
Interpreting Risk Premia Across

Size, Value, and Industry Portfolios

Ravi Bansal∗

Fuqua School of Business,

Duke University

Robert F. Dittmar

Kelley School of Business,

Indiana University

Christian T. Lundblad

Kelley School of Business,

Indiana University

First Draft: July 2002

This Draft: December 2002

∗Corresponding author. Author contact information: Bansal (email: ravi.bansal@duke.edu, tel: (919)
660-7758), Dittmar (email: rdittmar@indiana.edu, tel: (812) 855-2694), and Lundblad (email: clund-
bla@indiana.edu, tel: (812) 855-9714). The usual disclaimer applies.



Abstract

In this paper, we model dividend and consumption growth rates as a vector-

autoregression (VAR), from which we measure the long-run response of dividend growth

rates to consumption shocks. We find that this long-run cash flow beta can justify well

over 50% of the difference in risk premia across size, book-to-market, and industry

sorted portfolios. Interestingly, the long-run cash flow betas explain about 50% of the

dispersion in the standard CAPM-based portfolio betas for these assets. Our economic

model highlights the reasons for the failure of the market beta to justify the cross-

section of risk premia. The market beta is itself a weighted combination of cash flow

betas and additional priced sources of risk. Each risk source’s beta may be significant;

however, a weighted combination of the betas may not be significant in explaining the

cross-section of risk premia, as each source of risk carries a distinct price. Our results

indicate that differences in exposure of cash-flows to aggregate economic fluctuations

as captured by aggregate consumption movements contain very valuable information

regrading differences in risk premia. In all, our results indicate that the size, book-

to-market and industry spreads are not puzzling from the perspective of economic

models.



1 Introduction

The focus of this paper is to characterize the systematic sources of priced risks in the cross-

section of returns from the perspective of general equilibrium models. The empirical work

of Hansen and Singleton (1982, 1983) underscores the importance of consumption risks in

understanding risk premia. A consistent implication of these consumption based models is

that the link between cash flows and aggregate consumption is a key input in determining an

asset’s exposure to and compensation for risk. Our approach emphasizes the long-run links

between cash flows and consumption, and shows that this relation is empirically important

for interpreting risk premia. In addition, we also focus on understanding why the commonly

used market based CAPM has difficulties in justifying the cross-section of risk premia across

assets.

We concentrate on characterizing the sources of risk inherent in size, book-to-market,

and industry sorted portfolios. These portfolios have been at the center of the asset pricing

literature over the past two decades. These sorts produce economically meaningful risk

premia; from 1949 through 2001, size sorted decile portfolios generate premia of 4.14% per

annum, book-to-market sorted portfolios generate premia of 6.07% per annum, and industry

groupings produce a spread of 3.62% per annum. As the empirical literature has shown, the

return premia of these dimensions pose a considerable challenge to economic models.

We explore the sources of these differences in average returns by examining the implica-

tions of a general economic model. In this model, returns are assumed to be generated by

realized shocks to current and expected future cash flow growth. Further, asset cash flows

are explicitly linked to the dynamics of aggregate consumption. In this setting, we show

that differences in the long-run response of cash flows to a unit consumption shock (i.e., the

cash flow beta) should explain cross-sectional variation in risk premia. When we addition-

ally allow risk premia to fluctuate, the cash flow beta can be augmented by the traditional

market beta in the determination of variation in risk premia across assets. This version of

our economic model also highlights some of the reasons why the usual market beta of an

asset may fail to capture differences in risk premia across assets.

A key dimension of this paper is the measurement of the cash flow beta. We model

the consumption and dividend growth rate dynamics as a vector autoregression (VAR). The

long-run cash flow beta for a given asset can be obtained from this VAR as the long-run
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response of cash flow growth to a unit shock in consumption. The first paper to focus on the

empirical measurement of cash flow betas, Bansal, Dittmar, and Lundblad (2001), argues

that covariation between dividend growth rates and consumption at long lags provides sharp

information regarding risk premia on assets. In contrast to their paper, we provide the joint

transition dynamics of cash flows and consumption in order to measure the cash flow betas.

Our setup permits the explicit analytical expression of the cash flow beta, which improves the

precision of the associated parameter estimates. Additionally, we examine the links between

cash flow betas and market betas, and analyze the reasons for the failure of standard market

betas to capture risk premia across assets. Finally, we incorporate industry portfolios in

our analysis, which pose their own unique empirical challenges as documented in Fama and

French (1997).

As predicted by the theory, we find that the price of risk associated with the cash flow

betas is highly significant and positive. To confirm our statistical inference, we conduct

Monte Carlo experiments to examine the finite sample distribution of the price of risk and

the cross-sectional R2. This finite sample distribution accounts for estimation error in the

VAR dynamics of consumption and dividend growth. The point estimate in annual data

for the price of cash flow beta risk is 0.357 (S.E. 0.177), with an adjusted cross-sectional

R2 of 57%. Our cash-flow beta’s do well on all three sorts; their correlation with the mean

returns is 0.79 for book-to-market, 0.81 for size, and 0.57 for industry portfolios. Evidence

from quarterly data corroborates our annual results, with the quarterly price of risk and

explanatory power comparable to that found in the annual data. To conduct statistical

inference we also provide finite sample distributions for the cross-sectional risk prices and

the cross-sectional R2 for the quarterly data.

We further present a model based on Epstein and Zin (1989) preferences, similar to that

developed in Bansal and Yaron (2002). This model highlights the conditions under which the

cash-flow betas will explain the cross-section of risk premia. Further, it also provides insights

into the failure of the market betas to capture cross-sectional risk premia. In this model,

asset returns are driven both by cash flow news and changing risk premia; the risk premium

fluctuates due to changes in aggregate economic uncertainty (i.e., consumption volatility).

The result is that the cross-section of risk premia is determined both by an asset’s cash flow

beta and its beta with respect to news about aggregate risk premia. The standard market

beta is a weighted combination of these different betas, where each of these sources of risk

bears a different price. Consequently, the market beta may fail to explain the cross-section of
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risk premia. As predicted by this argument, there is a meaningful relation between the cash

flow beta and the market beta. The correlation between these two quantities is 0.65. The

message implied by this evidence is that the cash flow beta is an important source of risk in

isolation, and explains a considerable degree of the cross-sectional variation in observed risk

premia.

In all, our empirical evidence indicates that the exposure of dividends to movements in

the aggregate economy, as measured by consumption, contains very valuable information

regarding differences in risk premia across assets. Dividend streams that have larger ex-

posure to aggregate consumption news also offer higher risk premia. The work of Lettau

and Ludvigson (2001) and Jagannathan and Wang (1996) highlight alternative channels for

explaining differences in risk premia across assets. Our work augments the understanding of

the determinants of risk premia by focusing on the links between cash flows and consumption.

The remainder of this paper is organized as follows. In section 2, we discuss the model for

cash flow betas when discount rates are constant. Our strategy for estimating these betas is

discussed in section 3. Section 4 discusses the empirical evidence. We analyze the economic

implications of our framework in section 5. Section 6 provides concluding remarks.

