
Scientific Programming 11 (2003) 3–37 3
IOS Press

Interprocedural definition-use chains of

dynamic pointer-linked data structures

Yuan-Shin Hwanga,∗ and Joel Saltzb

aDepartment of Computer Science, National Taiwan Ocean University, Keelung 20224, Taiwan

E-mail: shin@cs.ntou.edu.tw
bDepartment of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA

E-mail: saltz-@medctr.osu.edu

Abstract. This paper presents a flow-sensitive algorithm to compute interprocedural definition-use chains of dynamic pointer-

linked data structures. The goal is to relate the statements that construct links of dynamic pointer-linked data structures (i.e.

definitions) to the statements that might traverse the structures through the links (i.e. uses). Specifically, for each statement S that

defines links of pointer-linked data structures, the algorithm finds the set of statements that traverse the links which are defined

by S. This algorithm solves the definition-use chaining problem by performing backward iterative data flow analysis to compute

the set of upward exposed uses at each statement. The results of this algorithm can be used to identify parallelism in programs

even with cyclic pointer-linked data structures.

Keywords: Definition-use chains, pointer-linked data structures, data flow analysis, interprocedural analysis, pointer analysis,

dependence analysis

1. Introduction

A definition of a variablev is a statement that assigns,

or may assign, a value to v, and a use of v is a reference
of v in a statement that reads, or may read, the value of
v. A definition of v reaches a use of v if there is a path
such that the definition is not killed. Similarly, a use u

of a variable, say v, is reachable from a program point
s if there is path from s to u that does not redefine v.
The definition-use chaining problem is to compute for
a program point s the set of uses u of a variable, say

v, such that there is a path from s to u that does not
redefine v [2].

Such notions can be overloaded for pointer-linked
data structures. A definition of a pointer-linked data

structure p is a statement that assigns, or may assign,
a value to a storage location that can be accessed by

∗Corresponding author: Yuan-Shin Hwang, Department of Com-

puter Science, National Taiwan Ocean University, Keelung 20224,

Taiwan. Tel.: +886 2 24622192, ext.6602; Fax: +886 2 24623249;

E-mail: shin@cs.ntou.edu.tw.

traversing the links starting from p. Similarly, a use

of a pointer-linked data structure p is a statement that

reads, or may read, the value of a storage location that
can be accessed by traversing the links starting from p.

A definition of a pointer-linked data structure p reaches

a use of p if there is a path such that the definition is

not killed. Similarly, a use u of p is reachable from a
program point s if there is path from s to u that does

not redefine p. The definition-use chaining problem is
to compute for a program point s the set of uses u of

a pointer-linked data structure, say p, such that there is
a path from s to u that does not redefine p [27]. This

paper presents an algorithm to identity the definition-
use chains of dynamic pointer-linked data structures.

The algorithm solves the definition-use chaining

problem by performing backward iterative data flow
analysis to compute the set of upward exposed uses

at each statement. The advantages of this approach
are as follows: (1) the uses that are propagated to the

statements where the links of dynamic pointer-linked
data structures are defined represent the traversal pat-

terns of the constructed data structures, (2) it avoids

ISSN 1058-9244/03/$8.00  2003 – IOS Press. All rights reserved

4 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

the problem of building alias/shape graphs to summa-

rize all possible traversal paths, many of which are not

realized, of subsequent statements on the constructed

pointer-linked data structures, and it can handle cyclic

data structures and destructive update operations, such

as list reverse or tree branch swap, and (3) it does not

generate the spurious definition-use chains that will be

created by the forward approach based on reaching def-

initions and alias information of pointers.

A flow-sensitive algorithm will be proposed to com-

pute interprocedural definition-use chains of pointer-

linked data structures. This algorithm follows the iter-

ative data flow technique [33]. It first gathers the local

uses and definitions at program points right before and

after procedure calls. It then solves data flow equa-

tions for reachable uses by propagating local informa-

tion using iterative techniques. Once the global infor-

mation converges, this algorithm computes interpro-

cedural definition-use chains by associating the local

information with the propagated information.

