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Interpreting the von Bertalanffy model of somatic
growth in fishes: the cost of reproduction
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We develop a model for somatic growth in fishes that explicitly allows for the energy demand imposed
by reproduction. We show that the von Bertalanffy (VB) equation provides a good description of somatic
growth after maturity, but not before. We show that the parameters of the VB equation are simple func-
tions of age at maturity and reproductive investment. We use this model to show how the energy demands
for both growth and reproduction trade off to determine optimal life-history traits. Assuming that both
age at maturity and reproductive investment adapt to variations in adult mortality to maximize lifetime
offspring production, our model predicts that: (i) the optimal age of maturity is inversely related to adult
mortality rate; (ii) the optimal reproductive effort is approximately equal to adult mortality rate. These
predictions are consistent with observed variations in the life-history traits of a large sample of iteroparous
freshwater fishes.
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1. INTRODUCTION

The von Bertalanffy (VB) growth equation is widely used
to describe the lifetime pattern of somatic growth in fishes
(e.g. Ricker 1975) and other organisms that exhibit inde-
terminate growth. Although there is strong empirical sup-
port for this model (e.g. Chen et al. 1992), it has been
argued on theoretical grounds that a single somatic growth
equation cannot describe lifetime growth patterns because
it cannot cleanly account for the change in energy allo-
cation that occurs with maturity (Day & Taylor 1997;
Czarnoleski & Kozlowski 1998). Day & Taylor (1997)
suggested that the somatic growth trajectory should be
specified by two separate equations: a pre-maturity equa-
tion in which all surplus energy is devoted to somatic
growth, and a post-maturity equation in which some or
all surplus energy is devoted to reproduction. Charnov
(1993) and Charnov et al. (2001) provided explicit devel-
opments of this idea and showed that the shape of the
lifetime growth curve is strongly influenced by both age
at maturity and degree of reproductive investment. We
build on this work by developing a simple lifetime growth
model, founded on empirically justified approximations of
the allometric functions governing net biomass production
in fishes. For this model, the VB equation provides an
exact description of post-maturation somatic growth and
the parameters of the VB equation contain useful infor-
mation on both age at maturity (T ) and degree of repro-
ductive investment (g). We then use the model to evaluate
how trade-offs between somatic growth and reproduction
determine optimal life-history traits.

We begin with the potential lifetime growth pattern,
assuming no reproduction. Because consumption is lim-
ited by foraging time (e.g. Holling 1959) and the pro-
cessing capacity of the digestive tract (e.g. Reiss 1989),
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both the quantity and quality of available food (i.e. the
prey field) will affect potential growth. In addition, the
abundance and relative effectiveness of predators (i.e. the
predator field) will affect growth because increased pre-
dation risk often suppresses foraging activity (Turner &
Mittelbach 1990; Fraser & Gilliam 1992; Eklöv & Persson
1995; Lima 1998). We include simple representations of
these ecological effects in our model of growth in early
life. We go on to show how these somatic growth patterns
change when a fish becomes sexually mature and energy
is diverted from somatic growth to reproduction. The real-
ized lifetime pattern for somatic growth is shaped by two
decisions: when to invest in reproduction (T ) and how
much energy to invest (g, the joint cost of gamete pro-
duction and the behavioural activities associated with
reproduction). Following Charnov et al. (2001), we
assume that both T and g adjust to differences in adult
mortality to maximize the lifetime production of offspring
by a typical female. We then evaluate how the optimal
values for T and g vary in response to variations in adult
mortality and compare these predicted values with
observed T and g values for a large sample of freshwater
fish species.