2 Cash flow Betas

In this section, we provide the arguments that motivate our cash flow beta. For any asset i,

consider the Campbell and Shiller (1988) linear approximation for the log return:

ri,t = κi,0 + gi,t + κi,1pdi,t − pdi,t−1 (1)

where pdi,t is the log price dividend ratio, gi,t the log dividend growth rate, and ri,t the log

return (κi,0 and κi,1 are parameters in the linearization). Under this approximation (1), one

can derive the following present value implication for the log price dividend ratio

pdi,t =
κi,0

(1− κi,1)
+ Et[

∞
∑

j=1

κ
j
i,1gi,t+j −

∞
∑

j=1

κ
j
i,1ri,t+j ] (2)
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Further, if we assume that expected returns are constant through time, the return innovation

can be expressed as follows:

ri,t − Et−1[ri,t] ≡ eri,t = gi,t − Et−1[gi,t] + Et[
∞
∑

j=1

κ
j
i,1gi,t+j ]− Et−1[

∞
∑

j=1

κ
j
i,1gi,t+j ] (3)

Note that the case where both expected returns and expected growth rates for cash flow can

vary is considered in section 5.

2.1 Cash Flow Dynamics

To determine the long-run dividend exposures to consumption shocks, we first must charac-

terize the dynamic processes for consumption and dividends. Log consumption growth, gc,t,

is assumed to follow an AR(J) process

gc,t = µc +
J
∑

j=1

ρc,jgc,t−j + ηc,t, (4)

and (log) dividend growth rates follow

gi,t = µi +
k=K
∑

k=1

γi,kgt−k + ui,t

ui,t =
L
∑

j=1

ρj,iui,t−j + biηc,t + ζi,t (5)

where ζi,t is uncorrelated with consumption innovations as stated above. Without loss of

generality assume that K ≥ J .

To characterize the evolution of the system, let 1 + (K + L) = q. The q × 1 vector zt is

z′t = [gi,t ui,t · · · ui,t−(L−1) gc,t · · · gc,t−(K−1)] (6)

The dynamics of consumption and dividend growth can then be expressed as

zt = µ+ Azt−1 +Gut (7)
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where A and G are q × q matrices. Note that consumption feeds into the future dynamics

of dividends, but dividends do not feed back into consumption. The q × 1 vector ut has its

first elements as ζi,t and its last element as ηc,t; all other elements of ut are zero.

To allow for the effect of κ1, we define the matrix Aκ as κ1A. From equation (3), it

follows that eri,t is the first element of the matrix

[I +
∞
∑

j=1

Ajκ]Gut = [I − Aκ]
−1Gut (8)

The cash flow beta, βi,t, equals the first element of [I − Aκ]
−1Gι, where ι has an element

one corresponding to the consumption innovation and zero elsewhere. Note that the return

innovation is

eri,t = βi,dηc,t + ζi,t;

where βi,dηc,t is the return response to aggregate consumption news and ζi,t represents the

cash flow news specific to the asset. Note also that ζi,t and ηc,t are uncorrelated. βi,d is

determined by the reaction of the infinite sum of dividend growth rates to consumption news;

that is, the accumulated impulse response of dividend growth rates to a unit consumption

shock. We call βi,d the long-run cash flow beta. In other words, this beta provides the

response of the present value of future dividend growth to a unit consumption shock.

To gain some intuition into what this risk measure captures, note that the long-run cash

flow consumption beta with K = L = J = 1 is

βi,d =
κi,1γi,1

1− κi,1ρc,1
+

bi

1− κi,1ρi,1
(9)

which reflects both the contemporaneous correlation between dividend and consumption

shocks, bi, and the effect of current consumption growth on future dividends, γi. In general,

the cash flow beta for asset i will be

βi,d =

∑

k κ
k
i,1γi,k

1−
∑

j κ
j
i,1ρc,j

+
bi

1−
∑

l κ
l
i,1ρi,l

(10)

When equality is imposed (γi,k = γi), then
∑

k κ
k
i,1γi,k = γi

∑

k κ
k
i,i. This expression measures

the average covariance between dividend growth and the lagged, K-period growth rate of

consumption.
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Next, we explore the ability of the estimated long-run cash flow beta to explain the cross-

sectional variation in observed average returns for market capitalization, book-to-market

ratio, and industry sorted portfolios (30 portfolios in all). In section 5, we provide detailed

economic motivation for why the long-run cash flow beta should explain the cross-sectional

differences in risk premia. This motivation leads to the specification

Ri,t = λ0 + λcβi,d + vi,t (11)

In equation (11), Ri,t are the observed returns for asset i. The cross-sectional price of risk

parameters λ0 and λc, as shown in section 5, are determined by preference parameters. The

above equation imposes the restriction that the differences in average returns across assets

reflect differences only in βi,d. Also, we will subsequently explore the pricing implications of

the long-run beta in a model that facilitates a more general preference specification and a

time-varying cost of capital.

3 Estimation

To explore the long-run relationship between consumption and dividend growth, we first

estimate the dynamic processes described for consumption and dividend growth rates. Note

that in estimation we remove the unconditional mean from all the dividend growth rate and

consumption growth rate series and use these demeaned series in estimating the dynamics

of consumption and dividend growth rates. We use GMM for estimation, and consider the

following set of moment conditions for estimation. First, the consumption dynamics can be

estimated using the moment conditions:

E [g0,t] = E[ηc,tgc,t−j ] = 0 (12)

for j = 1 · · · J . This expression gives us J moment conditions associated with estimating

the consumption dynamics. We estimate the dividend growth dynamics with the following

moment restrictions:

E [g1i,t] =







E[ui,tgc,t−k]

E[ui,t−lζi,t]

E[ηc,tζi,t]






= 0 (13)
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for k = 1 · · ·K, and l = 1 · · ·L. The last moment condition estimates bi. This expression

yields (K + L + 1) moment conditions for each dividend growth under consideration, and

J moment conditions associated with estimating the consumption growth dynamics. For N

assets we consequently have J +N(K +L+ 1) moment conditions and the same number of

parameters. For the annual data we will set J = K = 1 and L = 2. In addition, we also

consider the cross-sectional restrictions

E [g2,t] =

(

∑

iE [Ri,t − (λ0 + λcβi,d)]
∑

iE [(Ri,t − (λ0 + λcβi,d)) βi,d]

)

= 0 (14)

The final two moment conditions ensure an exactly-identified system where the GMM based

estimates for the relevant risk prices, λ0 and λc, are equivalent to those obtained under

ordinary least squares. Taken together, this yields 2 + J + N(K + L + 1) parameters, and

the same number of orthogonality conditions.

With 30 assets and 4 parameters to characterize the dividend growth rates, the dimension

of the optimal GMM weight matrix would be at least 120 × 120, which is impossible to

estimate given the number of time-series observations. In practice, since the joint optimal

GMM weighting matrix becomes too large, we utilize the following weighting matrix for the

calculation of standard errors:

W−1 =



















E
[

g0,tg
′
0,t

]

0 · · · · · · 0

0
(

E
[

g1i,tg
′
1i,t

])

· · · · · · 0
... · · ·

. . . · · ·
...

