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Abstract: To date, most research on freshwater cyanotoxin(s) has focused on 

understanding the dynamics of toxin production and decomposition, as well as evaluating 

the environmental conditions that trigger toxin production, all with the objective of 

informing management strategies and options for risk reduction. Comparatively few 

research studies have considered how this information can be used to understand the 

broader ecological role of cyanotoxin(s), and the possible applications of this knowledge to 

the management of toxic blooms. This paper explores the ecological, toxicological, and 

genetic evidence for cyanotoxin production in natural environments. The possible 

evolutionary advantages of toxin production are grouped into two main themes: That of 

“competitive advantage” or “physiological aide”. The first grouping illustrates how 

compounds produced by cyanobacteria may have originated from the need for a cellular 

defence mechanism, in response to grazing pressure and/or resource competition. The 

second grouping considers the contribution that secondary metabolites make to improved 

cellular physiology, through benefits to homeostasis, photosynthetic efficiencies, and 

accelerated growth rates. The discussion also includes other factors in the debate about 

possible evolutionary roles for toxins, such as different modes of exposures and effects on 

non-target (i.e., non-competitive) species. The paper demonstrates that complex and 

multiple factors are at play in driving evolutionary processes in aquatic environments. This 

information may provide a fresh perspective on managing toxic blooms, including the need 

to use a “systems approach” to understand how physico-chemical conditions, as well 

biological stressors, interact to trigger toxin production.  

OPEN ACCESS 



Mar. Drugs 2013, 11 2240 

 

 

Keywords: anatoxin-a; allelopathy; cyanobacteria; cyanoprokaryotes; cylindrospermopsin; 

microcystin; saxitoxin 

 

1. Introduction 

Cyanobacteria and Their Toxins 

The cyanobacteria, or blue-green algae, are photosynthetic microorganisms commonly found in a 

diverse range of aquatic and terrestrial environments including Antarctic lakes, thermal springs, arid 

deserts, and tropical acidic soils [1,2]. Typically, however, it is the toxin-producing blooms of these 

species that are of greatest interest and concern to humans, especially where these appear in tropical, 

subtropical, and temperate fresh and marine waters used for recreational or drinking water purposes. 

Cyanotoxins are recognized as toxic to a wide variety of trophic levels, including organisms such as 

bacteria, protozoans, zooplankton, fish, birds, and mammals [3–5]. As a group, the cyanotoxins have a 

wide array of chemical structures, triggers for production and modes of toxicity; and the toxicity of 

these compounds varies amongst different producer species (Figure 1).  

Figure 1. Chemical structures of cyanotoxins: (a) microcystin (MC); (b) nodularin (NOD); 

(c) cylindrospermopsin (CYN); (d) saxitoxin (STX); and (e) anatoxin-a. 

 

The literature on toxin production by the cyanobacteria is already large, and continues to grow as 

new toxins are identified, and new tools and techniques are developed for their study. The latter have 

been largely focused on the rapid detection through the use of molecular and genetic methods, 

particularly in field applications, with the objective of improving risk management in drinking water 

supplies. Despite these advances, several authors have acknowledged that the ecophysiology and broader 

role of toxin production by cyanobacteria remains very unclear [6–8]. This information is useful not 

only in the sense of understanding the ecology and biology of cyanobacterial species, but also through 
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the potential to provide insights into how they may be best managed in terms of drinking water, 

recreational water, and environmental health risks.  

2. Determining Possible Ecological Roles 

2.1. Toxins as Secondary Metabolites for Competitive Advantage 

Since cyanotoxins began appearing in scientific literature, they have generally been accepted as 

“secondary metabolites” [9]. By definition, secondary metabolites are those compounds not used by an 

organism for primary metabolism [10]. Hormones, antibiotics, and allelochemicals are each examples 

of secondary metabolites. The formation of secondary metabolites is subject to general physiological 

control that responds to environmental factors. In plants, secondary metabolites, such as alkaloids, 

were once regarded as waste material discarded from metabolism, which accumulated in tissues simply 

due to the absence of an appropriate excretory system. However, this view is no longer generally 

accepted as such substances were later assigned a beneficial role such as controlling predation  

(e.g., through poor palatability) [11].  

The presence of a regulatory mechanism associated with the production of secondary metabolites 

suggests that the evolution of these compounds is based in their ability to confer benefit on the cell [11,12], 

as opposed to being truly “accidental” and/or “leftover” compounds. Some authors have suggested that 

microbial secondary metabolites evolved during periods of ecological disequilibrium, where they were 

able to provide a distinct competitive advantage [13], but which may or may not be relevant in modern 

aquatic environments. For example, compounds formed in response to rapid change environments may 

still confer benefit in the form of competitive advantage. It is also possible that cyanobacterial 

secondary metabolites can in fact provide multiple functions, as this is known from other microbial 

species (e.g., in antibiotic production). Thus, they could simultaneously offer functions in both primary 

and secondary metabolism. In this light, the labelling of cyanotoxins as “secondary metabolites” has 

become blurred, because there appears to be evidence for of the potential for their role in primary 

metabolism—either currently, or in the past.  