One application of definition-use chains will be to

facilitate the dependence analysis on programs with

cyclic pointer-linked data structures [29]. The depen-

dence analysis can be broken into the following three

steps:

– Traversal patterns which loops or recursive pro-

cedures traverse the pointer-linked data structures

are identified, and the statements that construct

the links of traversal patterns will be located by

definition-use chains of recursive data structures.

– Traversal-pattern-sensitive shape analysis will be

performed to estimate possible shapes of traversal

patterns.

– Dependence analysis will then be performed to

identify parallelism using the result of shape anal-

ysis.

This technique can identify parallelism in programs

with cyclic data structures due to the fact that many

programs follow acyclic structures (i.e. traversal pat-

terns) to access nodes on the cyclic data structures. For

instance, this technique can be applied to identify the

parallelism in the Barnes-Hut tree code [7]. The most

time-consuming loops in Barnes-Hut that traverse the

bipartite graph and perform computations can be par-

allelized to achieve good speedup [29].

The above technique only recognizes parallelism in

the traversal references of the Barnes-Hut code, and

hence only the graph traversal operations are paral-

lelized while the graph construction operations are left

to be executed in sequential. Therefore, further im-

provement can be achieved if the graph traversal oper-

ations of the Barnes-Hut code are parallelized as well.

Furthermore, the definition-use chains of pointer-linked

data structures provide the essential piece of informa-

tion for the parallelization of the graph construction

operations [28].

The remainder of the paper is organized as follows.

Section 2 outlines the background information of this

paper, such as the programming model and program

representations. Section 3 gives the problem specifica-

tions and describes the algorithm to compute definition-

use chains of dynamic pointer-linked data structures.

Section 4 presents the flow-sensitive algorithm to han-

dle interprocedural analysis. Experimental results will

be presented in Section 6 and the related work is com-

pared in Section 7.

2. Background

2.1. Programming model

The algorithms presented in this paper are designed

to analyze programs with dynamic pointer-linked data

structures which are connected through pointers de-

fined in the languages like Pascal and Fortran 90. Point-

ers are specified by declared pointer variables, and are

simply references to nodes (or records) with a fixed

number of fields, some of which are pointers. Memory

allocations are done by the function new (). Pointer

arithmetic and casting in languages such as C are not

allowed. Although multi-level pointers are not con-

sidered, they can be handled by converting them into

levels of records, each of which contains only one field

that carries the node location of the next level. Con-

sequently, pointer dereferences of multi-level pointers

can be treated as traversal of multi-level records.

Programs will be normalized such that each state-

ment contains only simple binary access paths, each

of which has the form v.n where v is a pointer vari-

able and n is a field name. Therefore, excluding regu-

lar assignment statements, the three possible forms of

pointer assignment statements are

1. p = q (aliasing statements)

2. p = q.n (link traversing statements)

3. p.n = q (link defining statements)

The first two forms of statements will induce aliases

without changing any connections of pointer-linked

data structures, whereas the execution of each state-

ment of the last form will remove one (maybe null) link

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 5

from existing dynamic data structures and then intro-
duce a new link. Note that although the other possi-
bility p.m = q.n is also valid, it is represented by two
consecutive statements, t = q.n and p.m = t, for the
reason of simplicity.

2.2. Intermediate program representation

Programs will be transformed into an SSA (Static
Single Assignment) intermediate representation [15].
It has been proved that several optimization tech-
niques can be applied efficiently on SSA representation,
such as constant propagation [44], redundancy elim-
ination [3,38], induction variable identification [49],
etc. A program is defined to be in SSA form if, for
every original variable V, trivial merging functions, φ-
functions, for V have been inserted and each mention
for V has been changed to mention of a new name V i
such that the following conditions hold:

– If a program flow graph node Z is the first node
common to two non-null pathsX +

→ Z and Y +
→Z

that start at nodesX andY containing assignments
to V , then a φ-function for V has been inserted at
Z .