0 · · · · · ·
(

E
[

g1N,tg
′
1N,t

])

0

0 · · · · · · 0 E
[

g2,tg
′
2,t

]



















(15)

That is, the weighting matrix is a block-diagonal matrix of the covariance of the moment

conditions. The resulting weighting matrix is HAC-adjusted following Newey and West

(1987). It is important to note that the standard errors on the time-series parameters for

a given (univariate) dividend growth rate utilize the full GMM weight matrix—and hence

are quite reasonable. The system associated with the estimating the risk prices is exactly

identified; that is, the point estimates correspond to the OLS estimates. However, the

standard errors for the risk prices, that is λ0 and λc, do not take account of the error in

estimating the time-series parameters that go into the construction of the cash-flow betas.

For this reason we also report the monte carlo-based finite sample distribution for the risk
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prices and the cross-sectional R2 that takes account of the estimation error of all the time

series and cross-sectional parameters for all assets at the same time. The details of this

monte carlo are provided in section 4.

3.1 Data

3.1.1 Aggregate Cash Flows and Factors

Our empirical exercise is conducted on data sampled at both the annual and quarterly fre-

quency. We collect (at both frequencies) seasonally adjusted real per capita consumption of

nondurables plus services data from the NIPA tables available from the Bureau of Economic

Analysis. Also, to convert returns and other nominal quantities, we also take the associated

personal consumption expenditures (PCE) deflator from the NIPA tables. The mean of the

annual real consumption growth rate series over the period spanning 1949 through 2001 is

0.0212 with standard deviation of 0.0114, and the mean of the inflation series is 0.0354 per

annum with a standard deviation of 0.0254. Quarterly figures are comparable. For subse-

quent analysis, we also measure the aggregate market portfolio return as the return on the

CRSP value-weighted index of stocks.

3.1.2 Portfolio Menu

We consider portfolios formed on firms’ market value, book-to-market ratio, and industry

classification. Our rationale for examining portfolios sorted on these characteristics is that

size and book-to-market based sorts are the basis for the factor model examined in Fama and

French (1993). Additionally, industry sorted portfolios have posed a particularly challenging

feature from the perspective of systematic risk measurement (see Fama and French (1997)).

We focus on one-dimensional sorts on these characteristics as this procedure typically results

in over 150 firms in each decile portfolio which facilitates a more accurate measurement of the

consumption exposure of dividends; it is important to limit the portfolio specific variation in

dividend growth rates, and a larger number of firms in a given portfolio helps achieve this.

Market Capitalization Portfolios

We form a set of value-weighted portfolios on the basis of market capitalization. The
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set of all firms covered by CRSP are ranked on the basis of their market capitalization at

the end of June of each year using NYSE capitalization breakpoints. In Table 1, we present

means and standard deviations of market value-weighted returns for size quintile portfolios.

The table displays a significant size premium over the post-war sample period; the mean real

return on the lowest quintile firms is 13.59% per annum, contrasted with a return of 9.45%

per annum for the highest quintile. The means and standard deviations of these portfolios

are similar to those reported in previous work.

Book-to-Market Portfolios

Book values are constructed from Compustat data. The book-to-market ratio at year

t is computed as the ratio of book value at fiscal year end t − 1 to CRSP market value of

equity at calendar year t− 1.1 All firms with Compustat book values covered in CRSP are

ranked on the basis of their book-to-market ratios at the end of June of each year using

NYSE book-to-market breakpoints. Sample statistics for these data are also presented in

Table 1. The highest book-to-market firms earn average real returns of 15.14% per annum,

whereas the lowest book-to-market firms average 9.07% per annum.

Industry Portfolios

Value-weighted industry portfolios are formed by sorting NYSE, AMEX, and NASDAQ

firms by their CRSP SIC Code at the beginning of each month. Industry definitions follow

those in Fama and French (1997). We specifically utilize definitions for ten industries: i1,

Nondurable Goods, i2, Durable Goods, i3, Manufacturing, i4, Energy, i5, Chemicals, i6,

Telecommunications, i7, Utilities, i8, Wholesale, Retail, and Services, i9, Financial, and i10,

Other.2 Sample statistics for these data are also presented in Table 1. The mean real returns

range from 8.74% for the Financial industry to 12.36% for Nondurables.

3.2 Portfolio Cash Dividends

To measure the long-run cash flow beta, we also need to extract the cash dividend payments

associated with each portfolio discussed in the previous section. Our construction of the

1We thank Ken French for providing us the value-weighted book-to-market-sorted portfolio data. For a
detailed discussion of the formation of the book-to-market variable, refer to Fama and French (1993).

2Industry definitions follow those provided by Kenneth French at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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dividend series is the same as that in Campbell (2000). Let the total return per dollar

invested be

Rt+1 = ht+1 + yt+1

where ht+1 is the price appreciation and yt+1 the dividend yield (i.e., dividends at date t+1

per dollar invested at date t). More clearly stated, ht+1 represents the ratio of the per dollar

value of the portfolio at time t+1 to time t, Vt+1

Vt
, and yt+1 represents the per dollar dividends

paid by the portfolio at time t + 1 divided by per dollar value at time t, Dt+1

Vt
. We directly

observe both Rt+1 and the price gain series ht+1 for each portfolio; hence, we construct the

dividend yield as yt+1 = Rt+1 − ht+1.
3 The level of the cash dividends we employ in the

paper is extracted as follows

Dt+1 = yt+1Vt

where

Vt+1 = ht+1Vt

with V0 = 100. Hence, the dividend series that we use, Dt, corresponds to the total dividends

given out by a mutual fund at t that extracts the dividends and reinvest the capital gains.

The ex-dividend value of the mutual fund is Vt and the per dollar total return for the investors

in the mutual fund is

Rt+1 =
Vt+1 +Dt+1

Vt
= ht+1 + yt+1

which is precisely the CRSP total return for each portfolio.

We construct the level of cash dividends, Dt, for the size, book-to-market, and industry

portfolios on a monthly basis. From this series, we construct the annual and quarterly

levels of dividends by summing the dividends within the period under consideration. As

the dividend yields still have strong seasonalities at the quarterly frequency, we also employ

a trailing four quarter average of the quarterly dividends to construct the deseasonalized

quarterly dividend series. This procedure is consistent with the approach in Hodrick (1992),

Heaton (1993), and Bollerslev and Hodrick (1995). The annual cash dividends, however,

are accumulated over the full twelve months, and are then free from this seasonality issue

thus requiring no further adjustments. These series are converted to real by the personal

consumption deflator. Log growth rates are constructed by taking the log first difference of

the cash dividend series. Statistics for the annual dividend growth rates of the portfolios

3We thank Ken French for providing both the total return and price appreciation series for the book-to-
market portfolios.
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under consideration are presented in Table 1.