2.2. Toxins for Core Physiological Functions  

Since cyanotoxins affect numerous aquatic and terrestrial organisms, it is tempting to conclude that 

toxin production predominantly occurs to offer a defence against grazing and/or to reduce resource 

competition. However, it is also possible that the primary function(s) of cyanotoxins are unrelated to 

their toxic properties [14]. Given that toxin production by cyanobacteria has been retained over long 

evolutionary periods, and despite the metabolic costs of production, it seems highly likely that these 

compounds have important biological function(s) [15]. For example, recent studies examining 

cyanotoxin production have found close links between these compounds and certain physiological 

functions that may be considered part of the primary metabolism of the cell [7]. A number of other 

physiological roles have been speculated for cyanotoxins, such as cell signalling, nutrient uptake, iron 

scavenging, maintenance of homeostasis, and protection against oxidative stress [7,16–19]. 
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3. Exploring the Evidence 

3.1. Environmental Triggers for Toxin Production 

3.1.1. Abiotic Factors 

Cyanotoxin production is dependent on a number of environmental conditions: Predominantly, 

these include nutrient concentration, light intensity, and temperature. Nutrients have been shown to 

influence the production of various toxins, across several cyanobacterial genera. For example, 

nitrogen-limited environments are generally associated with elevated levels of cylindrospermopsin 

(CYN), microcystin (MC), anatoxin-a and nodularin, with each of these being produced by nitrogen-fixing 

cyanobacteria [8,20]. Conversely, toxin production in non-nitrogen fixing cyanobacteria, such as 

Microcystis and Planktothrix, has been shown to peak with high concentrations of nitrogen [8,21]. 

This presents a scenario whereby the presence of N can contribute to both increased and decreased MC 

production, depending on the genera. The findings related to phosphorous also demonstrate the 

importance of this nutrient to toxin production: Basic et al. [22] reported a decrease in CYN 

production under phosphorous limitation, and CYN production was shown to increase with 

phosphorus concentrations in other studies [23,24].  

Light intensity is also a critical factor influencing the production of cyanotoxins. For example, the 

highest CYN concentrations are not found at the light intensities that are optimal for growth  

(50–100 μmol·m
−2

·s
−1

), but instead, from intensities outside this range [20]. Dyble et al. [25] also reported 

that maximum CYN production occurs at supra-optimal light intensities, with the highest CYN produced 

at the highest intensity. For microcystin, the transcription of two genes responsible for toxin production 

was shown to be influenced by light quality: Here, maximum transcription rates were recorded at high 

light intensities and under red light, whereas blue light caused decreased transcription [26]. 

Like light, temperature has a fundamental relationship with cyanotoxin production, yet here, the 

physiology seems more closely linked with the regulation of growth rates. The highest CYN 

concentrations, for example, are often found at temperatures that would be considered sub-optimum for 

cell growth, with maximum CYN reported at 20 °C and production ceasing at temperatures exceeding 

35 °C. There is a negative correlation between growth rate and the rate of CYN produced [20], 

presumably resulting from the metabolic trade-offs involved with reproduction vs. toxin production. 

Anatoxin-a production has also been shown to be highest at 20 °C [27], whereas maximum production 

of MC and nodularin has been reported to occur between 18 and 25 °C [8].  

The pH of water may also influence toxin production. Van der Westhuizen et al. [28] in  

Jaiswal et al. [29] reported that higher MC production occurred at pH values above and below the 

optimum growth brackets for M. aeruginosa, however, other studies have found no direct effect of pH 

on MC production [29]. 

3.1.2. Biotic Factors 

The presence of a competitor or predator clearly influences the level of production of many 

cyanotoxins, but the extent to which this occurs is not consistent amongst toxins, even when the same 

producer species is involved [30]. For example, production of anatoxin-a by Anabaena flos-aquae was 
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shown to increase in the presence of the green alga Chlamydomonas reinhardtii, whereas the 

production of MC was totally inhibited [31]. Differences in MC production by Microcystis were also 

shown to increase upon direct or indirect (chemical cues from feeding) exposure to grazers such as 

microcrustaceans and phytoplanktivorous fish [32–34]. 

3.2. Toxicity for Competitive Advantage  

3.2.1. Grazing Defence  

Cyanobacterial toxins are widely believed to have evolved in response to grazing pressure: Here, 

the toxin production provides producer species with a competitive edge over their non-toxic 

counterparts. Numerous studies have shown that cyanotoxins are toxic to zooplankton; indeed, some 

zooplankters actively avoid them [35–37]. For example, Demott et al. [37] observed that low 

concentrations of MC inhibited feeding rate of Daphnia pulicaria; however, when this 

microcrustacean was placed in toxin-free water, the feeding rate quickly recovered. The authors thus 

suggested that the toxin had evolved as a chemical defence against grazers [37]. The toxin-producing 

Anabaena flos-aquae has been shown to decrease lifespan, fecundity, and population growth rate of 

the rotifers Brachionus calycijlorus and Synchaeta pectinata [36]. The production of MC by 

Microcystis was also shown to increase in response to direct cues from exposure to grazers such as 

microcrustaceans and phytoplanktivorous fish or indirect chemical cues from feeding [32–34].  