– Each new name Vi for V is the target of exactly
one assignment statement in the program.

– Along any program flow path, consider any use of
a new name Vi for V (in the transformed program)
and the corresponding use of V (in the original
program). Then V and Vi have the same value.

Although SSA form is originally designed for pro-
grams with fixed-location variables only, e.g. Fortran-
77 programs, same transformation can be applied to
programs with pointer variables since contents (loca-
tion addresses) of pointer variables can be treated as
values in regular variables. Once normalized programs
are transformed into the SSA representation, a new
form of pointer assignments will be introduced:

pi = φ (pj , pk)

which will be placed at merging points of programs.
Therefore, the possible forms of pointer assignment
statements in SSA form are

1. pi = qj
2. pi = qj .n
3. pi.n = qj
4. pi = φ (pj , pk)

Figure 1(a) presents a loop and its SSA representation.
Each definition of the pointer variable ptr is given a
new name in the example. Note that although statement
S2 should be transformed to the following SSA form

S2 do

S2′ ptr2 = φ (ptr1, ptr3)

S2′′ while (ptr2)

it is represented by the SSA form in Fig. 1(a).

If programs contain procedure calls, each actual pa-

rameter will be represented by two new names, one for

actual parameter that passes to the callee and the other

(e.g. ptr3 enclosed by parentheses in Fig. 1(b)) for the

parameter that returns from the callee. Similarly, each

formal parameter of a procedure is represented by two

new variables, for the formal parameter at the entry of

procedure and the other for the formal parameter at the

end of procedure, as shown in Fig. 1(b).

The SSA representation is chosen for two reasons.

First, each pointer instance is uniquely named in the

SSA form. This format simplifies the notations used

in this paper. The other reason is because the algo-

rithm proposed in this paper has been implemented

on the ParaScope parallel programming environment,

which uses the SSA form as the intermediate represen-

tation [14].

2.3. Access path expressions

Pointers will be represented by access path expres-

sions, each of which is a pointer instance followed by a

string of field names connected by the field component

operator “.” [13,18]. The pointer instance of an access

path expression e is called the entry of the access path

expression e, and can be denoted as entry(e). The

string of field names connected by the field component

operator of e will be called as the path string of the

access path expression e. For example, p : list.next
is an access path expression of pointer p, which means

the pointer instance list is the entry of the access path

of p and the path string contains only one field name

next. Multiple occurrence of the same field names can

be represented by “+” (at least once) or “⋆” (zero or

more than once) operators employed by representation

of regular expressions, e.g. list(.next)⋆.
To compute access path expressions, pointer assign-

ment statements must be examined. Fig. 2 presents a

sequence of statements that traverse a linked list and

access path expressions of pointers at each statement.

The statements in the program are examined backward

from the end to the entry of the program and access

path expressions are computed following the order. The

computation of access path expressions starts at the

statement S3, and the access path expression of r, q.n,

will be passed to the predecessor of S3. At S2, the ac-

6 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Program SSA Representation

S1 ptr = list S1 ptr = list

S2 do while (ptr) S2 do while (ptr)

S2 ptr = (ptr , ptr)

S3 ptr = ptr.next S3 ptr = ptr .next

S4 end do S4 end do

(a) List Traversal Loop

Program SSA Representation

S1 ptr = list S1 ptr = list

S2 do while (ptr) S2 do while (ptr)

S2 ptr = (ptr , ptr)

S3 call advance(ptr) S3 call advance(ptr (ptr))

S4 end do S4 end do

S5 procedure advance(ptr) S5 procedure advance(ptr)

S6 ptr = ptr.next S6 ptr = ptr .next

S7 end S7 end (ptr)

(b) List Traversal Loop with Procedure Call

Fig. 1. SSA representation of programs with pointers.

cess path expression of q will be computed and the re-

sult is p.n. Meanwhile, the access path expression q.n

of r will be transformed by substituting q by the access

path expression of q, and hence the new path expres-

sion of r is p.n.n. Finally, S1 will further transform

path expressions by replacing p with list, as shown in

Fig. 2(c).