4 Empirical Evidence

For the purposes of estimation, we assume (for the annual data spanning the postwar 1949-

2001 period) that the log consumption growth rate, gc,t, follows an AR(1) process, and

accordingly, the log cash dividend growth rate, gi,t, depends only upon the lagged consump-

tion growth rate. That is, we assume K = 1. Further, we assume that shocks to the dividend

growth rate, ui,t, follow an AR(2) process (L = 2). Taken together, the dynamic process for

the demeaned annual consumption and dividend growth rate data that we consider:

gc,t+1 = ρcgc,t + ηt+1

gi,t+1 = γigc,t + ui,t+1

ui,t+1 = biηt+1 + ρ1,iui,t + ρ2,iui,t−1 + ζi,t+1

βi,d =
κi,1γi

1− κi,1ρc
+

bi

1− κi,1ρ1,i − κ2
i,1ρ2,i

(16)

In this case, the long-run cash flow beta, βi,d, is determined both by the contemporaneous

covariance between the dividend and consumption shock, bi, and the effect the consumption

growth rate has upon future dividends, embodied in the coefficient γi; in both cases, the

autoregressive nature of the processes magnify the effects accordingly.4 Note, our results

appear to be qualitatively robust to alternative choices for K and L.

The parameter estimates for this model are presented in Table 2 for the annual frequency.

Estimates of γi for the characteristic-sorted portfolios are presented in Table 2 along with

HAC-adjusted standard errors. As shown in the table, a clear pattern emerges in the pro-

jection of cash dividend growth rates on the lagged consumption growth rate. Sorting on

market capitalization produces a pattern in γi. For example, the small firm portfolio displays

a sensitivity to lagged consumption growth of 0.23 (S.E. 1.77) compared to -0.01 (S.E. 0.63)

for the large firm portfolio. The pattern is most pronounced within the decile sort. Also,

the book-to-market sorted portfolios produce large spreads in γi; the high book-to-market

4Note, that κi,1 is estimated to be equivalent to 1/(1 + exp(d− p)), where (d− p) is the average log
dividend price ratio. κi,1 is, on average, 0.964 for annual data, and 0.988 for quarterly data. Incorporating
κi,1 in the calculation of the long-run beta does not materially impact our results. For example, if we assume
κi,1=1 for all assets, our results are materially unchanged.

11



firms’ sensitivity to lagged consumption growth is 4.54 (S.E. 2.59) compared to 0.48 (S.E.

2.26) for the low book-to-market firms. The pattern among industry-sorted portfolios is less

identifiable. Despite strong cross-sectional significance documented below, the estimates of

γi are associated with large standard errors.

We also present the contemporaneous covariance between the consumption and cash flow

growth rate shocks, bi, in Table 2. This parameter measures the immediate response of each

asset’s cash flow growth rate to an aggregate shock. As can be seen, sorting on market

capitalization produces a pronounced pattern in the contemporaneous relationship between

consumption and dividend shocks. For example, the small firm portfolio’s estimated bi is

5.03 (S.E. 1.87) compared to 1.56 (S.E. 0.42) for the large firm portfolio. Similarly, the book-

to-market sorted portfolios produce large spreads in bi. The estimated bi for high book-to-

market firms is 7.03 (S.E. 2.81) compared to 2.98 (S.E. 1.50) for the low book-to-market firms.

This pattern is even more pronounced across all ten book-to-market sorted portfolios, with

several of the low book-to-market portfolios displaying negative contemporaneous covariance

between their dividend growth and aggregate shocks. Finally, here, the pattern among

industry-sorted portfolios is somewhat more identifiable, with shocks to the dividend growth

rate on the durable goods industry displaying the most pronounced covariance with aggregate

shocks, with an estimate of 7.14 (S.E. 1.41). Note, the durable goods industry also displays

the largest average return of the post-war period. Finally, unlike the projection coefficients,

γi, the contemporaneous covariances are generally estimated with time-series precision (the

standard errors presented are HAC-adjusted).

In Table 2, we also document the sum of the autoregressive coefficients for the portfolio-

specific dividend growth rate shocks. Many of these coefficients are small in size and not

significant, but there are some exceptions (see the first two size-sorted portfolios, for ex-

ample). Additionally, the first order autocorrelation coefficient in consumption growth is

estimated to be 0.33 (S.E. 0.11). Our estimates of the long-run cash flow beta (see equation

(16)) will facilitate this serial correlation.

Finally, we also present the implications of the previously estimated parameters for the

long-run cash flow beta, βi,d, for each of the 30 portfolios. This is the key parameter of inter-

est, as it describes each portfolio’s long-run dividend response to an aggregate consumption

shock. Further, according to the model presented above, this parameter is the sole measure of

exposure to systematic risk which determines risk premia in the cross-section. Accordingly,

we will explore the ability of the long-run cash flow beta to explain cross-sectional variation
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in average returns across the 30 portfolios. As can be seen in equation (16), the long-run

cash flow beta is essentially the sum of the projection coefficient describing the response of

dividend growth to lagged consumption, γi, and the contemporaneous covariance between

shocks to dividend and aggregate consumption growth, bi, adjusted for serial correlation in

each series. Empirically, the estimated long-run cash flow betas differ dramatically across

the portfolios, generally in line with their observed average returns. For example, we docu-

ment a large long-run cash flow beta spread in market capitalization portfolios; the βi,d for

the small firm portfolio is 7.81 (S.E. 3.71), whereas the same for the large firm portfolio is

only 1.59 (S.E. 1.22). The same pattern emerges for the book-to-market sorted portfolios;

the estimated βi,d’s for the low and high book-to-market portfolio are 4.28 (S.E. 5.24) and

15.13 (S.E. 5.65), respectively, in line with the large observed dispersion in average returns

across high and low book-to-market portfolios. Finally, a less pronounced pattern emerges

with the industry sorted portfolios, with the durable goods industry displaying the largest,

by far, estimated long-run cash flow beta at 7.68 (S.E. 3.81). The lowest long-run cash

flow beta among the industry-sorted portfolio is associated with the telecommunications in-

dustry, which displays the third lowest average return in Table 1. HAC-adjusted standard

errors, computed using the delta method, demonstrate that the long-run cash flow betas are

generally estimated with precision in the time-series.

4.1 The Long-run Cash Flow Beta and the Cross-section of Re-

turns

In this section, we examine the ability of the long-run cash flow beta, βi,d, to explain the

cross-sectional variation of observed equity risk premia. Effectively, we perform standard

cross-sectional regressions using the 30 decile portfolios (10 size, 10 book-to-market, and 10

industry). The estimated cross-sectional risk premia restriction is stated in equation (14),

with λ0 and λc as the cross-sectional parameters of interest, given the estimated long-run cash

flow beta. Table 3 (Panel A) documents the ability of the estimated long-run cash flow betas

to explain the cross-section of average returns. Our results demonstrate that the estimated

price of consumption risk is both positive and significant; the OLS estimate of λc is 0.36,

with a HAC-adjusted t-statistic of 2.02. The GMM based standard errors account for the

time-series variation in measured returns. Further, the adjusted R2 is 57%. Within portfolios

sorts, this relationship holds as well; for example, the correlations between average returns
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and the long-run cash flow betas are 0.79, 0.81, and 0.57 for the size, book-to-market and

industry portfolio, respectively. Consistent with the large cross-sectional R2, the estimated

long-run cash flow beta can explain a considerable portion of the cross-sectional variation in

measured risk premia associated with this set of portfolios.

