ‘scrupulous’,

‘scholarly’, ‘superstitious’, ‘tolerant’, ‘realistic’,

‘malicious’, ‘irrational’, ‘sane’, ‘colorless’, ‘mas-

culine’, ‘witty’, ‘inert’, ‘prejudiced’, ‘fraudu-

lent’, ‘blunt’, ‘childish’, ‘brittle’, ‘disciplined’,

‘responsive’, ‘courageous’, ‘bewildered’, ‘cour-

teous’, ‘stubborn’, ‘aloof’, ‘sentimental’, ‘ath-
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Figure 6: Layerwise performance of RoBERTa-12 static embeddings for all possible choices of f, g

Figure 7: Layerwise performance of RoBERTa-24 static embeddings for all possible choices of f, g

letic’, ‘extravagant’, ‘brutal’, ‘manly’, ‘coopera-

tive’, ‘unstable’, ‘youthful’, ‘timid’, ‘amiable’, ‘re-

tiring’, ‘fiery’, ‘confidential’, ‘relaxed’, ‘imagina-

tive’, ‘mystical’, ‘shrewd’, ‘conscientious’, ‘mon-

strous’, ‘grim’, ‘questioning’, ‘lazy’, ‘dynamic’,

‘gloomy’, ‘troublesome’, ‘abrupt’, ‘eloquent’, ‘dig-

nified’, ‘hearty’, ‘gallant’, ‘benevolent’, ‘mater-

nal’, ‘paternal’, ‘patriotic’, ‘aggressive’, ‘com-

petitive’, ‘elegant’, ‘flexible’, ‘gracious’, ‘ener-

getic’, ‘tough’, ‘contradictory’, ‘shy’, ‘careless’,

‘cautious’, ‘polished’, ‘sage’, ‘tense’, ‘caring’,

‘suspicious’, ‘sober’, ‘neat’, ‘transparent’, ‘dis-

turbing’, ‘passionate’, ‘obedient’, ‘crazy’, ‘re-

strained’, ‘fearful’, ‘daring’, ‘prudent’, ‘demand-

ing’, ‘impatient’, ‘cerebral’, ‘calculating’, ‘amus-

ing’, ‘honorable’, ‘casual’, ‘sharing’, ‘selfish’, ‘ru-

ined’, ‘spontaneous’, ‘admirable’, ‘conventional’,

‘cheerful’, ‘solitary’, ‘upright’, ‘stiff’, ‘enthu-

siastic’, ‘petty’, ‘dirty’, ‘subjective’, ‘heroic’,

‘stupid’, ‘modest’, ‘impressive’, ‘orderly’, ‘ambi-

tious’, ‘protective’, ‘silly’, ‘alert’, ‘destructive’,

‘exciting’, ‘crude’, ‘ridiculous’, ‘subtle’, ‘mature’,

‘creative’, ‘coarse’, ‘passive’, ‘oppressed’, ‘accessi-

ble’, ‘charming’, ‘clever’, ‘decent’, ‘miserable’,

‘superficial’, ‘shallow’, ‘stern’, ‘winning’, ‘bal-

anced’, ‘emotional’, ‘rigid’, ‘invisible’, ‘desperate’,

‘cruel’, ‘romantic’, ‘agreeable’, ‘hurried’, ‘sympa-

thetic’, ‘solemn’, ‘systematic’, ‘vague’, ‘peaceful’,

‘humble’, ‘dull’, ‘expedient’, ‘loyal’, ‘decisive’,

‘arbitrary’, ‘earnest’, ‘confident’, ‘conservative’,

‘foolish’, ‘moderate’, ‘helpful’, ‘delicate’, ‘gen-

tle’, ‘dedicated’, ‘hostile’, ‘generous’, ‘reliable’,

‘dramatic’, ‘precise’, ‘calm’, ‘healthy’, ‘attractive’,

‘artificial’, ‘progressive’, ‘odd’, ‘confused’, ‘ratio-

nal’, ‘brilliant’, ‘intense’, ‘genuine’, ‘mistaken’,

‘driving’, ‘stable’, ‘objective’, ‘sensitive’, ‘neutral’,

‘strict’, ‘angry’, ‘profound’, ‘smooth’, ‘ignorant’,

‘thorough’, ‘logical’, ‘intelligent’, ‘extraordinary’,
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Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636