CYN has been shown to be toxic to a number of aquatic organisms including brine shrimp  

Artemia salina [38], Daphnia magna, and Daphnia galeata [39]. Each of these examples supports the 

proposition that toxin production evolved as a defence mechanism against grazing. However, a study 

by Van Gremberghe et al. [40] found that this phenomenon was strain specific; and in general, 

exposure to infochemicals from Daphnia sp. have a weak influence on toxin production.  

Wilken et al. [41] also concluded that direct and indirect exposure to a protozoan grazer did not cause 

an increase in MC. This presents some difficulty in concluding that grazing inhibition is the sole—or 

even predominant—reason for the evolution of cyanotoxin. 

To further add to the complexity of this issue, recent advances in the molecular field have shown 

that the genes involved in the production of some toxins may predate the metazoan lineage [42–44], 

hence confounding any notion that toxin production was originally triggered by grazing pressure. For 

example, molecular analysis on the MC synthetase genes have shown that these were present in the 

ancient ancestor of cyanobacteria, some 1600–2000 million years ago [43]. The nda gene, which codes 

for the nodularin was also shown to originate from an ancient ancestor [44]. Recent determination of 

the genetic basis for saxitoxin (STX) has revealed that the STX gene clusters involved in the 

production of this toxin appear to have been present early in the divergence of the Nostocales, at least 

2100 million years ago [42]. The oldest fossils of filamentous akinete-forming cyanobacteria have 

been dated to, between, 1600–2000 million years of age [45]. Given that most of the cyanobacteria, 

which produce CYN form akinetes, like MC and STX, it is likely that the genes responsible for CYN 

production were present in their ancient ancestor, which predates the divergence of metazoans which 

occurred approximately 1576 million years ago [43]. 
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Whilst the molecular evidence strongly suggests that the evolution of genes for toxin production 

pre-dated the existence of metazoans, this does not eliminate all possibility for evolution of 

cyanotoxins as a grazing defence mechanism: Protozoans may have been able to provide sufficient 

pressure [41]. In many systems, the biomass of protozoans often exceeds that of metazoans, in fact, 

protozoans are often the most important grazers on phytoplankton [46]. Unsurprisingly, a number of 

studies have demonstrated adverse effects of cyanotoxins on protozoans: For example, CYN is toxic  

to the amoeba Naegleria lovaniensis [47], and the protozoans Spirostomum ambiguum and  

Tetrahymena termophyla are both sensitive to MC [48]. Conversely, a number of protozoan grazers are 

known to actively feed and grow on toxic cyanobacteria [46,49]. The study by Fabbro et al. [49] found 

that the ciliate Paramecium caudatum was able to successfully graze on the CYN producer 

Cylindrospermopsis raciborskii; hence the probable reason that this ciliate regularly co-occurs with 

environmental blooms of that alga. However, in the same study, variation in toxin production was 

observed between the straight and circular forms of C. raciborskii when these were challenged by 

feeding of P. caudatum, with no effect recorded from the strain having circular morphology. A more 

recent study also demonstrated that Microcystis aeruginosa was unable produce MC in response to 

direct and indirect exposure to a protozoan grazer [41]. This suggests that whilst toxin production is 

likely to be linked with defence against protozoan grazing in some species and/or morphological 

strains blue-greens, this is unlikely to be the case for all species, which means alternative explanations 

are required. 

Furthermore, the argument against “toxins as a grazing defence” is made stronger when the overall 

cost of toxin production is considered: When judged entirely by the metabolic balance sheet, cyanotoxins 

may be a poor choice for establishing a defence mechanism. For example, many algae—including 

those that produce toxins feature potentially more cost-effective methods of reducing grazing, such as  

the production of mucous, the formation of large colonies as observed in species of Microcystis sp.,  

or differentiation into cell morphologies that are less amenable to grazing (such as coiled 

Cylindrospermopsis, as mentioned above).  