We also explore the cross-sectional regression for quarterly sampled data from the second

quarter of 1949 through the fourth quarter of 2001. We estimate the time-series parameters

as above, but the lag lengths are modified to represent the temporal dependence at the quar-

terly frequency; i.e. K = 4 and L = 8. Despite the alternative measurement frequency, the

time-series estimates, not reported but available upon request, are qualitatively similar to

those presented in Table 2 for the annual data. In Panel B of Table 3, we present the associ-

ated cross-sectional regressions for the data measured at the quarterly frequency. Generally

speaking, the results are very similar to the implications of the annual data presented in

Panel A. As above, the estimated price of consumption risk is significantly positive; the OLS

estimate of λc is 0.078 (note that average returns are measured at the quarterly frequency as

well), with a HAC-adjusted t-statistic of 2.22. Further, the adjusted R2 is 50%, suggesting

that the cross-sectional explanatory power of the long-run cash flow beta is not specific to

measurement frequency. This stands in sharp contrast to standard factor based models, for

which measurement frequency is known to be an issue.

To explore the small-sample features of our estimator, we conduct a simulation-based

Monte Carlo analysis. The small sample distribution may be particularly important since

the long-run cash flow beta is not always precisely measured in the time-series. For most of

the portfolios, βi,d is significantly different from zero, but the projection of dividend growth

on lagged consumption growth, γi, is generally not. Despite this issue, the cross-sectional

price of consumption risk, λc, does appear to be estimated precisely with more than 50% of

the cross-sectional dispersion in risk premia explained. Collectively, this requires more careful

consideration, and in consequence, we consider an additional simulation based experiment

to ensure that our results reflect the economic content of our model rather than random

chance.

We conduct the following Monte Carlo experiment, in which we simulate 10,000 samples

of both annual and quarterly measured aggregate consumption growth of the same size as

is available in our sample (1949-2001). This experiment simulates under the alternative

hypothesis that our model is incorrect. That is, we effectively assume that the price of

consumption risk and the long-run cash flow beta, βi,d, are zero. For the annual data,
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demeaned consumption is simulated from an AR(1) process

ĝc,t+1 = ρ̂cĝc,t + η̂c,t+1 (17)

where ρ̂c is the autoregressive parameter for consumption estimated in the data, and η̂c,t+1 is

simulated from a normal distribution with standard deviation equal to ση, which corresponds

to the standard deviation of the consumption growth residual in the data. The simulated

consumption growth rates and demeaned observed dividend growth rates are used to estimate

the time-series parameters in equation (16). That is, we re-estimate the long-run cash flow

beta for each iteration as follows:

ĝc,t+1 = ρcĝc,t + η̂t+1

gi,t+1 = γiĝc,t + ui,t+1

ui,t+1 = biη̂t+1 + ρ1,iui,t + ρ2,iui,t−1 + ζi,t+1

βi,d =
κi,1γi

1− κi,1ρc
+

bi

1− κi,1ρ1,i − κ2
i,1ρ2,i

(18)

where each portfolio’s demeaned dividend growth rate, gi,t, is the actual observed quantity

for each portfolio. For each iteration, we then run the standard cross-sectional regression:

Ri,t = λ0 + λcβi,d + vi,t (19)

where Ri,t is the observed real return for each portfolio. As the simulated consumption growth

is independent of all the dividend growth rates, the population values of the long-run cash

flow betas, βi,d, are zero, and therefore the population value of λc is also zero. This Monte

Carlo experiment provides finite sample empirical distributions for λc and the adjusted R2

for the cross-sectional projection. For each iteration, we store the HAC-adjusted t-statistic

and the R̄2. The simulation for the quarterly frequency is conducted analogously, adjusting

the dynamic process we assume as in the empirical section presented above.

The results of this experiment are presented in Table 3. The distribution for the HAC-

adjusted t-statistic on the estimated price of risk, λc, and the cross-sectional adjusted R2

are presented in Panel A for the annual data and Panel B for the quarterly observed data.

The t-statistic distribution is essentially centered at zero (the population value) for both

frequencies. This evidence suggests that our point estimates for λc are statistically significant,
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as our estimated t-statistic of 2.02 (for the annual data) and 2.22 (for the quarterly data)

are in the far right hand tail of the empirical distribution. These t-statisticas are at or near

the 95% quantile, which is consistent with a rejection of the null hypothesis that no positive

cross-sectional relationship exists at the 5% confidence level. As additional evidence in favor

of the relationship between the measured average returns and the long-run cash flow beta,

R̄2’s of 57% (for the annual data) and 50% (for the quarterly data) are in the far right tail

of the adjusted R2 empirical distribution for these data; in both cases, the empirical R̄2

exceeds the 97.5% critical value. Collectively, this experiment suggests that our empirical

results reflect the true economic content of the estimated long-run cash flow beta rather than

random chance. In an economy in which asset returns and dividend growth are independent

of consumption growth, the probability of observing these estimated magnitudes of λc and

the cross-sectional R̄2 is extremely low.

5 Economic Motivations

In this section, we explore the implications of extending the equilibrium model to facilitate

more general preference specifications. In particular, for the time-nonseparable preferences

developed in Epstein and Zin (1989) (EZ), the Intertemporal Marginal Rate of Substitution

(IMRS) is

Mt+1 = exp {θ ln δ −
θ

ψ
gc,t+1 − (1− θ)rc,t+1}. (20)

gc,t+1 is the growth rate (in logs) of consumption and rc,t+1 is the return (in logs) on an

asset that pays off aggregate consumption each period. Further, δ is a time preference

parameter and ψ the intertemporal elasticity of substitution. The parameter, θ ≡ 1−α
1− 1

ψ

,

wherein α represents the coefficient of relative risk aversion. Under this parameterization,

the innovation in the (log) IMRS in this model is determined by

ηm,t = −
1− α

ψ − 1
ηc,t −

ψα− 1

ψ − 1
ηrc,t (21)

where the innovation in the return on the consumption asset is ηrc,t and ηc,t is the innova-

tion in consumption growth. It is well recognized that the innovation to the return to the

consumption stream, ηrc,t, is endogenous to the model. For example, when consumption

growth is assumed to be an AR(1) process with Gaussian innovations, equation (21) leads
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to a single-factor risk premium specification–we refer to this as Model 1. In Model 1, ηrc,t is

a scalar multiple of the consumption innovation (i.e, perfectly correlated with consumption

innovations) and as shown below, the cash flow’s long-run consumption beta is sufficient

to characterize risk premia across assets. An alternative model (called Model 2) that leads

to a two-factor specification follows where consumption dynamics are also characterized by

stochastic volatility. In this case, expected returns may be time varying. Further, we have

a two-factor model and the average return on assets is also determined by the covariation

with ηrc,t. This model captures the intuition that the risk premia on different assets are

determined by the risk associated with the long-run cash flow consumption beta’s and the

exposure of assets to a factor that determines time-varying risks.