GloVe - 0.6873 0.6073 0.3705 0.2271

RoBERTa-12 10000 0.5719 (0) 0.6618 (0) 0.4794 (0) 0.3968 (0)

RoBERTa-12 50000 0.6754 (0) 0.6867 (0) 0.501 (0) 0.4123 (0)

RoBERTa-12 100000 0.6597 (0) 0.6915 (0) 0.5098 (0) 0.4206 (0)

RoBERTa-12 500000 0.6675 (0) 0.6979 (0) 0.5268 (5) 0.4311 (0)

RoBERTa-12 1000000 0.6761 (0) 0.7018 (0) 0.5374 (5) 0.4442 (4)

RoBERTa-24 10000 0.5469 (1) 0.6144 (0) 0.4499 (0) 0.3403 (0)

RoBERTa-24 50000 0.6837 (1) 0.6412 (0) 0.4855 (0) 0.371 (0)

RoBERTa-24 100000 0.7087 (7) 0.6563 (6) 0.4959 (0) 0.3802 (0)

RoBERTa-24 500000 0.7557 (8) 0.663 (6) 0.5184 (18) 0.412 (6)

RoBERTa-24 1000000 0.739 (8) 0.6673 (6) 0.5318 (18) 0.4303 (9)

Table 5: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f and g are set to

mean for all RoBERTa-models and (#) indicates the layer the embeddings are distilled from. Bold indicates best

performing embeddings for a given dataset.

Figure 8: Layerwise performance of XLNet-12 static embeddings for all possible choices of f, g

‘experimental’, ‘steady’, ‘formal’, ‘faithful’, ‘curi-

ous’, ‘reserved’, ‘honest’, ‘busy’, ‘educated’, ‘lib-

eral’, ‘friendly’, ‘efficient’, ‘sweet’, ‘surprising’,

‘mechanical’, ‘clean’, ‘critical’, ‘criminal’, ‘soft’,

‘proud’, ‘quiet’, ‘weak’, ‘anxious’, ‘solid’, ‘com-

plex’, ‘grand’, ‘warm’, ‘slow’, ‘false’, ‘extreme’,

‘narrow’, ‘dependent’, ‘wise’, ‘organized’, ‘pure’,

‘directed’, ‘dry’, ‘obvious’, ‘popular’, ‘capable’,

‘secure’, ‘active’, ‘independent’, ‘ordinary’, ‘fixed’,

‘practical’, ‘serious’, ‘fair’, ‘understanding’, ‘con-

stant’, ‘cold’, ‘responsible’, ‘deep’, ‘religious’,

‘private’, ‘simple’, ‘physical’, ‘original’, ‘working’,

‘strong’, ‘modern’, ‘determined’, ‘open’, ‘political’,

‘difficult’, ‘knowledge’, ‘kind’}

P = {(‘she’, ‘he’), (‘her’, ‘his’), (‘woman’,

‘man’), (‘mary’, ‘john’), (‘herself’, ‘himself’),

(‘daughter’, ‘son’), (‘mother’, ‘father’), (‘gal’,

‘guy’), (‘girl’, ‘boy’), (‘female’, ‘male’)}
Amale = {‘he’, ‘son’, ‘his’, ‘him’, ‘father’,

‘man’, ‘boy’, ‘himself’, ‘male’, ‘brother’, ‘sons’,

‘fathers’, ‘men’, ‘boys’, ‘males’, ‘brothers’, ‘uncle’,

’uncles’, ‘nephew’, ‘nephews’}
Afemale = {‘she’, ‘daughter’, ‘hers’, ‘her’,

‘mother’, ‘woman’, ‘girl’, ‘herself’, ‘female’, ‘sis-

ter’, ‘daughters’, ‘mothers’, ‘women’, ’girls’, ‘fe-

men’15, ‘sisters’, ‘aunt’, ‘aunts’, ‘niece’, ‘nieces’}
Awhite = {‘harris’, ‘nelson’, ‘robinson’, ‘thomp-

