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The decreasing cost of genotyping and genome sequencing has ushered in an era of genomic personalized 

medicine. More than 100,000 individuals have been genotyped by direct-to-consumer genetic testing 

services, which offer a glimpse into the interpretation and exploration of a personal genome. However, these 

interpretations, which require extensive manual curation, are subject to the preferences of the company and 

are not customizable by the individual. Academic institutions teaching personalized medicine, as well as 

genetic hobbyists, may prefer to customize their analysis and have full control over the content and method 

of interpretation. We present the Interpretome, a system for private genome interpretation, which contains all 

genotype information in client-side interpretation scripts, supported by server-side databases. We provide 

state-of-the-art analyses for teaching clinical implications of personal genomics, including disease risk 

assessment and pharmacogenomics. Additionally, we have implemented client-side algorithms for ancestry 

inference, demonstrating the power of these methods without excessive computation. Finally, the modular 

nature of the system allows for plugin capabilities for custom analyses. This system will allow for personal 

genome exploration without compromising privacy, facilitating hands-on courses in genomics and 

personalized medicine. 

 
1.  Background and Significance 

The rapid decrease in the price of genotyping and sequencing technologies, with the race to the 

$1,000 genome, has brought forth an age of genomic personalized medicine. The market of direct-

to-consumer (DTC) genotyping, with the emergence of companies such as 23andMe, Navigenics, 

and Lumigenix, has put personal genotype information in the hands of patients and health care 

providers, based around the central idea that individuals are the owners of their genotype data. 

However, the problem has now shifted from the generation of accurate genotype data to tackling 

the problem of the “$1,000,000 interpretation.” Without the proper tools, both patients and 

physicians will find it difficult to interpret and analyze the extraordinary amount of data, 

effectively rendering it useless. 

DTC genetic testing companies normally provide some data analysis, but such an approach has 

a number of drawbacks. First, DTC genetic testing companies may sometimes use proprietary 

algorithms that remain undisclosed, or use genetic data that are private and not available to the 

public. Hence, their analysis is not always transparent and the user may not understand how the 

analysis was done or be able to independently replicate the results. Second, the analysis can only 

be modified, expanded, or tweaked by the genotyping service itself, disallowing the application of 
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other analysis by a third party. Finally, and perhaps most importantly, the consumer’s information 

is necessarily stored in a company’s server, to which people other than the user may have access. 

In addition, the age of genomic personalized medicine has brought the use of genetic data into 

the clinical setting. However, the pace of medical education has not kept up with this demand and 

patients are beginning to enter clinics seeking guidance in interpreting their personal genomes. 

Stanford University has introduced a pioneering course in Personalized Medicine and Genomics, 

aimed at medical and graduate students interested in interpreting personal genomes. While 

interpretation is offered by these DTC genetic testing companies, medical schools and universities 

avoiding conflicts of interest may prefer to be independent and retain the ability to customize and 

expand their interpretations. 

Various tools that have been developed for genomic analysis can be extended to interpret 

personal genotype information. For instance, genome-wide association studies (GWAS) have 

discovered the genetic factors related to various diseases and traits, which can be applied in 

reverse to personal genotypes to predict traits based on genetics. Additionally, approaches from 

population genetics that distinguish populations can be used to infer an individual’s ancestry. 

Many such techniques already exist and more are being developed every day and a systematic 

evaluation of these methods is crucial to present a compact and informative report to the end users. 

Equally important is the way to present this report, with the necessary background to understand 

each analysis, including its accurate interpretation and limitations. Additionally, more 

knowledgeable users, such as physicians or bioinformaticians, may wish to fine-tune the 

parameters of these analyses to fully exploit the given data. 

We have developed a web-based genome interpretation engine that addresses these needs by 

providing comprehensive, secure, and highly customizable framework to analyze personal 

genotype information. Leveraging modern browser technology, including HTML5, CSS3, and the 

document canvas, we have built a system to analyze whole-genome genotype data within the 

user’s browser. The key feature of this approach is that the server is never sent any genotype data 

except when the user expressly requests to do so. 

2.  Methods 

To accomplish these goals, we have built a client-side genome interpretation system, have 

implemented and developed advanced analyses for personal genomes, and built a framework for 

customization of annotations. 

2.1.   Client-side system 

We leveraged several application and user interface (UI) frameworks for use on the client-side. 