This example demonstrates that access path expres-

sions can show the relative positions of pointers on

pointer-linked data structures. Furthermore, the access

path expressions also represent the traversal patterns of

programs. To determine if two path expressions can

reach same locations, comparison operations similar to

the Match operation defined in Deutsch [18] can be

applied.

3. Definition-use chains of pointer-linked data

structures

3.1. Problem specifications

Linked data structures, such as lists, tree, graphs,

etc., are declared by recursively defined data types in

programming languages. Each node is a fixed-size

storage location represented by a record (or a node)

with a fixed number of fields, some of them are pointers

of recursively defined data types. As a result, a field of

a node can be accessed by a binary access path, which

has the form v.f where v is a pointer variable and f is

a field name.

As described in Section 2, there are three basic types

of pointer assignment statements when programs are

normalized such that each pointer assignment state-

ment contains only binary access paths. An aliasing

statement p = q will direct p to point to the same lo-

cation pointed to by q. This statement introduces an

alias pair but does not constitute a definition or a use to

pointer-linked data structures. When a link traversing

statement p = q.f is executed, the value stored in q.f

will be fetched and be assigned to p, and hence it is

a use of q.f . Furthermore, this statement is a traver-

sal through the link specified by q.f . Therefore, this

statement is a use of the pointer-linked data structures

some of whose nodes are pointed to by q. Similarly,

the execution of a link defining statement p.f = q is

a definition of the field p.f , and hence it constitutes a

definition of the pointer-linked data structures some of

whose nodes are pointed to by p.

Figure 3 demonstrates the effects of different types

of pointer assignment statements on a pointer-linked

data structure whose starting node is pointed to by the

pointer list. The first statement t = list, which is

an aliasing statement, directs the pointer t to the node

pointed to by the pointer list. This statement references

the pointer list, but does not induce any references to

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 7

q

list
n n

p r

(a) List

S1: p = list

S2: q = p.n

S3: r = q.n

(b) Program

S1: p: q: r:

S2: q: r:

S3: r:

(c) Path Expressions

Fig. 2. Backward computation of path expressions.

p.neigh = q

next next next
list

t p

q

next

neigh

r

t = list

p = r.next

Fig. 3. Effects of pointer assignment statements on a recursive data structure.

S : p.f = ...

S : ... = q.f

i

j

Fig. 4. Definition-use association.

the pointer-linked data structure list. The second state-

ment p = r.next references a link of the pointer-linked

data structure, which is stored in the field r.next, and

assigns the pointer p the destination node of the link

r.next. As a result, the execution of this statement in-

troduces a use on the structure list. On the other hand,

the execution of the statement p.neigh = q creates

a link to connect the pointer-linked structure list and

the node pointed to by the pointer q. This statement

changes the connections of the structure by adding one

link, and consequently is a definition of the structure

list.

Since link defining statements and link travers-

ing statements correspond to definitions and uses

of pointer-linked data structures respectively, the

definition-use chains between link defining statements

and link traversing statements will be computed to rep-

resent the definition-use chains of pointer-linked data

structures. Consequently, the problem to compute the

definition-use chains of dynamic pointer-linked data

structures is formulated as

For each statement S that defines links of pointer-

linked data structures, find the set of statements that

access the links which are defined by S.

Specifically, when Si is a definition of p.f and Sj
contains a use of q.f , as shown in Fig. 4, then q.f is a

use of p.f if

– There is at least one path from Si to Sj such that

p.f can reach Sj , and

– p and q access the same locations.

3.2. Approach

The computation of definition-use chains for pro-

grams with regular fixed-location variables can be

solved by data flow analysis in the direction opposite

to the flow of program control [2]. Let IN [B] and

OUT [B] be the set of uses that are reachable from the

beginning and end of the basic block B, respectively.