5.1 Model 1: Constant Risk Premia

In the first model, we derive implications for risk premia in an economy where the risk premia

on all assets are constant. As in equation (4), consumption growth follows an AR process

with lag length 1:

gc,t+1 = µc + ρcgt + ηc,t+1

In this case, the innovation to the consumption portfolio is

ηrc,t = (1 + bc)ηc,t,

where bc =
1−ψ−1

1−κρc
. Substituting this expression into equation (21) implies that

ηm,t = λ1ηc,t,

where λ1 = α+ bc
ψα−1
ψ−1

. When consumption is assumed to be i.i.d, then bc = 0 and λ1 equals

the risk aversion parameter α. Note that the return innovation to the consumption stream,

ηrc,t, is perfectly correlated with the innovations in consumption. These assumptions lead

to a single-factor model with constant risk premia. The single factor prices risks associated

with consumption news.

With constant cost of capital, it is also straightforward to show that for any asset i, the

return innovation is:

ri,t − Et−1[ri,t] ≡ eri,t = βi,dηc,t + ζi,t (22)
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where, as before, the term βi,dηc,t + ζi,t represents news about cash flows. The arithmetic

risk premium on any asset, approximately, is determined by covt(λ1ηc,t+1, eri,t+1), hence the

risk premium is

Et[Ri,t+1 −Rf,t+1] = βi,dλ1V ar(ηc,t) (23)

In this model, the cross-sectional differences in risk premia are determined by the differences

in the long-run exposure of cash flows to consumption news.

The cross-sectional implications in equation (23) motivate the set of cross-sectional re-

strictions that we have explored in the previous section. Under these assumptions, the

long-run exposure of cash flows to consumption news may be modeled using a VAR for cash

flow and consumption growth. The resulting restriction on cross-sectional risk premia is

E[Ri,t+1] = λ0 + βi,dλc (24)

which follows from equation (23), with the average risk free rate being λ0 and the price of

risk for consumption λ1V ar(ηc) being λc. Consequently, under this set of assumptions, risk

premia in the cross section are driven only by the price of risk associated with risk inherent

in aggregate consumption growth.

5.2 Model 2: Risk and Return with Time-Varying Risk Premia

To allow for the possibility that risk premia are time-varying, we begin by assuming that

consumption growth innovations are characterized by stochastic volatility. In this setting,

the innovation in the return to the consumption stream is given by

ηrc,t = b1ηc,t +
∑

K

bkηk,t

The terms ηk,t correspond to the innovations in risk premia—for simplicity we assume that all

the risk sources are uncorrelated. This can be motivated by a model that captures fluctuating

consumption volatility as in Bansal and Yaron (2002) or can simply be viewed as a version

of the ICAPM in Merton (1973). The innovations to the returns on the consumption stream

are not perfectly correlated with consumption innovations as in Model 1.

Consider the innovation in the return to any asset i, where the risk premium on the asset
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varies:

ri,t − Et−1[ri,t] ≡ eri,t = βi,dηc,t + ζi,t −
∑

k

βi,kηk,t (25)

In addition to cash flow news, changes in expected returns also affect the return innova-

tions. Consider the covariation in return innovations with innovations in the pricing kernel,

covt(
1−α
ψ−1

ηc,t+
ψα−1
ψ−1

ηrc,t, eri,t). Given our assumptions above, this covariation implies that the

risk premium can be (approximately) stated as

Et[Ri,t+1 −Rf,t+1] = βi,dλ1V art(ηc,t) +
∑

k

βi,kλkV art(ηc,t) (26)

Economically, equation (26) captures the intuition that risk premia on assets are determined

by cash-flow beta’s and by variables that may influence the expected returns.

This model also allows us to interpret the links between market betas and expected

returns. Note that the market return innovation will also satisfy equation (25). Hence, the

covariance between return innovations to an asset i and the market is

βi,dβmk,dvar(ηc) +
∑

k

βi,kβmk,kvar(ηk) (27)

Note that across assets this covariance is a weighted average reflecting all risks: the cash

flow risk, βi,d, and risks associated with expected return news. The market beta of an

asset will also reflect a weighted average of these two individual betas. However, while each

individual beta may be important (and significantly priced), a weighted average of the two

betas may fail to appear to be a priced risk source, as each beta carries different prices of

risks (see equation (26)). This is one potential reason why market betas may fail to explain

the cross-section of average returns.

One way to evaluate this proposition is to consider a regression of the market betas on the

cash flow betas. This regression provides a sense of how much of the market beta is driven

by the cash flow beta. Since the residual from this projection would only approximately

identify the weighted average term
∑

L βi,Lvar(ηl), it may not be useful in explaining risk

premia across assets. That is, the portion of market beta that is orthogonal to cash flow beta

may be insufficient to capture risk attributable to aggregate economic uncertainty. However,

as we are able to identify βi,d separately, we can still infer the percentage of the cross-section

of market betas that are driven by the cash flow betas.
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5.3 Multi Factor Model: Estimation and Empirical Results

To consider the implications of the addition of the market beta to the cross-sectional ex-

planatory power of the long-run beta, we first must obtain a time-series estimate of the usual

market beta. To do this, we augment the set of orthogonality conditions to include

E[(ri,t − r̄i,t)(rm,t − r̄m)] = 0 (28)

where, to maintain parsimony in estimation as above, we also demean all returns and market

betas are estimated asset-by-asset. In addition, we also consider the modified cross-sectional

restrictions

Ri,t = λ0 + λcβi,d + λmβi,m + ei,t (29)

In reporting the standard errors for the price of risk parameters—all standard errors, as

before are HAC-adjusted.

In Table 4 (Panel A), we report the time-series estimates of the market betas (see equation

(28)) for the annual data. As can be seen the market betas, βi,m, are estimated in the time-

series with precision. Additionally, it appears that the market betas across the market

capitalization sorted portfolios exhibit a strong pattern in accordance with their observed

average returns (a well-known result), but this is not true for the book-to-market sorted

portfolios; the high and low book-to-market portfolios have very similar estimates of the

market beta. The industry sorted portfolios display a less pronounced pattern, but the

durable goods industry is associated with the largest market beta and does display the

largest average return. Quarterly estimates of the market betas (not reported) are broadly

similar, and are available upon request. In accordance with the observed patterns, there is

some evidence that the market beta alone can explain some of the cross-sectional variation in

observed risk premia as implied by the standard Capital Asset Pricing Model. For example,

for the annual data, the estimated market price of risk, λm, is both positive and significant,

with an associated adjusted R2 of 25%; however, at the quarterly frequency, λm is not

significant, and the adjusted R2 falls to 10%. In sum, this result suggests the possibility

at least that there might be some incremental improvement in the more general two-factor

model that facilitates risk prices for both the long-run cash flow beta and the market beta,

as discussed above.