We chose Backbone as an application framework, which separates client-resident code (Figure 1) 

into models (managing and manipulating data), views (responsible for the user interface of any 

particular section), and controllers (which route requests and manage application-level logic, e.g. 

session and history). In this terminology, the models correspond to a user, the views correspond to 

each analysis module, and we have a single application-level controller. 

 



 

 

 

As the ultimate goal of this application is to communicate genetic information in a clear and 

concise manner, making informed decisions about the user interface and representation of data 

was critically important. We conducted a survey of health-related websites in order to gauge the 

‘state of the art’ in this domain. All attempt to balance accessibility and information content - 

many erring on the side of data overload. We decided to maintain a sparser interface, employing 

widgets from the jQueryUI, Google charts, and Highcharts libraries. 

 

Since the entire application is loaded dynamically, our Backbone views utilize jQuery and 

jQueryUI to update the interface in response to user interaction. The clear separation of interface 

and logic afforded by our design choices enabled us to preserve application state across different 

modules. As users navigate to new modules, the Javascript logic and HTML content 

corresponding to those modules are loaded dynamically. 

2.1.1.   The user model 

Determining how to load user genomes and how to represent a user was one of the first challenges 

in building Interpretome. Even a year ago, it would not have been possible to load a file into the 

Javascript machine without using obscure developer versions of a web browser. Since then, the 

newest releases of Chrome and Firefox have added support for the FileReader API, a new standard 

developed to support reading of text and other files in Javascript. Notably, this API does not have 

access to the filesystem, only to files the user has selected explicitly.  

 

The user supplies a tab-delimited file (with RSID, chromosome, position, genotype), a format 

utilized by many DTC companies; additionally, we provide conversion scripts on request for all 

major DTC vendors, as well as other formats, including VCF files for full genomes. We parse 

these files line-by-line and store each SNP as an object in a hash table associated with a newly 

Figure 1: Interpretome is designed along the Model-View-Controller pattern, separating the application 

into distinct components corresponding to data, analysis, and navigation. 

 



 

 

 

 

created user instance, and a progress bar provides a visual cue of the process. Even with larger 

files (several million SNPs) and older computers, this takes no more than thirty seconds. 

2.1.2.  Analysis views 

When a user runs an analysis, a function is dispatched that runs the main computation. In many 

cases, the result of the first function is a block of data received from the server, which defines 

parameters of the exercise (e.g., a set of SNPs). Specifically, when genotype-specific information 

is requested, data for all possible genotypes are typically retrieved, preventing the deduction of the 

individual’s genotype by intercepting this query. After receiving the relevant data, the client 

queries the model for a user’s genotype at these SNPs (which may be measured directly in the 

user’s genotype or imputed using public data, as described below). Once the client receives the 

necessary data, the algorithm is run, without sending any genotype information to the server. 

Finally, the view updates the interface with the results and generates associated plots and figures. 

2.1.3.  Scalability 

Delegating most of the computation into the browser has major advantages for scalability. Since 

our backend server is largely responsible for sending (as opposed to receiving) content, and 

database access is mostly limited to large cacheable chunks, scaling the application is relatively 

simple. We are able to increase site availability by simply adding more database servers and can 

ignore issues of synchronization across database replicates, which are huge challenges for other 

dynamic web applications. 

Figure 2: Imputation of a user’s genotype is done directly in the browser. Allele data from public databases 

needed to impute a user’s genotype can be obtained by just requesting the necessary SNPs through their rsids or 

genomic coordinates. No genotype information from the user is ever sent through the network. 

 



 

 

 

2.2.   Analyses 

We have implemented a set of standard genome analysis modules for the Interpretome. These 

analyses utilize our client-side imputation method, which demonstrates the power and features of 

the private analysis system. Additionally, we have implemented clinical and ancestry analysis 

methods, as well as a number of exploratory tools, which are easily expandable. 

2.2.1.  Imputation 

To expand the number of SNPs available for analysis, we first implemented a client-side 

imputation by proxy method. In this scheme, all the computation required for the task is performed 

on the client-side, with public information downloaded as required from the server (Figure 2). The 

user requests a number of SNPs not in the personal genotype file and a request is sent with RSID 

identifiers and a target population. The server responds by providing all SNPs in linkage 

disequilibrium with the requested SNP in the selected population (from Hapmap data). On the 

client side, the system determines which of these SNPs are contained in the personal genotype file, 

and thus, will be suitable for imputation. The client requests phase information for these SNPs 

from Hapmap genotype data from the server. These data are returned and the resulting SNPs are 

“imputed” from the returned phases in the browser. 