2. POTENTIAL SOMATIC GROWTH

Bioenergetics models developed for fishes indicate that
potential somatic growth rate (i.e. net production) scales
allometrically with fish weight:

dW/dt = c1 Wm1t � c2 Wm2t , (2.1)

where Wt is somatic weight, c1 Wm1t is the rate of energy
acquisition and c2 Wm2t reflects energy losses owing to res-
piration (e.g. standard metabolism and activity). Out of
the 26 fish species modelled by Hanson et al. (1997), ca.
75% have m1 and m2 values that lie in the range 0.66–
0.80, with mean values of 0.69 and 0.78, respectively.
Reiss (1989) cites similar values (0.67 and 0.75,



1626 N. P. Lester and others Von Bertalanffy growth and optimal reproductive investment

le
ng

th

t1 t10
age

Figure 1. Influence of prey and predator fields on potential
somatic growth of fishes. Solid line through the origin
represents growth when the prey field is extensive and
predators are absent; dotted line represents growth when the
prey field is truncated and predators are absent; dashed line
represents growth when the prey field is extensive but early
growth is inhibited owing to avoidance of predators.

respectively), based on his survey of the literature.
Clarke & Johnston (1999) provide an extensive review of
the newer fish literature and show that values for m2 range
from 0.5 to 1.0, with a modal value of 0.7. Since much
of the literature suggests that m1 and m2 have similar
values that both lie close to 2/3, we assumed that the fol-
lowing equation holds:

dW/dt = (c1 � c2) W2/3
t . (2.2)

This assumption permits us to develop a simple model
structure for somatic growth while introducing only a rela-
tively small error into our representation. The error is neg-
ligible (less than ±10%; Appendix A) provided m1 and m2

have similar values within the range 0.67–0.70. It grows
to ±30% as the value for the joint exponent increases to
0.75. Given that weight increases with the cube of length
(W = aL3), then the potential growth rate for length (e.g.
cm yr�1) is

dL/dt = h0, (2.3)

where h0 = (c1 � c2)/3a1/3 and thus length is a simple linear
function of time (Lt = h0t; solid line in figure 1), assuming
that size at ‘birth’ is effectively zero.

This model assumes that the balance (c1 � c2) between
the energy gained from foraging and the energy used in
foraging and maintenance does not change as fishes grow.
Many fishes, particularly top predators, exhibit ontogen-
etic diet shifts, moving successively from smaller to larger
prey items as they grow. If such a species lives in a com-
munity where a broad range of prey sizes is available, the
transition to larger prey occurs smoothly as the individual
grows (Paloheimo & Dickie 1966; Kerr 1971; Kerr &
Ryder 1977; Piazza et al. 2002), equation (2.3) is likely
to hold throughout life, and potential length growth rate
remains constant. If the prey field is truncated such that
the availability of prey of suitable size does not keep pace
with increases in predator size, then the slope of the poten-
tial growth curve (c1 � c2) will decline (dotted line in fig-
ure 1) owing to the increases in foraging costs associated
with capturing relatively smaller prey (Piazza et al. 2002).
This decline in growth can be approximated using a new
growth curve:
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Lt = h1 (t � t1), (2.4)

where t1, the intercept on the time axis for the new curve,
decreases from zero in parallel with both the difference
(h0 � h1) and the age at which the transition from h0 to
h1 occurs. Those species that grow to large adult sizes are
more likely to outgrow their prey fields and hence exhibit
growth curves with negative t1 values.

The nature of the predator field may also influence
potential growth through its impact on foraging activity.
For most fishes, predation risk is high early in life and
declines rapidly as the individual grows. Thus, the role of
predator-avoidance behaviour in depressing foraging
activity, and thus growth (Lima 1998), will be greatest
early in life and will decline as the fish grows out of its
predator field (dashed line in figure 1): growth early in life
will equal h0t and later it will equal h1(t � t1), with t1
increasing from zero in parallel with both the difference
(h1 � h0) and the age at which the transition from h0 to
h1 occurs. Those species that grow to small adult sizes are
more likely to exhibit growth curves with positive t1 values
because their growth curves will be free of the obscuring
influence of prey field effects.