son’, ‘moore’, ‘wright’, ‘anderson’, ‘clark’, ‘jack-

son’, ‘taylor’, ‘scott’, ‘davis’, ’allen’, ‘adams’,

‘lewis’, ‘williams’, ‘jones’, ‘wilson’, ‘martin’,

‘johnson’}
Ahispanic = {‘castillo’, ‘gomez’, ‘soto’, ‘gonza-

15We remove ‘femen’ when using Word2Vec as it is not in
the vocabulary of the pretrained embeddings we use.
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Figure 9: Layerwise performance of XLNet-24 static embeddings for all possible choices of f, g

Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636

GloVe - 0.6873 0.6073 0.3705 0.2271

XLNet-12 10000 0.604 (0) 0.6482 (0) 0.483 (0) 0.3916 (0)

XLNet-12 50000 0.6056 (1) 0.6571 (0) 0.5157 (1) 0.3973 (1)

XLNet-12 100000 0.6239 (1) 0.6629 (0) 0.5185 (1) 0.4044 (3)

XLNet-12 500000 0.6391 (3) 0.6937 (3) 0.5392 (3) 0.4747 (4)

XLNet-12 1000000 0.6728 (3) 0.7018 (3) 0.5447 (4) 0.4918 (4)

XLNet-24 10000 0.6525 (0) 0.6935 (0) 0.5054 (0) 0.4332 (1)

XLNet-24 50000 0.6556 (0) 0.6926 (0) 0.5377 (5) 0.4492 (3)

XLNet-24 100000 0.6522 (3) 0.7021 (3) 0.5503 (6) 0.4545 (3)

XLNet-24 500000 0.66 (0) 0.7378 (6) 0.581 (8) 0.5095 (6)

XLNet-24 1000000 0.7119 (6) 0.7446 (7) 0.5868 (9) 0.525 (6)

Table 6: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f and g are set to

mean for all XLNet-models and (#) indicates the layer the embeddings are distilled from. Bold indicates best

performing embeddings for a given dataset.

lez’, ‘sanchez’, ‘rivera’, ‘martinez’, ‘torres’, ‘ro-

driguez’, ‘perez’, ‘lopez’, ‘medina’, ‘diaz’, ‘gar-

cia’, ‘castro’, ‘cruz’}

Aasian = {‘cho’, ‘wong’, ‘tang’, ‘huang’, ‘chu’,

‘chung’, ‘ng’, ‘wu’, ‘liu’, ‘chen’, ‘lin’, ‘yang’,

‘kim’, ‘chang’, ‘shah’, ‘wang’, ‘li’, ‘khan’, ’singh’,

‘hong’}

Aislam = {‘allah’, ‘ramadan’, ‘turban’, ‘emir’,

‘salaam’, ‘sunni’, ‘koran’, ‘imam’, ‘sultan’,

‘prophet’, ‘veil’, ‘ayatollah’, ‘shiite’, ’mosque’, ‘is-

lam’, ‘sheik’, ‘muslim’, ‘muhammad’}

Achristian = {‘baptism’, ‘messiah’, ‘catholicism’,

‘resurrection’, ‘christianity’, ‘salvation’, ‘protes-

tant’, ‘gospel’, ‘trinity’, ’jesus’, ‘christ’, ‘christian’,

‘cross’, ‘catholic’, ‘church’}

C Naming Conventions

Throughout this work, we make use of several nam-

ing conventions/substitutions. In the case of mod-

els, we use the form ‘MODEL-X’ where X indi-

cates the number of layers in the model and conse-

quently the model produces X + 1 representations

for any given subword (including the initial layer 0

representation). Table 9 describes the complete cor-

respondence of our shorthand and the full names.