A further complication against the “grazing defence” argument is the multiple examples of species 

that produce and retain toxin largely in the intracellular form: This is particularly true of most MC 

producers, although not the case for CYN (where large proportions of the toxin occur in the 

extracellular environment). Pragmatically, the “grazing defence” argument is much weaker for species 

that rely on intracellular toxin, as the beneficial effect of the toxin (to deter grazing) is only imparted 

once the cell has already been consumed. A possible counterargument to this would be that 

intracellular toxin acts to reduce palatability, thus increasing the fitness of a clonal colony, leading to 

genetic advantage for the strain and/or population. Questions about the role of toxin in reducing 

grazing pressure are also raised when the variety of target animals for cyanotoxins is considered. For 

example, invertebrates (e.g., aquatic snails) appear much less sensitive to the toxicity of CYN 

compared with vertebrates (e.g., tadpoles, fish), despite the snails representing a similar (or greater) 

threat to that producing species in terms of grazing pressure [50].  
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3.2.2. Allelopathy 

Allelopathy can be defined as the inhibition of growth of one organism by the release of chemicals 

by another, and which typically confers benefit in terms of reduced resource competition. Toxin-producing 

cyanobacteria constantly compete against other cyanobacteria, algae and macrophytes for light, 

nutrients and space. Thus, an ecological role for cyanotoxins as an allelopathic chemical against other 

algae and plants has been proposed, and several studies have provided evidence for this hypothesis. 

Singh et al. [51] showed that purified Microcystin-LR (MC-LR) extracted from Microcystis aeruginosa 

had a negative effect on the growth of several green algae and cyanobacteria. Kearns and Hunter [52] 

also showed that MC and anatoxin-a both inhibit the motility of the green alga  

Chlamydomonas reinhardtii. The cyanobacterium Synechococcus elongatus was also shown to be 

inhibited by the presence of the Microcystin-RR (MC-RR), possibly due to inhibition of 

photosynthesis by the toxin [53]. MC-LR has also been shown to exert inhibitory effects on aquatic 

plants, such as Ceratophyllum demersum, with the toxin inhibiting growth, morphology, and 

photosynthesis at environmentally relevant concentrations (5 μg·L
−1

) [54,55]. Inhibitory effects of 

MC-LR were also reported for the growth and morphology of the aquatic plant Spirodela oligorrhiza, 

however, the test concentration used were far higher than those reported from the field [56]. Similary, 

anatoxins have also been shown to have negative effects on aquatic plants, but only at concentrations 

exceeding environmental relevance [57]. Cell and cell-free extracts of C. raciborskii were linked with 

allelopathic effects on two green algae, Coelastrum sphaericum and Monoraphidium contortum, the 

cyanobacterium Microcystis wesenbergii, and the diatom Navicula sp. [58]. Growth of Lactuca sativa, 

Phaseolus vulgaris, Pisum sativum, and Solanum lycopersicum was also shown to be affected by 

extracts of two strains of C. raciborskii, although germination was not significantly inhibited [59]. The 

influence of cyanotoxins on nutrient dynamics on other organisms can also be considered a form of 

indirect allelopathy [60]. 

In contrast to the above, MC-LR and CYN at ecologically relevant concentrations were recently 

shown to lack any allelopathic effects on some species of phytoplankton [61]. This study showed that 

cyanobacterial crude extracts induced more pronounced effects on growth rates compared with pure 

toxins, with stimulatory effects noted for extracts containing MC-LR and CYN at 0.025–2.5 mg·L
−1

. 

Hydrilla verticillata was also shown to display significant growth stimulation and redistribution of 

plant resources in conjunction with exposure to the whole-cell extracts of C. raciborksii, containing up 

to 400 μg·L
−1

 CYN [62]. 

Considering the two sets of evidence above, the notion that allelopathy is dominant in the 

ecological role of cyanotoxins remains under debate. A number of authors have suggested that toxins 

themselves may not have allelopathic effects, but instead work synergistically with other cellular 

compounds: This line of thought has been prompted by the observations that very high toxin 

concentrations are generally required to exert inhibitory effects, and because cellular extracts 

containing toxins are often more active than purified toxin [30,61,63]. For example, Babica et al. [63] 

noted that only a limited number of studies illustrated an allelopathic effect on phototrophic organisms 

at environmentally relevant concentrations of MC, and concluded that the ability of MC to work as  

an allelopathic chemical seemed unlikely. Berry et al. [64] also noted that typical environmental 

concentrations of MC are below 10 μg/L, whereas the studies demonstrating inhibitory effects on 
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photoautotrophs were conducted using concentrations greater than 100 μg·L
−1

 MC. There is also a lack 

of experimental results on allelopathy at pre-bloom cell densities [65], with the few existing studies of 

low cell concentrations failing to demonstrate any effects; and a lack of studies to integrate laboratory 

and field observations with respect to establishing allelopathic effects [66]. Allelopathic tendencies are 

also considered much reduced in those toxins, which present intracellularly (such as MC) [66].  