3. SOMATIC GROWTH WITH REPRODUCTION

The potential growth model developed above assumes
that all surplus energy is allocated to somatic growth. It
does not account for the change in somatic growth that
occurs when fishes become sexually mature and some
energy is allocated to reproduction. For many fish species,
the annual physical (as distinct from behavioural)
investment in reproduction (g = gonad weight/somatic
weight) for a typical female is fairly constant throughout
her reproductive lifetime (table 1 in Roff 1983). A con-
stant proportional allocation to reproduction produces
post-maturation growth that is described by a VB growth
function (Appendix B):

Lt = L � (1 � e�k(t�t0)), (3.1)

where

L � = 3h1/g , (3.2)

k = ln(1 � g /3) , (3.3)

t0 = T � ln(1 � g(T � t1)/3)/ln(1�g /3) . (3.4)

The resultant lifetime growth curve (figure 2) is linear
until age T and then becomes asymptotic, following equ-
ation (3.1). The feasible range for g is (0,3/(T � t1)]:
growth is indeterminate if g � 3/(T � t1) and determinate
if g = 3/(T � t1). If growth is determinate, then L� equals
length at maturation (LT). Thus, the expected lifetime
growth pattern depends on both T and g.

4. OPTIMAL REPRODUCTIVE STRATEGIES

Given a stable population regulated by density-depen-
dent processes at very young ages, with a mortality rate
(M) throughout the later juvenile and adult stages, we
expect that selection will act to maximize R0, the lifetime
output of female offspring by a typical female
(Charlesworth 1994):
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Figure 2. Influence of reproduction on somatic growth
assuming h1 = h0 = 10 cm yr�1. Solid line represents growth if
all surplus energy is allocated to soma; dotted line represents
growth if allocation is to reproduction as follows: T = 8
years, g = 0.2 yr�1; dashed line represents growth with
allocation to reproduction as follows: T = 8 years,
g = 3/T = 0.375 yr�1.

R0 = ��
t=T�1

se�Mt fect , (4.1)

where T � 1 is the initial age of spawning (1 year after
allocation to reproduction begins), M is the instantaneous
mortality rate (yr�1), s is an early survival parameter (i.e.
survival from egg to age 1 is se�M ) and fect is number of
female eggs produced by a female spawning at age t. Our
growth model implies

fect = gWt /2we , (4.2)

where we is mean egg weight and the numerator is divided
by 2 to give the number of female eggs (1 : 1 sex ratio
assumed). Given W = aL3, then

fect = gaL3
t /2we (4.3)

and given equations (3.1)–(3.4), equation (4.1) expands
to

R0 =
27sah3

1

2we
��

t = T � 1

e�Mt

g2

× �1 � �1 �
g
3

(T � t1)� � 3
3 � g�t�T�3

, (4.4a)

which yields the following closed form:

R0 =
27sah3

1

2we
�e�MT

g2 � 1
eM � 1

�
3(g(T � t1) � 3)
eM(3 � g) � 3

�
3(g(T � t1) � 3)2

eM(3 � g)2 � 9
�

(g(T � t1) � 3)3

eM(3 � g)3 � 27��. (4.4b)

Parameters on the left side of the braces,{}, in equation
(4.4b) act as multipliers, affecting the absolute value of
R0, but not the values of T and g which maximize it. In a
population maintained at equilibrium by density-
dependent effects, R0 must equal 1. In populations where
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equilibrium is maintained by density-dependent effects
operating on the multipliers to the left of the braces, then
selection will produce an evolutionary stable strategy
characterized by values of g and T that maximize the quan-
tity inside the braces (Mylius & Dieckmann 1995).

If growth is determinate, then g = 3/(T � t1), and the
summation term is maximized when T � t1 equals 2/M
(Appendix C); therefore g = 1.5M. For M in the range of
0.05–1.0, we used numerical methods to show that, for
indeterminate growth (g � 3/(T � t1)), the summation
term is a convex function of g and T with a single
maximum that exceeds the maximum for determinate
growth and is closely approximated by the following
empirical functions of M,

(T � t1) � 1.95/(eM � 1) , (4.5)

g � 1.18 (1 � e�M). (4.6)

For M in the range of 0.05 to 1.0, the difference between
the exact value of T and the value given by equation (4.5)
is less than 0.3 years and the difference between the exact
value of g and the value given by equation (4.5) is less than
0.02 yr�1. The optimal rate of reproductive investment (g)
depends solely on M, whereas the optimal age of maturity
depends on both M and t1. As expected, the optimal sol-
ution for indeterminate growth specifies somewhat earlier
maturity and lower investment than the optimal solution
for determinate growth.