2.2.2.  Clinical analysis 

 We have implemented a number of analyses that demonstrate the methods available for clinical 

interpretation of a personal genome. First, we have implemented a disease risk calculation, as in 

Figure 3: Diabetes risk calculator. Using likelihood ratios calculated from published association studies, the 

diabetes risk exercise computes a user's risk of developing Type 2 Diabetes. The estimate is based on a 

population and sex-specific prior for each user, adjusted by the user’s genotypes. 
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the first clinical assessment of a personal genome [Ashley et al., 2010]. We have employed the 

risk calculation method of likelihood ratios and demonstrate how each variant affects an 

individual’s risk of Type 2 Diabetes (Figure 3). Prior to the computation, the likelihood ratio for 

each genotype is downloaded from the server (with no genotype data sent to the server). The user 

inputs a population and sex, which define a prior probability for the disease. Then, the likelihood 

ratios are chained together (using the actual genotypes for the individual) as in [Morgan et al., 

2010] to determine a posterior probability. 

 

Additionally, we demonstrate the applications of a personal genome in pharmacogenomics, or the 

study of genetic variation related to drug response. For instance, warfarin, an anti-coagulant 

prescribed to millions of patients every year, has a high therapeutic range and genetic variants in 

genes such as VKORC1 and CYP2C9 have been implicated in this variation. These variants, along 

with clinical factors such as age and weight, can be used to predict an optimal predicted starting 

dose of warfarin [Consortium, 2009]. We have implemented this warfarin dose calculator, which 

predicts an optimal starting dose given a personal genotype and clinical parameters. In addition, 

we extend the pharmacogenomic application of personal genomes to other drugs, using a set of 

annotations from PharmGKB (www.pharmgkb.org; Michelle Carillo; personal communication). 

 

Finally, we include a section for further exploration of rare pharmacogenomics variants (Table 1). 

This analysis searches for rare, non-synonymous variants in putative pharmacogenes (genes with 

drug-gene interaction data from DrugBank; www.drugbank.ca). The functional impact of these 

variants is predicted by PolyPhen2 [Adzhubei et al., 2010], which are pre-computed for all 

variants in dbSNP. 

 

dbSNP Genotype MAF Gene Name Drug Name PolyPhen 

Class 

PolyPhen 

Score 

rs16985442 CG 0.041 SLC12A5 Bumetanide benign 0 

rs10075302 AC 0.049 SLC25A2 L-Ornithine benign 0.064 

rs11548670 AG 0.022 NDUFS1 NADH probably 
damaging 

0.999 

rs933135 CT 0.022 Plcd1 Acetate Ion possibly 
damaging 

0.822 

rs9332608 AG 0.049 F5 Phenylmercury benign 0.021 

rs4252128 CT 0 PLG Bicine possibly 
damaging 

0.418 

rs363504 AG 0.022 GRIK1 Topiramate benign 0 

rs1801690 CG 0.046 APOH Alpha-D-
Mannose 

probably 
damaging 

0.938 

rs1805321 AG 0 PMS2 Adenosine-5'-
Diphosphate 

benign 0.002 

 

Table 1: Rare Pharmacogenomic Variants. Non-synonymous, rare variants (MAF < 5%) in genes predicted to interact 

with drugs from DrugBank are shown for a personal genome. The PolyPhen Class and Score predict whether a 

variant may be damaging to the function of the protein, which may affect an individual’s drug response. 



 

 

 

2.2.3.   Ancestry analysis 

As methods for population genetics can be applied to infer ancestry from personal genomes, we 

have implemented client-side methods for global ancestry similarity, individual similarity, and 

chromosome painting. First, we have enabled individuals to compare their personal genomes to a 

reference panel, using principal component analysis (PCA). Typically, to run such an analysis, an 

individual genotype would be added to a reference panel, such as the HGDP [Cann et al., 2002] or 

POPRES [Novembre et al., 2008] datasets, and principal components would be calculated for the 

combined dataset, which can take from 10 minutes to an hour for each dataset. In this method, we 

have instead pre-computed the eigenvectors and loadings for each SNP, as well as projections of 

the individuals in the reference panels. When the analysis is run, the client downloads these data 

and then projects the user’s genotype onto the same dataset to compute the principal component 

coordinates, and the resulting projections are plotted using the Highcharts library (Figure 4). One 

limitation to this approach is that the user requires the same SNPs as those used to pre-compute 

the PCA results. We avoid this problem by providing multiple options for performing the 

projections, based on common platforms (Illumina Hap550+ and Illumina OmniExpress+) and this 

problem will be solved when full genomes are supported. 