In the case of model names, the full form is the

name assigned to the pretrained model (that was

possibly reimplemented) released by HuggingFace.
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Figure 10: Layerwise performance of DistilBERT-6 static embeddings for all possible choices of f, g

Model N RG65 WS353 SIMLEX999 SIMVERB3500

Word2Vec - 0.6787 0.6838 0.4420 0.3636

GloVe - 0.6873 0.6073 0.3705 0.2271

DistilBERT-6 10000 0.57 (0) 0.6828 (1) 0.4705 (0) 0.2971 (0)

DistilBERT-6 50000 0.7257 (1) 0.6928 (1) 0.5043 (0) 0.3121 (0)

DistilBERT-6 100000 0.7245 (1) 0.7164 (1) 0.5077 (0) 0.3207 (1)

DistilBERT-6 500000 0.7363 (1) 0.7239 (1) 0.5093 (0) 0.3444 (2)

DistilBERT-6 1000000 0.7443 (1) 0.7256 (1) 0.5095 (0) 0.3536 (3)

Table 7: Performance of Static Embeddings on Word Similarity and Word Relatedness Tasks. f and g are set to

mean for all DistilBERT-models and (#) indicates the layer the embeddings are distilled from. Bold indicates best

performing embeddings for a given dataset.

Figure 11: Layerwise bias of BERT-24 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion
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Figure 12: Layerwise bias of GPT2-12 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Figure 13: Layerwise bias of GPT2-24 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Figure 14: Layerwise bias of RoBERTa-12 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion
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Figure 15: Layerwise bias of RoBERTa-24 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Figure 16: Layerwise bias of XLNet-12 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Figure 17: Layerwise bias of XLNet-24 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion
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Figure 18: Layerwise bias of DistilBERT-6 static embeddings for f = mean, g = mean, N = 100000
Left: Gender, Center: Race, Right: Religion

Gender Race Religion

B, P GE, P GC, P M, P GE GC M M GE GC M

Word2Vec 0.0482 0.1656 0.0435 0.1347 0.1247 0.0343 0.1178 0.0661 0.13 0.0434 0.1264

GloVe 0.095 0.2206 0.0403 0.1289 0.2017 0.0355 0.1108 0.0714 0.2341 0.0606 0.0675

BERT-12 0.0506 0.2637 0.0213 0.2684 0.1879 0.0175 0.2569 0.2358 0.8858 0.0365 0.2677

BERT-24 0.0389 0.4405 0.0277 0.199 0.2978 0.0248 0.189 0.1768 0.5505 0.0316 0.212

GPT2-12 0.4631 26.0809 0.0176 0.6126 2.1238 0.0068 0.7101 0.621 4.4775 0.0152 0.7525

GPT2-24 0.6707 40.4664 0.0141 0.8367 2.1771 0.0023 0.89 0.843 8.3889 0.0064 0.9006

RoBERTa-12 0.0381 0.1754 0.005 0.8472 0.1649 0.0046 0.8444 0.8153 0.2608 0.0069 0.8387

RoBERTa-24 0.0248 0.2626 0.0064 0.7647 0.1821 0.0048 0.7562 0.73 0.4492 0.0117 0.7472

XLNet-12 0.0399 0.6265 0.0312 0.2214 0.3354 0.0237 0.2196 0.1911 0.4716 0.0321 0.2549

XLNet-24 0.0468 0.5423 0.025 0.3307 0.2697 0.0153 0.3144 0.2871 0.4318 0.0282 0.3235

DistilBERT-6 0.0353 0.4274 0.0247 0.2825 0.2461 0.0185 0.2824 0.2603 0.6842 0.035 0.2994

Table 8: Social bias within static embeddings from different pretrained models with respect to a set of adjectives,

Nadj . Parameters are set as f = mean, g = mean, N = 100000 and the layer of the pretrained model used in

distillation is ⌊X
4
⌋.

Our Shorthand Full Name

BERT-12 bert-base-uncased

BERT-24 bert-large-uncased

GPT2-12 gpt2

GPT2-24 gpt2-medium

RoBERTa-12 roberta-base

RoBERTa-24 roberta-large

XLNet-12 xlnet-base-cased

XLNet-24 xlnet-base-cased

DistilBERT-6 distilbert-base-uncased

SL999 SIMLEX999

SV3500 SIMVERB3500

B biasBOLUKBASI

GE biasGARG-EUC

GC biasGARG-COS

M biasMANZINI

Table 9: Naming conventions used throughout this work