5. EMPIRICAL SUPPORT FOR THE MODEL

The VB curve has been used extensively to describe the
growth of exploited fish populations. Typically these
descriptions are based on data from harvested fishes that
are dominated by mature individuals. Ricker (1975, p.
225) noted that the VB equation typically provided a good
description of growth later in life and that ‘In fitting the
curve, the main thing is to avoid including younger ages
that do not conform to it’. Semelparous species provide
clear examples of pre-maturation growth patterns. Ocean
growth of immature Pacific salmon is summarized for four
species in Groot & Margolis (1991): the data show that
growth in length is essentially linear over time periods of
up to 4 years and length increases from 2- to 10-fold. This
finding matches the behaviour expected from our model.
Both Ursin (1967) and Essington et al. (2001) fitted
equation (2.1) to population-specific somatic growth data
from several species. In most cases, the data were domi-
nated by older mature fishes and thus the estimates for m1

and m2 that they derived actually represent the exponents
for net production and reproductive allocation in our
model, rather than the exponents for consumption (m1)
and maintenance-activity costs (m2) as defined for
equation (2.1). Their estimates for m1 (0.59, n = 81
species (Ursin) and 0.69, n = 14 (Essington), respectively)
and m2 (0.83, n = 81 (Ursin) and 1.0, n = 4 (Essington),
respectively) are consistent with the values used in our
model to represent net production and reproductive allo-
cation.

We used the Randall & Minns (2000) compendium of
life-history data (age of maturity T, length at maturity LT,
maximum length assumed equal to L�, adult mortality M
estimated from maximum lifespan using the method of
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Figure 3. Predicted and observed relationships between
mortality rate (M), age of maturation (T) and reproductive
effort (g) for species with M � 1.0. In (a), the solid line is
the predicted T versus M relationship from equation (4.5),
with t1 set to zero; the dotted lines are predictions for t1 =
�2 and t1 = �2; the size of each dot is related to the
number of cases (one, two or three species). In (b), the solid
line is the predicted g versus M relationship from equation
(4.6); the closed circles are indirect estimates of g derived
from somatic growth parameters presented in Randall &
Minns (2000); the open circles are direct estimates of g
derived by multiplying the gonad–soma wet weight ratios of
Gunderson (1997) by 1.73.

Hoenig (1983)) for Canadian freshwater fish species to
assess whether the optimal life-history strategies summar-
ized in equations (4.5) and (4.6) are realized in nature.
There is a strong association between T and M (figure 3a)
that is quantitatively similar to equation (4.5): given a
range for t1 of (�2, 2), predicted values for T encompass
most of the observed values. We estimated t1 for each
species by substituting empirical estimates of T and M in
equation (4.5) and solving for t1. These t1 values exhibited
a strong negative association with L� (R2 = 0.35,
n = 42, p � 0.0001):

t1 = 0.55 � 0.033 L �. (5.1)

This result is consistent with our expectation that species
with smaller adult body sizes are more likely to exhibit the
positive t1 values characteristic of size-dependent predator
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avoidance, whereas species with larger adult body sizes are
more likely to exhibit the negative t1 values associated with
truncated prey fields. To compare the Randall & Minns
(2000) dataset with equation (4.6), we needed to derive
estimates of g from their data. From equations (3.2) and
(3.3), it is evident that the shape of the post-maturity, VB
phase of the growth curve is set by the value of g and thus
an indirect estimate of g can be obtained from the growth
curve parameters themselves. Rearrangement of equations
(2.4) and (3.2) shows that g equals 3 (LT /(T � t1))/L �

and since estimates of LT, L�, T and t1 were available for
all the species in the Randall and Minns dataset, we could
use this formula to obtain indirect estimates of g for each
of them. These indirect estimates of g were positively asso-
ciated with M (figure 3b) in a manner consistent with
equation (4.6). Figure 3b also plots direct estimates of g
against M, for 28 species of marine and freshwater fishes,
derived from data presented in Gunderson (1997). Gund-
erson reported values for the wet weight ratio of gonad
mass to body mass. This figure underestimates the true
value of g because it does not account for the fact that the
energy content per unit wet weight of gonad is typically
higher than that for somatic tissue. We found several stud-
ies in the literature with the data necessary to estimate
the energy ratio of gonad to soma on a wet weight basis:
Gunderson & Dygert (1988) six marine species, median
value = 1.6; Srivastava & Brown (1991) Salmo salar 2.0;
Lahti & Muje (1991) Coregonus albula 1.76; Henderson &
Nepszy (1994) Sander vitreus 1.4; Henderson et al. (2000)
Perca flavescens 1.24. The value for the energy multiplier
that gives the best match between Gunderson’s data and
equation (4.6) is 1.73 and this is the value we used in
plotting the data in figure 3b. Both the indirect and direct
estimates of g in figure 3b are consistent with equation
(4.6) and thus both datasets provide independent support
for the model. It is perhaps not too surprising that the
value of the multiplier (1.73) needed to bring Gunder-
son’s gonad weight ratios into line with equation (4.6) is
at the high end of the measured energetic conversion fac-
tors for gonad: g also includes energy associated with the
behavioural aspects of reproduction and thus, for some
species, the ‘true’ value of g would be expected to exceed
the value calculated strictly from the allocation of energy
to gonad.

Other fish life-history datasets are consistent with equa-
tions (4.5) and (4.6). For example, Charnov (1993) sum-
marized maturation data from many fish species and
concluded that age of maturity ranged from 1.75/M to
2.2/M. This finding is consistent with equation (4.5) when
t1 values are not extreme.

6. DISCUSSION

Empirically, the VB equation provides effective descrip-
tions of somatic growth in fish (Chen et al. 1992), yet
theory suggests that a single equation should be incapable
of accounting for both pre- and post-maturation growth
(e.g. Day & Taylor 1997). Our model implies that the
VB equation is an appropriate model for describing adult
somatic growth—the characteristic asymptotic shape
arising primarily from the allocation of energy to
reproduction—however, it is not appropriate for describing
pre-maturation growth. Bioenergetic parameters imply
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that somatic growth for this life stage will be roughly
linear. Therefore, the lifetime growth pattern is a mixture
of two models (figure 2), with the dominant model deter-
mined by the relative duration of pre- and post-maturation
life stages. The widespread and successful use of the VB
curve to describe fish growth suggests that the post-
maturation phase dominates the length-at-age data that
are usually available. This dominance is expected because
the post-maturation phase is typically two to three times
longer than the pre-maturation phase in iteroparous fish
species. In addition, this dominance can be exacer-
bated by sampling protocols (e.g. commercial fishery
procedures) directed at capturing larger individuals and
avoiding the immature fishes needed to characterize pre-
maturation growth. Data from semelparous fish species
provide a better opportunity to observe pre-maturation
growth patterns, and the Pacific salmon data suggest that
this pattern is approximately linear rather than asymptotic.

Our model offers a biological interpretation of the VB
growth parameters (L�, k, t0). These quantities are usually
regarded as mere phenomenological descriptors. How-
ever, our model shows that they reflect the reproductive
biology of the animal: k is set by the magnitude of repro-
ductive investment (k � g /3); L� is set by the ratio of net
production to reproductive investment (L� = 3h1/g); t0 is
a simple function of T and g. Thus, the somatic growth
curve for adult females can be a useful source of infor-
mation on female reproductive behaviour. However, this
requires that the curve be derived exclusively from adult
data.