3.3. Toxic Compounds as Physiological Aides 

3.3.1. Assistance in Nutrient Uptake 

The availability of nutrients is recognized as a major limiting factor for the proliferation of 

phytoplankton in freshwater. Despite this importance, there seems to be a shortage of studies about the 

effect nutrient concentrations have on toxin production, and whether toxins may play an ecological 

role in improving access to nutrients [22]. One exception to this is the information about the role of 

toxins in mediating alkaline phosphatases (APase) secretion by other organisms, which could 

potentially offer ecological advantage to the toxin-producer. For example, it has been demonstrated 

that when phosphate is limited, inorganic phosphate is taken up from the environment by autotrophs 

via the secretion of alkaline phosphatases (APase) [16]. A recent study has suggested that the presence 

of CYN causes the secretion of alkaline phosphatase (APase) by other phytoplankton, thus increasing 

the amount of inorganic phosphate available to the CYN producer, and allowing it to out-compete 

other species in environments with limited inorganic phosphate [23]. The study showed that the 

addition of Aphanizomenon ovalisporum spent media containing high levels of CYN or purified CYN 

to various cultures of phytoplanktons, including Chlamydomonas reinhardtii, induced the upregulation 

of genes typically associated with limited inorganic phosphate and a rise in extracellular APase 

activity, despite high concentrations of inorganic phosphates present in the media [23]. The  

results were also supported by the field results showing a strong correlation between the abundance  

of CYN-producing A. ovalisporum and high APase activity in Lake Kinneret, Israel with  

enzyme-labeled fluorescence (ELF-APase) showing APase in various phytoplankton species, but not 

in Aphanizomenon [23]. Another study has also reported the increase in APase during the presence of 

Aphanizomen ovalisporum [67].  

This strategy of using CYN to cause other organisms to overproduce APase, instead of producing 

the enzyme itself may be advantageous (in the evolutionary sense) because the cost to the cyanobacterium, 

in units of nitrogen and energy, have been estimated to be half the nitrogen cost of making APase, and 

less than the energy needed for the ribosomal synthesis of acid phosphatase [16,23].  

Other studies have shown that concentrations of cyanotoxins increase when exposed to limited 

nutrients. Kurmayer [68] found that a Nostoc sp. also produced the highest concentrations of the toxin 

MCunder severe growth limiting conditions, due to phosphate (P-PO4) limitation. Oh et al. [69] 

showed that Microcystis aeruginosa increased MC when P was limited. The dinoflagellate 

Alexandrium tamarense increased STX production three- to four-fold under a P-limited  

environment [70]. Toxin production in the dinoflagellates Gymnodinium catenatum and  

Alexandrium excavatum, as well as the diatom Pseudonitzschia multiseries, have also been shown to 

increase under P stress [70,71]. Wang et al. [72] has postulated that APase might have some 
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relationship with MC production in algal cells, as toxic M. aeruginosa enhanced APase activity when 

exposed to P-limiting conditions, whereas non-toxic forms did not. There is thus a possibility that 

these toxins may serve a role similar to that proposed for CYN, in terms of assisting with favourable 

nutrient dynamics, yet no studies have explored this to date: Raven [16] has suggested further topics 

for study in this field.  

Where cyanotoxins can be shown to mediate the nutrient dynamics for other organisms, this can be 

considered a form of indirect allelopathy [60]. However, in examples where cyanotoxins are able to 

influence nutrient availability (accessibility) to their producer species, the label of “physiological aide” 

may be more appropriate. Hence, this is a good example of the blurred line where one particular 

strategy (e.g., producing toxin that effectively delegates the metabolic cost of APase production to 

another competitor) could be considered both a form of allelopathy as well as a physiological aide.  

3.3.2. Iron Scavenging 

A number of studies have suggested the role of MC as an iron-scavenging molecule [17,73,74]. Iron 

is an essential nutrient for chlorophyll-a synthesis, respiration, photosynthesis, and nitrogen fixation 

within cyanobacteria. However at circumneutral pH, iron is generally limited. This has implications for 

water managers as most freshwater storages, which are at risk of toxic blooms, have a pH that is close 

to circumneutral or slightly alkaline. It has been shown that MC-producing strains of cyanobacteria 

possess more efficient Fe uptake systems compared with strains that do not produce MC [17,73]. It has 

been suggested that MC acts as an iron chelator inside the cell and is responsible for inactivating free 

cellular iron. It has also been suggested that MC production is regulated by the amount of free Fe in 

the cell [17]. This has recently been shown with iron-deficient media causing an increase in transcription 

of the mcyD gene responsible for the production of MC and an increase in MC levels [75]. However, 

Alexova et al. [74] found that transcription of some MC producing genes such as mcyA and mcyH did 

not increase with a decrease in iron, whereas MC concentrations did. Alexova and colleagues proposed 

that toxin production appears to give an advantage to MC-producing cyanobacteria in the early stages 

of exposure to severe iron stress and may protect the cell from reactive oxygen species-induced 

damage [74]. 