Figure 4: Ancestry analysis by PCA. Loadings for numerous population data sources are precomputed, allowing a 

user to project their data onto any one of those datasets. Here, an Eastern European individual is plotted in the 

upper-left quadrant among the POPRES European reference panel. 

 



 

 

 

 

Additionally, we implemented a heuristic algorithm for chromosome painting. The state-of-the-art 

algorithms were not suitable for this task, as they require phased data and employ computationally 

expensive hidden Markov models (HMMs) to determine the most likely ancestry for each allele. 

Therefore, we designed a Monte Carlo simulation method to generate an approximation. First, we 

pre-computed the most informative population-differentiating SNPs and the client requests the 

allele frequencies for these SNPs in the selected reference panel. Then, for each “block” of the 

genome, we sample an allele from each genotype randomly (since we cannot determine phase) and 

use the allele frequency for that SNP to update a Bayesian model, which represents the likelihood 

of the block originating from each population given the data. For each iteration, the most likely 

population is chosen for each block, and this simulation is run multiple times to generate a number 

of votes for each block. These votes are then aggregated and ancestry is assigned: if the proportion 

of votes crosses a “heterozygosity threshold,” both blocks are painted with the highest voted 

ancestry; otherwise, the highest and 2nd highest ancestries are chosen. The results are then 

smoothed and the results are plotted in Canvas (Figure 5). 

 

2.2.4.  Exploratory analysis 

Finally, we also implement a number of exploratory analyses and modules that were integrated 

with lectures of the Stanford course in Personalized Medicine and Genomics (Figure 6, left). For 

instance, we aggregated the SNPs associated with height from the GWAS catalog [Hindorff et al., 

2009] and combined their effect sizes to create an approximate height prediction algorithm. 

Additionally, we created a widget to count the number of Neandertal-derived alleles [Green et al., 

2010] in a personal genotype (Figure 6, right). Other exercises were developed to explore “SNPs 

of interest” that would integrate with a lecture, where students could optionally submit their allele 

information for real-time aggregation of allele frequencies.  

Figure 5: Chromosome Painting. The first two chromosomes from a half-European, half-Asian individual are 

shown. CEU, YRI, CHB, and JPT refer to European, African, Chinese, and Japanese Hapmap populations, 

respectively. 



 

 

 

 

Through the development of these exercises, we observed that one major use case involved the 

counting of “risk” alleles (or alleles of some effect or significance), possible weighted by some 

“effect size” measure, such as odds ratios for traits, or centimeters for height. Therefore, we 

developed a customization framework for users to perform their own analyses. 

2.3.  User Customization 

Although we wanted to provide curated datasets for standard analysis of a user’s personal genome, 

we also wanted to allow the possibility of custom analyses. We therefore added functionality that 

allows the user to load custom annotated SNP lists. The user can then compare personal genotype 

information to this SNP list, as with the default exercises. For instance, a user may be interested in 

how many rare variants in a specific gene are found in a personal genotype and compare their 

results with those of colleagues or other personal genotypes. 

 

The custom SNPs are loaded as a tab-delimited file, containing a header line (that correspond to 

the header of the output table) and the first column must indicate the SNP rsid(s) in question. An 

example custom annotation file snippet can be viewed by clicking on the ‘Example Annotation 

File’ link. As with the default exercises in the Explore tab, a table showing the user’s genotype of 

Figure 6: Exploratory analysis. (Left): Numerous exercises are predefined, some with content from lectures 

of the Stanford Personalized Medicine course. Each of these is implemented independently, but all share a 

common data table format. (Right): One such analysis; Neandertal alleles in a personal genotype. 

 



 

 

 

 

his SNPs that were contained in the custom file, as well as its respective annotations, is presented 

to the user upon clicking the ‘Lookup custom exercise’ button. 
 
In the course of development, we have noticed that one major use case involves reporting the 

allele count of the user’s genotype against particular annotated columns. Therefore, we also allow 

the user to specify which columns should be used for allele counting by surrounding the column 

header with the count( . ) syntax. It is worth noting that further functionality can be easily added to 

the custom exercise lookup; such as ethnicity specific SNP filtering or further aggregation, 

perhaps even SQL-like, functions. This could eventually allow researchers and developers to 

distribute custom annotation files and queries to expand the interpretive power of this system.  
 