In Table 4, the results for the two-factor specification are presented for both the annual
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(Panel B) and quarterly (Panel C) data. As can be seen, the inclusion of the market beta

into the cross-sectional regressions, as in equation (29), does not dramatically affect the

explanatory power of the long-run cash flow beta. Estimated risk-prices for the market beta

are not statistically different from zero in either case. For example, for the annual frequency,

the estimated risk price associated with the market portfolio covariance, λm, is 0.29, but with

a HAC adjusted t-statistics of only 0.07. Conversely, the estimated risk price for the long-run

cash flow beta with respect to consumption, λc, is 0.35, with a HAC adjusted standard error

of 2.49. Further, the adjusted r-squared is 0.56 for the annual frequency, nearly identical to

the r-square associated with the one-factor specification–using only the long run cash flow

betas. Taken together, this evidence suggests that the cross-sectional explanatory presented

above for the market beta, albeit quite weak, is entirely subsumed by ability of the long-run

cash flow beta to capture observed risk premia. Finally, these results are broadly similar the

quarterly frequency, suggesting that this evidence is robust to the frequency measurement.

The implication of the above result is that market beta does not capture a significant

portion of the cross-sectional variation in risk premia relative to cash flow beta. However, as

discussed above, the market beta does have some power for explaining the cross-section of

returns. As suggested above, we regress the portfolio market betas on the cash flow betas.

These untabulated results suggest that the long run cash flow betas explain a considerable

portion of the market betas; the projection of the market beta’s on the long run cash flow

betas yields a point estimate is 0.349 and the regression adjusted R2 is 0.42. A significant

part of the explanatory power of market betas is attributable to their ability to proxy for

cash flow beta and, as predicted, the relationship is positive.

We then regress average returns on cash flow betas and the residual from the projection

of market betas on cash flow betas described above. This residual has no incremental ex-

planatory power for average returns; the associated point estimate of 0.327 has a t-statistic of

0.077. The fact that the market beta has a considerable link to cash flow beta, and that the

residual market beta has no explanatory power, is consistent with the economic arguments

present in Section 5.
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6 Conclusion

This paper documents a striking empirical observation. Cash flow betas, described as the long

run response of dividends from a unit shock to aggregate consumption, can explain more than

50% of the cross-sectional variation in observed average returns across a challenging collection

of size, book-to-market, and industry sorted portfolios. The cash flow betas correlation with

mean returns is 0.79 for book-to-market, 0.81 for size, and 0.57 for industry portfolios. Across

both the annual and quarterly frequencies, we measure the cash flow betas by estimating the

joint time-series dynamics for both aggregate consumption and portfolio specific dividend

growth rates using a VAR.

Our measures of the cash flow beta also explain about 50% of the dispersion in standard

CAPM betas, despite the fact that the market betas alone do not explain much of the

average return variation. We describe a model which allows for time-variation in both

expected consumption growth and aggregate uncertainty, for which each risk source will

require a distinct price. Under this specification, it is not surprising that the usual market

beta, as a weighted average of an asset’s exposure to both of these potential sources of risk,

does not do a particularly good job explaining the cross-section of observed returns. From

the perspective of our cash flow beta’s model, the pronounced cross-sectional variation in

average returns across these portfolios does not appear to be particularly puzzling. Our

model captures the economic intuition that cash-flows of different assets have different long

run exposures to fluctuations in the consumption in the economy, and that this exposure

has considerable capacity to explain differences in mean returns across assets.
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Table 1: Summary Statistics

Cash Flows Returns
Portfolio Mean Std. Mean Std.
s1 0.0369 0.1639 0.1359 0.2967
s2 0.0344 0.1232 0.1260 0.2512
s3 0.0280 0.0945 0.1220 0.2251
s4 0.0213 0.0996 0.1216 0.2245
s5 0.0229 0.1057 0.1211 0.2090
s6 0.0160 0.0832 0.1103 0.1953
s7 0.0181 0.0767 0.1117 0.1886
s8 0.0164 0.0987 0.1077 0.1743
s9 0.0136 0.0721 0.1033 0.1644
s10 0.0060 0.0633 0.0945 0.1686
b1 0.0091 0.1262 0.0907 0.2050
b2 0.0188 0.1288 0.0965 0.1622
b3 0.0135 0.1338 0.0962 0.1670
b4 0.0163 0.1198 0.0918 0.1672
b5 0.0326 0.0925 0.1151 0.1718
b6 0.0278 0.0816 0.1151 0.1655
b7 0.0261 0.0837 0.1173 0.1846
b8 0.0398 0.0936 0.1396 0.2069
b9 0.0382 0.1271 0.1400 0.2053
b10 0.0439 0.2202 0.1514 0.2359
i1 0.0275 0.0842 0.1062 0.1769
i2 0.0168 0.1725 0.1236 0.2406
i3 0.0073 0.1433 0.0907 0.1962
i4 0.0195 0.0741 0.1073 0.1947
i5 -0.0095 0.1086 0.1048 0.2254
i6 -0.0032 0.0619 0.0956 0.2021
i7 0.0034 0.1213 0.1067 0.2202
i8 0.0188 0.0900 0.1097 0.1812
i9 0.0003 0.0425 0.0874 0.1599
i10 0.0218 0.0785 0.1105 0.1922

Table 1 presents summary statistics for the data used in the paper. The table presents real
mean returns and cash flow growth rates for a set of 30 portfolios. Portfolios are sorted
into deciles on the basis of market capitalization (s1-s10), book-to-market (b1-b10), and ten
industry groups (i1-i10). Data are sampled at the annual frequency over the period 1949
through 2001 and are converted to real using the PCE deflator.
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Table 2: Time Series Parameters