3.3.3. Oxidative Stress and/or Carbon-Nitrogen Metabolism 

A role for MC in relation to increasing survivorship to oxidative stress has been proposed [76]. A 

number of studies have shown an increase in transcription of mcy genes under conditions that promote 

oxidative stress, such as high light and iron deficient conditions [26,75,77]. However, rises in 

transcription of the mcy genes have not been linked with increase in toxin production: Rather, 

declining concentrations of MC are often noted [26,75–77]. The loss of MC from solution has been 

ascribed to binding of the toxin to various proteins [76]. Recently, Zilliges et al. [76] have shown that 

MC actively binds to proteins that are sensitive to redox changes, and that this binding is strongly 

increased under high light and oxidative stress conditions. Zilliges et al. [76] showed that  

MC-deficient mutants were more susceptible to high light and oxidative stress conditions. This 

suggests that MC may play an important role in the acclimation of toxin-producers to conditions 

involving oxidative stress. Zilliges et al. [76] also showed a link between MC and proteins involved in 
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carbon metabolism, in particular the Calvin-Benson cycle. Alexova et al. [78] reported differences in 

the proteomes of six toxic and non-toxic strains of Microcystis aeruginosa and found that nine proteins 

were differentially expressed amongst the toxic and non toxin strains, with these proteins linked to 

carbon-nitrogen metabolism and redox maintenance. Neilan et al. [7] proposes that the studies by 

Zilliges et al. [76] and Alexova et al. [78] give support to a global role for MC in carbon-nitrogen 

metabolism and in redox control and/or perception of redox changes. 

MC was also shown to accumulate when Microcystis aeruginosa PCC 7806 was exposed to low 

inorganic carbon conditions, and that the MC-deficient mutant was shown also to have a decreased 

ability to adapt to limited inorganic carbon compared to the MC-producer [79]. This result of 

dominance of the MC-producer over the MC-deficient mutant was also shown recently by  

Van de Waal et al. [80]. Jahnichen et al. [79] suggested a possible role of MC in enhancing the 

efficiency of the photosynthetic apparatus to adapt to changes in inorganic carbon [79].  

Neilan et al. [7] also suggested a link between toxin production and photosynthesis as it appears  

that the regulation of toxin genes and toxin production by light appears to be universal  

among cyanobacteria. 

El-Shehawy et al. [81] suggested that Nodularin (NOD), like MC, may have the ability to bind to 

proteins under stress conditions and may have a role in protein protection; given that,  

Jonasson et al. [82] showed that increased expression of the gene cluster for NOD production did not 

lead to increased levels of NOD produced. Neilan et al. [7] also suggest that the regulation of 

intracellular CYN may also occur at the protein level due to lack of correlation between transcript 

abundance of the cyr cluster and toxin concentration. In summary, the published information to date 

shows that toxins may have a role in improving the survivorship of toxin-producing algae through 

changes to oxidative stress responses and/or carbon-nitrogen metabolism, but the specific nature of this 

is not known.  

3.3.4. Maintenance of Homeostasis 

STX has been linked to the maintenance of Na
+
 homeostasis in cyanobacteria. Pomati et al. [83] 

showed that cyanobacteria (C. raciborskii and A. circinalis) capable of producing STX were able to 

prevent cell lysis caused by the sodium pump inhibitors veratridine (VTD) and vanadates (VAN), 

whereas complete cell lysis was shown for non-toxin producing strains. The addition of STX to the 

culture before treatment with VTD plus VAN prevented cell lysis of the same non-toxin producing 

strains. STX was also shown to ameliorate the adverse effect of VTD on metabolism. In another study, 

increases in Na
+
 stress have been shown to cause changes in STX production, with STX accumulation 

occurring at high intracellular Na
+
 levels [19]. The addition of lidocaine (a Na

+
 pump inhibitor) was 

also shown to lead to an accumulation of STX, whereas in the presence of amiloride, a Na
+
 blocker, 

STX accumulation did not occur [19,83,84]. This also provides support that STX may play a 

functional role in blocking Na
+
 channels in cyanobacteria to decrease sodium stress and maintain Na

+
 

homeostasis. Recently Soto-Liebe et al. [85] have shown that STX is exported out of the cyanobacteria 

(Raphidiopsis brookii) in response to increases in the cations Na
+
 and K

+
. This finding also provides 

support for the possible role of STX in ensuring homeostasis against variations in salinity. When 

examining the mechanism by which STX toxin provides toxicity to eukaryotes by blocking Na
+
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channels, leading to decrease in flow of sodium ions which causes an inhibition of neuronal 

transmission [86], it is not unreasonable to propose that the ecological role for STX may be similar. If 

the role of STX is to limit Na
+
 uptake under conditions of high pH or salt stress, then this may also 

provide the STX producers with a competitive advantage over non-STX producing species, thus 

helping to explain the presence of STX in a range of aquatic environments from marine to freshwater.  