Kozlowski (1996) showed that, in a seasonal growth
environment, the optimal reproductive strategy for ani-
mals that are constrained to direct assimilated energy
either to somatic growth or reproduction is an indetermi-
nate growth strategy: in the growing seasons that follow
first maturity, a period of somatic growth should precede
a period of reproductive allocation. Our model confirms
this conclusion: if we assume simultaneous allocation of
energy to somatic growth and reproduction, then the opti-
mal reproductive strategy is a determinate growth strategy.
If we impose constraints that: (i) reproduction can occur
only once per year; (ii) the reproductive event must be
preceded by a period of energy allocation to the gonad;
(iii) energy can be allocated to soma or to gonad, but not
to both simultaneously, then the optimal strategy is an
indeterminate growth strategy. Because the typical behav-
iour of fish species living in seasonal growth environments
is consistent with the existence of these constraints (e.g.
Wooton 1999, p. 161), their existence seems to provide a
sufficient explanation for the frequent observation of inde-
terminate growth among this group of animals.

Our model also illustrates how the ecological environ-
ment of an animal can impact its reproductive decisions
(equation (4.5)). If the lifetime prey field for a fish is
truncated and provides only small prey, then the optimal
age for maturation will be reduced. If the prey field is
ideal, but early growth is inhibited owing to predator
avoidance (Abrams & Rowe 1996), then the optimal age
of maturation will be increased. Of course, a scarcity of
large prey need not always imply early maturity and small
adult size: species that inhabit environments that provide
high concentrations of small prey and low levels of adult
mortality will have high T and L� values, and the L� value
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will be enhanced if the species has developed morphologi-
cal specializations to enhance its feeding efficiency on
smaller prey.

In accounting for the trade-off between somatic growth
and reproductive investment, equations (4.4) provide a
general structure for evaluating how reproductive traits
should adapt to a variation in M. In our development of
the model, we focused on female behaviour, under the
assumption that the cost of gonadal development domi-
nates other costs associated with reproduction (e.g.
changes in body coloration and morphology, courtship
and nest defence). This assumption rarely holds for males
because the energy demand for sperm production is much
less than that for eggs. To study optimal reproductive stra-
tegies in males one would need to develop a male ‘fec-
undity’ function that describes how energy invested in
such activities as courtship and brood defence contributes
to male reproductive success. In many fish species, males
mature earlier, attain a smaller asymptotic size, and have
higher adult mortality rates than females. These differ-
ences imply that the trade-off structures that determine
male reproductive strategies differ in a consistent and sys-
tematic fashion from those that shape female behaviour.

This paper is similar to earlier treatments of optimal life
histories with indeterminate growth, notably Roff (1984),
Ylikarjula et al. (1999) and Charnov et al. (2001). Since
our analysis most closely parallels that of Charnov et al.
(2001), we will briefly discuss the differences between
their work and ours. Charnov et al. (2001) assume that
an increase in allocation to reproduction requires a pro-
portional increase in metabolic maintenance and activity
costs. This assumption is required to obtain an evolution-
ary optimum other than determinate growth in their
model; however, no empirical evidence is presented to
support it. In our model, indeterminate growth arises nat-
urally from the seasonal nature of reproduction and the
requirement that investment into reproduction must occur
prior to the actual event. Another major difference is that
Charnov et al. (2001) assume that the exponents in equa-
tion (2.1) are unequal, with m1 = 0.75 and m2 = 1. This
means that juvenile length growth is asymptotic rather
than linear and that adult growth must be represented by
a more complex asymptotic growth equation with para-
meters that do not bear the same simple relation to
somatic growth and reproduction as the parameters in our
model. The predictions of the two models differ in a var-
iety of other ways. We will discuss two of these differences
in detail: (i) the relation between mortality and the pro-
duct of lifespan and optimal age at first reproduction dif-
fers under the two models; Charnov (1993; see also
Charnov et al. 2001) argues that the age at maturity div-
ided by average adult lifespan should be a constant
(approximately 2)—this quantity is closer to 2, and varies
less with adult mortality, under our model (1.85–1.92 for
adult lifespans between 1 and 20 years) than under the
model in Charnov et al. (2001; see their figure 3); (ii) the
model in Charnov et al. (2001) predicts that the ratio g/M
should range from 0.5 to 0.65 whereas our model predicts
a value closer to 1.0; a value close to 1.0 is more consistent
with the data presented in figure 3b.
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APPENDIX A: SENSITIVITY OF LENGTH GROWTH
TO VARIATION IN THE WEIGHT EXPONENT FOR
NET PRODUCTION