Port. γi ρ1i + ρ2i bi βd,i
s1 0.229 (1.769) 0.335 (0.100) 5.027 (1.872) 7.809 (3.707)
s2 2.755 (1.355) 0.386 (0.147) 3.668 (1.231) 10.136 (4.083)
s3 1.073 (1.091) 0.192 (0.165) 3.780 (1.016) 6.298 (2.810)
s4 1.753 (1.022) -0.086 (0.225) 2.038 (0.854) 4.578 (1.910)
s5 1.643 (1.058) -0.155 (0.242) 0.852 (1.037) 3.261 (1.855)
s6 1.177 (0.771) 0.035 (0.203) 2.395 (0.695) 4.291 (1.865)
s7 1.334 (0.861) 0.154 (0.181) 1.307 (0.753) 3.579 (1.805)
s8 1.875 (0.911) -0.440 (0.237) 1.156 (0.778) 3.682 (1.601)
s9 1.039 (0.638) 0.079 (0.172) 1.745 (0.598) 3.487 (1.385)
s10 -0.012 (0.630) 0.031 (0.222) 1.555 (0.420) 1.594 (1.222)
b1 0.478 (2.261) 0.159 (0.169) 2.978 (1.502) 4.282 (5.242)
b2 -2.341 (1.521) -0.109 (0.217) -0.052 (1.368) -3.645 (2.988)
b3 -0.731 (1.490) -0.371 (0.147) 2.410 (0.929) 0.664 (2.120)
b4 -0.087 (1.227) -0.046 (0.236) -0.345 (1.374) -0.467 (2.283)
b5 0.430 (0.994) 0.160 (0.182) 0.112 (1.065) 0.790 (2.074)
b6 0.775 (1.203) -0.192 (0.187) 0.522 (0.904) 1.626 (2.081)
b7 1.961 (0.966) -0.085 (0.175) 0.456 (0.815) 3.411 (1.841)
b8 1.637 (0.923) -0.010 (0.107) 3.952 (0.913) 6.443 (1.987)
b9 1.895 (1.742) 0.057 (0.134) 3.411 (1.510) 6.526 (3.406)
b10 4.536 (2.590) 0.148 (0.169) 7.026 (2.814) 15.131 (5.649)
i1 0.470 (0.824) 0.360 (0.245) 0.285 (0.549) 1.150 (1.789)
i2 0.527 (1.874) -0.050 (0.155) 7.136 (1.409) 7.678 (3.813)
i3 2.552 (1.144) -0.714 (0.398) -0.011 (1.218) 3.900 (1.934)
i4 0.520 (0.634) 0.013 (0.218) 0.121 (1.038) 0.916 (1.572)
i5 1.846 (0.889) -0.148 (0.273) 1.686 (1.048) 4.319 (2.029)
i6 -0.317 (0.619) -0.140 (0.213) 0.456 (0.655) -0.082 (1.243)
i7 1.199 (0.821) -0.538 (0.242) 1.901 (1.018) 3.098 (1.666)
i8 0.423 (0.514) 0.350 (0.164) 1.315 (0.541) 2.630 (1.334)
i9 -0.244 (0.522) 0.400 (0.265) 0.957 (0.404) 1.141 (1.071)
i10 1.085 (0.652) -0.037 (0.196) 0.551 (0.682) 2.192 (1.294)

Table 2 depicts the estimated time series parameters from the model

gc,t+1 = ρcgc,t + ηt+1

gi,t+1 = γigc,t + ui,t+1

ui,t+1 = biηt+1 + ρ1,iui,t + ρ2,iui,t−1 + ζi,t+1

βd,i =
κi,1γi

1− κi,1ρc
+

bi
1− κi,1ρ1,i − κ2

i,1ρ2,i

where gc,t+1 represents the demeaned growth rate in aggregate consumption and gi,t+1 represents

the demeaned growth rate in the dividends paid on portfolio i. The parameter κi,1 represents a

constant of approximation in the Campbell and Shiller (1988) expression for returns. Data used

in the estimation are 30 portfolios sorted on size, book-to-market and industry and are sampled

annually over the period 1949 through 2001. All quantities are demeaned and converted to real

using the PCE deflator. Standard errors are presented in parentheses and are estimated using

a HAC covariance matrix with one Newey-West lag. Standard errors for ρ1i + ρ2i and βd,i are

computed via the delta method. 26



Table 3: Cross-Sectional Regressions

Panel A: Annual Data: 1949-2001

λ0 λc R̄2

Point Est. 9.882 0.357 0.574
t-stat 4.926 2.021

Distribution of t-statistics and R̄2

2.5% 5.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 95.0% 97.5%
t-stat -2.294 -2.102 -1.870 -1.505 -1.110 -0.602 0.049 0.699 1.165 1.514 1.880 2.111 2.319
R̄2 -0.035 -0.035 -0.032 -0.020 -0.002 0.025 0.061 0.105 0.160 0.232 0.341 0.417 0.478

Panel B: Quarterly Data: 1949:2-2001:4

λ0 λc R̄2

Point Est. 2.426 0.078 0.498
t-stat 4.789 2.217

Distribution of t-statistics and R̄2

2.5% 5.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 95.0% 97.5%
t-stat -2.433 -2.263 -2.028 -1.648 -1.223 -0.688 -0.024 0.626 1.167 1.595 2.000 2.217 2.383
R̄2 -0.036 -0.035 -0.033 -0.024 -0.009 0.012 0.040 0.076 0.126 0.184 0.282 0.361 0.426

Table 3 presents cross sectional regressions of average returns for 30 portfolios on the long-run beta, βd,i developed in the paper:

Ri,t = λ0 + λcβd,i + vi,t

In Panel A, results are presented for annual data covering the period 1949-2001; results with quarterly data over the period 1949:2-2001:4
are presented in Panel B. Parameters are estimated via ordinary least squares (OLS); t-statistics are computed with HAC-adjusted standard
errors. We also present the distribution of the t-statistics for the test H0 : λc = 0 and the R̄2 generated by a Monte Carlo experiment of
10,000 replications. In the Monte Carlo, we simulate the demeaned consumption growth rate as

ĝc,t+1 = ρ̂cĝc,t + η̂t+1

where ρ̂c is the autoregressive parameter for consumption estimated in the data and ση corresponds to the standard deviation of the residual

in the data. The simulated consumption growth rates and observed dividend growth rates are used to estimate the time series parameters

in model (9) and the cross-sectional parameters in the above specification. In the case of quarterly data, the simulated growth rates are also

used to generate a trailing four quarter moving sum of growth rates used in the estimation of γi.
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Table 4: Cross-Sectional Regressions

Panel A: Annual Betas

Port. βi Port. βi
s1 1.301 (0.152) b6 0.896 (0.063)
s2 1.221 (0.115) b7 0.912 (0.107)
s3 1.138 (0.098) b8 1.041 (0.133)
s4 1.141 (0.095) b9 1.019 (0.121)
s5 1.110 (0.073) b10 1.112 (0.130)
s6 1.057 (0.068) i1 0.798 (0.119)
s7 1.060 (0.054) i2 1.239 (0.074)
s8 0.972 (0.052) i3 1.061 (0.090)
s9 0.942 (0.039) i4 0.817 (0.104)
s10 0.974 (0.029) i5 1.190 (0.081)
b1 1.098 (0.055) i6 0.769 (0.150)
b2 0.911 (0.041) i7 1.050 (0.118)
b3 0.951 (0.034) i8 0.894 (0.077)
b4 0.877 (0.081) i9 0.559 (0.127)
b5 0.895 (0.083) i10 0.931 (0.092)

Panel B: Annual Data: 1949-2001

λ0 λc λβ R̄2

Point Est. 9.626 0.349 0.288 0.558
t-stat 2.667 2.492 0.068

Panel C: Quarterly Data: 1949:2-2001:4

λ0 λc λβ R̄2

Point Est. 2.299 0.075 0.136 0.483
t-stat 3.020 2.417 0.159

Table 4 presents cross sectional regressions of average returns for 30 portfolios on the long-run beta, βd,i
developed in the paper:

Ri,t = λ0 + λcβd,i + λββmkt,i + vi,t

Panel A depicts GMM estimates of betas using annual real returns data. In Panel B, results are presented

for annual data covering the period 1949-2001; results with quarterly data over the period 1949:2-2001:4 are

presented in Panel C. Parameters are estimated via ordinary least squares (OLS); t-statistics are computed

with HAC-adjusted standard errors.
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