Although there is currently no evidence for the role of anatoxin-a in Na
+
 homeostasis, this remains a 

possibility. Anatoxin-a causes toxicity in vertebrates by binding to the nicotinic receptor on sodium 

channels, causing the channels to open allowing sodium ions to flow in, inducing over stimulation of 

the nerve and muscle cells leading to paralysis [86]. Anatoxin-a may therefore play an opposite role to 

STX in maintaining Na
+
 homeostasis. At low Na

+
 levels, anatoxin-a may play a role in sodium uptake 

by opening up the cell’s sodium channels. The ability to produce both STX and anatoxin-a has been 

recorded for a number of genera of cyanobacteria (Anabaena, Aphanizomenon, Cylindrospermopsis, 

Planktothrix) and it is possible that both these cyanotoxins are produced to help maintain sodium 

homeostasis at different environmental scales (high Na
+
 (STX), low Na

+
 (anatoxin-a)). Another 

possible role is that anatoxin-a and/or STX may be used to disrupt the Na
+
 homeostasis of other 

organisms as a type of defensive or allelopathic strategy. 

3.3.5. Roles as Infochemicals 

Toxins produced by cyanobacteria may act as info-chemicals or signalling molecules. A study by 

Schatz et al. [87] showed that when exposed to MC, Microcystis cells increased the accumulation of 

McyB and enhanced the production of microcystins within themselves. The author proposes that the 

lysis of a fraction of the Microcystis population is sensed by the rest of the cells via the release of  

non-ribosomal peptides (e.g., microcystin), allowing the remaining cells to respond by increasing their 

ecological fitness by raising their ability to produce toxic compounds [87].  

MC has also been linked with a role in signalling colony formation and aiding in its  

production [18,88,89]. Gan et al. [18] showed that MC’s significantly increased colony sizes of a 

number of Microcystis sp. Decreases in extracellular MC through microbially-driven degradation also 

caused the colonies to decrease in size: This suggests that MC is needed to maintain colony size. 

Kurmayer et al. [90] also found that larger colonies of Microcystis in a lake in Berlin contained higher 

proportions of MC-producers than did small colonies. MC also causes increased production of 

extracellular polysaccharides (EPS) and the up-regulation of four polysaccharide biosynthesis-related 

genes: capD, csaB, tagH, and epsL. EPS are associated with cell aggregates; they are found mainly in 

the mucilage or the sheath of the microorganism and affect the stickiness of the cell surface, thus 

allowing colony formation in some algal species. The polysaccharide layer of the cell was also shown 

to become thicker in response to MC [18]. EPS production has been linked with stressful conditions, 

such as predation and adverse environmental conditions. The ability of MC to trigger EPS and increase 

the formation of colonies may provide MC-producers with an advantage against grazing and stressful 

conditions [18].  
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4. Understanding the Role of Toxins: A Whole-of-System Approach  

Most research effort to date has focused on understanding the physico-chemical conditions under 

which toxin production is triggered. However, it appears that a much more comprehensive and holistic 

“systems approach” is needed to begin understanding how the complex mix of environmental conditions, 

resource competition, and cell physiology interact with each other to encourage toxigenicity and 

stimulate toxin production. For example, the overall message from the analysis of abiotic components 

is that whilst toxin production often appears to be decoupled from cell growth rates in the purely 

quantitative sense, there is a de facto relationship between those conditions that regulate cellular 

growth rates, and those that encourage maximal toxin production. Here, one or more environmental 

conditions either in the sub-optimal or supra-optimal range for cell reproduction. The impacts of these 

conditions on the growth and/or survivorship of the species are retarded population growth and/or 

death (in the extreme cases). At the cellular level, the potential response to this is twofold: To increase 

toxin production with the objective of influencing the external environment; or to reduce toxin 

production, with the benefit being reduced metabolic demand and the potential to re-route that 

investment internally, in order to maintain or accelerate cell growth.  

For the biotic components, the two main schools of thought appear to be the possible role of toxins 

in conferring direct competitive advantage, through either grazing defence or allelopathy; or, an 

internal role for toxins in terms of cellular physiology, and the ability of cells to access and utilize the 

resources for growth. The latter “physiological aide” argument also provides benefit, but does so 

indirectly by mediating other cell processes.  

With respect to a role for toxins in grazing defence, the pressures on producer species could occur 

from protozoans, zooplankton, or higher-level organisms (invertebrates, vertebrates). This produces a 

threat of reduced cell number or—in extreme cases—localized extinction of the population. A suite of 

possible responses is known from cyanobacteria, of which toxin production is only one. Similarly, the 

pressure of resource competition from other primary producers, principally for light and nutrients, also 

leads to a state of population threat for cyanobacteria: Here, toxins may be produced as allelopathic 

compounds. As described above, cyanotoxins have also been shown to help mediate nutrient uptake, 

assist in photosynthetic efficiency (through iron scavenging), protect against oxidative stress, maintain 

homeostasis, and participate in cell-to-cell signalling.  

In the community context, there are essentially two schools of thoughts for cyanotoxins: Firstly, 

toxins can be regarded as environmental tolerance traits that allow the producer organisms to cope 

with abiotic environmental changes. In some cases, this may involve toxin production with the 

apparent self-limitation of cell growth, as discussed above: This would avoid a population explosion 

and subsequent bust. Secondly, cyanotoxins can be linked with resource acquisition/enemy resistance 

traits: This provides an advantage over competitors and/or predators by exploiting common limiting 

resources or conveying resistance. Regardless, both these approaches are likely to lead to a situation of 

increased dominance of toxin-producing blue-green algae, in both niche and non-niche environments. 