For many freshwater fish species, the increase in length
from age 1 to maturity is less than or equal to a factor of
10 (Carlander 1969, 1977, 1997). Given a 10-fold
increase in length, if m1 � m2 = 0.70, then h0 in equation
(2.3) varies by ca. less than ±10% over the pre-maturity
length range; if m1 � m2 = 0.75, then h0 varies by ca.
±30%.

APPENDIX B: PROOF THAT POST-MATURATION
GROWTH IS A VON BERTALANFFY PROCESS

Assume:

(i) a cubic somatic weight (W)–length (L) relationship
Wt = aL3

t ;
(ii) an annual growing season of D days: for the first d

days, net production is allocated to somatic growth;
for the remaining (D�d) days, it is allocated to
reproduction Kozlowski (1996);

(iii) a daily net production during the reproductive life-
span of dW/dt = cW2/3 ;

(iv) that gonad weight at the end of year t is proportional
to somatic weight: Gt�1 = gWt�1.

Thus, somatic weight (Wt�1) and gonad weight (Gt�1) at
the end of each year when spawning occurs are

Wt�1 = (W1/3
t � cdt /3)3, (B 1)

Gt�1 = c W2/3
t�1 (D � dt). (B 2)

Given isometric growth (assumption (i)) and letting
pt = dt/D be the proportion of the growing season when
surplus energy is devoted to somatic growth,

Lt�1 = Lt � cD pt /3a1/3, (B 3)

Gt�1 = L2
t�1 a2/3 cD (1 � pt). (B 4)

Letting h1 = cD/3a1/3, these equations become

Lt�1 = Lt � h1 pt, (B 5)

Gt�1 = L2
t�1 3ah1 (1 � pt). (B 6)

Given assumption (iv), equation (B 6) becomes

gWt�1 = L2
t�1 3ah1 (1 � pt) (B 7)

and therefore

gaL3
t�1 = L2

t�1 3ah1 (1 � pt),

implying

pt = 1 � (g /3h1) Lt�1. (B 8)

Substituting for pt in equation (B 5) implies

Lt�1 = (3/(3 � g)) Lt � 3h1/(3 � g) . (B 9)
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For VB growth,

Lt�1 = e�k Lt � L � (1 � e�k),

therefore, equation (B 9) implies VB growth with

e�k = 3/(3 � g) and L� (1 � e�k) = 3h1/(3 � g)

and therefore

k = ln(1 � g /3) (B 10)

and

L� = 3h1/g . (B 11)

To derive t0, equate the pre- and post-maturation growth
curves when t = T. From equation (2.4),

LT = h1 (T � t1)

and therefore

h1 (T � t1) = L� (1 � e�k(T�t0)),

which solves to give

t0 = T �
1
k

ln(1 � g(T � t1)/3). (B 12)

Substituting for k (from equation (B 10)) gives

t0 = T � ln(1 � g(T � t1)/3)/ln(1 � g /3). (B 13)

APPENDIX C: OPTIMAL LIFE HISTORIES UNDER
DETERMINATE GROWTH

Assume that all surplus energy is allocated to somatic
growth until age T then all net production is allocated to
reproduction, with first spawning occurring at age T � 1.
Energy available for reproduction in all breeding years
= c W 2/3 � L2 � (h1(T � t1))2. Therefore,

R0 � ��
T�1

e�Mt(T � t1)2 =
e�M(T � 1) (T � t1)2

1 � e�M

and, from this equation, the value of T that maximizes R0

is given by T � t1 = 2/M, with the associated value of
g = 3/(T � t1) = 1.5M.
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