While a main focus of Interpretome is to maintain privacy of the user’s genotype data, we are 

aware that users may want to share their results with others or even submit their genotype 

information to contribute to the enhancement of Interpretome. We have thus included both the 

option to share the exploration exercises results through a social network site and to submit their 

raw genotype information in an anonymous fashion. These two options give the user the 

possibility to explore a spectrum of privacy restrictions: from the default, most restrictive setting 

in which the user does not choose to share any of his information, to the other extreme of sharing 

both the results from the analysis and even genotype information. Sharing is an opt-in choice left 

to the user, and we have included a detailed description of the possible consequences of sharing in 

the Start page, as well as pop-up dialogs that ask the user to confirm all submissions of results or 

genotype information. 

3.  Results 

We present the Interpretome at www.interpretome.com, a system for exploratory personal genome 

analysis, including guided explanations for clinical and ancestry analysis. The system is fast and 

easy-to-use and has been demonstrated in the Stanford course in Personalized Medicine and 

Genomics. 
 
This system can load 1 million SNPs from a personal genotype into modern browsers (including 

Chrome and Firefox) in ~5-10 seconds. Further analyses require a server query, which range from 

~1 KB to ~15 MB. These downloads typically take a few seconds to less than a minute for 

relatively local users (Northern California users with at least a cable modem connection). Once 

downloaded, the computational load on the client-side is very light for most applications (running 

in <5 seconds). A notable exception is the chromosome painting algorithm, which utilizes a Monte 

Carlo simulation to infer ancestry for specific chromosomal regions. However, even this analysis 

runs in ~15-20 seconds on a new laptop using the default parameters. 
 
We have demonstrated the use of this system in the pioneering course on Personalized Medicine 

and Genomics at Stanford University. In this course, medical and graduate students learned about 

genomic personalized medicine through a hands-on analysis of their personal genotypes, for which 



 

 

 

we required an easy-to-use system that could accomplish sophisticated genotype interpretation 

tasks. The system was deployed for the Spring 2011 course and accomplished these goals. Overall, 

course students gave positive feedback on the system, expressing that its interactivity and ease of 

use enabled non-experts to extract meaning out of their genomic information. Particularly, they 

found the ability to instantly see their personal alleles for specific traits accompanied by relevant 

descriptions and annotations useful to interpret the results. Furthermore, advanced users liked 

having the option of tweaking the parameters for each module, as they found it useful to see how 

the methods performed with different values. These comments emphasize that a system of 

genomic interpretation must have both experts and non-experts in mind to both gain acceptability 

by the general public and convince experts of its usability. 
 
The speed of the system and submission logic also allowed for further integration with lectures. 

Throughout the course, instructors were able to discuss SNPs for which there was an interesting 

association and students would have an option of submitting their genotypes for each SNP 

anonymously. The submitted genetic information was then aggregated and real allele frequencies 

were displayed to the instructor and the class, allowing for interactive participation in course 

material. 

4.   Discussion 

In this work, we present the Interpretome, a system for private personal genotype interpretation 

and education. We believe that this approach will overcome a major hurdle to wider adoption of 

personal genotyping: the question of privacy and ownership. Users of Interpretome are assured 

privacy, as their data remains on their computer and in their browser. There exists no mechanism 

to track a user across uses of the website or to correlate data requests with client profile 

information (sex, population, etc.). However, genotyping services, such as direct-to-consumer 

companies, currently store the consumer’s genomic information in their own servers. It may be 

preferable for service providers to provide users with an option for whether their genotype data 

should be stored at the company. Indeed, it would be ideal if the notion of privacy persisted 

through each step of the genotype pipeline, ensuring that only the consumer has exclusive access 

to their data.  
 

The customizable nature of the Interpretome provides a platform for researchers to make their 

genomic annotations available to the general public. While we already enable the user to use their 

own SNP annotations, it would be straightforward to implement a web development framework, 

perhaps based on Javascript, for external modules that could be loaded at runtime. Such 

functionality would allow researchers to publish their methods as “Interpretome modules” for 

experts and non-experts to evaluate. 
 

At present, we have included options for sharing of analysis results. While including these 

options may be considered controversial, it is our belief that enabling people to make informed 

choices about sharing their own genetic information will lead to an optimal trade-off between 



 

 

 

 

privacy and actionability of personal genomic data. The debate over privacy issues on genotype 

data is far from over. Thus, we believe that providing a genotype interpretation system that 

accommodates both extremes is essential to solving such conflicts. 
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