In considering the possible ecological roles for cyanotoxins, it is important to acknowledge that 

blue-greens (and their toxins) have persisted across considerable timescales, and the changing 

environments that have accompanied these. The earth’s environment at the time when cyanotoxins 

originally evolved was very different to the current environment, and evidence for this is reflected in 
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contemporary studies: Consider, for example, the stability of CYN in boiling waters and extreme pH 

values [91]. The fact that toxin production has been retained over long periods—despite the metabolic 

cost—seems to suggest longevity in any competitive advantage conferred by the toxin. Were this not 

the case, then genes involved in toxin production would likely have been lost over time, and, in the 

absence of new environmental pressures, there would be a decrease in the abundance of toxigenic 

compared with non-toxigenic cyanobacteria. Rather, the reverse seems to be true, with an increased 

abundance of toxigenic blooms being reported in the literature; however, this may result from 

increased scientific observations and reporting, rather than being a specific rise. It is interesting to note 

that cyanotoxins have also been shown to affect mammals with no direct competitive or predatory link 

to algae (for example, several studies with mice and cattle). Again, this suggests that the evolutionary 

drivers for toxin production may have changed significantly since their emergence: Whether or not this 

“non-target” toxicity will eventually fall away is not known. It is also useful to note that almost all 

cyanobacterial toxins are produced through biosynthetic pathways, which are highly variable, because 

they are controlled by genetic and/or enzymatic factors. This provides a situation whereby the nature 

and composition of toxins produced by blue-greens is able to change rapidly in response to abiotic and 

biotic factors: This allows for the possibility of divergent (and more advantageous) ecological roles of 

toxins to be developed over time.  

5. Implications for Future Management 

As global climate change progresses, a greater range of cyanotoxin producers are likely to expand 

into subtropical and temperate climes, and a greater breadth of aquatic species will become vulnerable 

to toxicity and toxin accumulation. Increasing eutrophication and creation of more storage impoundments 

are also factors that are likely to create an increased prevalence of toxin producers. Further conceptual 

and empirical research into the ecological role and environmental triggers of toxin production is 

needed to better understand the complex suite of conditions that influence the toxigenic capacity, as 

well as the level of toxin production, in blue-green algae. Necessarily, this needs to include not only 

the triggers for toxin production, but also for cessation of toxin production. Conceivably, information 

may come to light that would allow for new interventions that discourage toxigenic strains of algae: 

This would be particularly useful for drinking water storage impoundments.  

6. Concluding Thoughts 

In summary, cyanotoxins appear to have evolved due to a combination of pressures from abiotic or 

biotic factors. There are two main themes underpinning their ecological roles: First, they evolved for 

the purposes of direct competitive advantage (e.g., through grazing defence mechanisms or to act as an 

allopathic compound against competitors); and/or second, they evolved to aide general physiological 

function. Notwithstanding either (or both) of these, it must also be recognised that the original 

ecological roles of cyanotoxins are also likely to have mutated or been lost over evolutionary time, 

possibly to be replaced with new functions. A number of research questions remain outstanding with 

respect to understanding the “why” of toxin production by the blue-green algae. Firstly, there are no 

published articles that examine why many blue-greens produce such a wide variety of toxins. For 

example, Cylindrospermopsis can produce multiple analogs of CYN, in addition to STX and 
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anatoxins; and there are some 80+ variants known for MC. Simplistically, this could be viewed as a 

result of multiple pressures, but not enough is known to understand the specifics of this, including 

whether new forms of toxins may be expected in the coming years. Secondly, why do both toxigenic 

and non-toxigenic species of cyanotoxin producers exist, and seemingly with comparable success? 

What, if any, potential is there for non-toxic strains to take advantage of the production of toxins by 

co-occurring strains, without supporting the costs of synthesis? Are there indeed very few non-toxic 

strains, but the current state of research and analytical tools means that tests for many types of 

compounds do not yet exist?  

To obtain a clearer picture of whether or not toxicogenicity is likely to be retained as a feature of 

cyanobacteria into the future, work is needed on determining the synergistic effects of different abiotic 

and biotic factors on toxin production. Ideally, this would involve laboratory studies that are validated 

by field findings, and the use of molecular data such as the transcription of toxin gene clusters under 

the same conditions.  

In conclusion, the above review has suggested that there are likely to be a multiplicity of roles for 

cyanobacterial toxins: These vary with particular toxin, and with their producer species. Any given 

toxin may have one or more ecological functions, but assigning these with confidence is challenged by 

the existing state of the literature, which reflects the lack of systematic hypothesis testing for each 

compound and producer-species combination.  
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