Let USE [B] be the set of upward exposed uses of B,

which are the set of pairs (s, x) such that s is a state-

ment in B that uses variable x and such that no prior

definition of x occurs in B, and let DEF [B] be the set

of pairs (s, x) such that s is a statement which uses x, s

is not in B, and B has a definition of x. The data flow

equations for the definition-use chaining problem are:

OUT [B] =
⋃

S∈succ(B)

IN [S] (1)

8 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

IN [B] = USE [B] ∪ (OUT [B]
(2)

−DEF [B])

The same analysis approach can be applied to the

problem of computing the definition-use chains of dy-

namic pointer-linked data structures. The distinction is

the set of upward exposed uses of binary access paths,

instead of regular fixed-location variables, will be com-

puted by the data flow analysis, and then the definition-

use chains will be established by processing the up-

ward exposed uses at statements where the binary ac-

cess paths are defined. The set of upward exposed uses

of binary access paths is the set of pairs (S, p.f) such

that S is a statement which uses the binary access path

p.f and such that no prior definition of p.f occurs.

As each pair (S, p.f) is propagated backward, the

pointer p will be represented by an access path expres-

sion. The access path expressions in the use pairs will

be transformed by statements, and the definition-use

chains will be identified at link defining statements.

Take the example listed in Fig. 5(a), which creates and

traverses a linked list as shown in Fig. 5(b). The set

of upward exposed uses at each statement will be com-

puted by collecting the uses of statements and propa-

gating them backward, as shown in Fig. 5(c). At state-

ment S6, the only use is (S6, p2.n). When this use

is propagated to S5, (S6, p2.n) will be transformed to

(S6, list2.n.n), i.e. p2 of the use p2.nwill be replaced

by list2.n, because the statement S6 : p2 = list2.n

assigns the value list2.n to p2. Furthermore, a new use

(S5, list2.n) is also generated. Similarly, S4 replaces

list2 in both uses by p1, and the set of upward exposed

uses at S4 consists of (S5, p1.n) and (S6, p1.n.n).
When the uses reach S3, the use (S5, p1.n) matches the

definition of S3, p1.n, and hence a definition-use chain

is identified between S3 and S5. Furthermore, the use

will be transformed to (S5, list1) and then be discarded

since the pattern list1 is not involved in any structural

traversal. Similarly, the other use (S6, p1.n.n) will

be changed to (S6, list1.n) and be propagated to S2.

Statement S2 does not modify the pattern of the use

because list1 of the pattern list1.n is not aliased to

p1 of S2. Finally when the use reaches S1, it will be

killed since it matches the definition of S1, and the

definition-use chain between S1 and S6 is recognized.

The example in Fig. 5 shows that as the upward

exposed uses are propagated backward, the access path

expressions of upward exposed uses are transformed

to reflex their relative positions on the pointer-linked

data structures. It also reveals special features of this

approach:

– Uses are gathered and propagated to the statements
where the definitions are created. The advantage is
that no alias or connection graphs will be required
to describe the connections of pointer-linked data
structures. Furthermore, the uses that are propa-
gated to the statements where the links of dynamic
pointer-linked data structures are defined repre-
sent the traversal patterns of the constructed data
structures.

– Each unique pointer in the set of access path ex-
pressions of reachable uses can be assumed to
point to a distinct location node (storage location)
until it reaches the statement where it is defined.
It simplifies the process of comparing access path
expressions.

– Aliases will be identified by the propagation and
transformation process on access path expressions.
For example, pointers list2 and p1 are identified as
aliases at the statement S4, and pointer p2 is deter-
mined to be aliased to list1 after transformations
by S3 is performed.

This approach can handle programs even with
cyclic pointer-linkeddata structures or DAGs (directed-
acyclic graphs). Consider the examples in Fig. 6. The
uses that are propagated to S4 access the same link
r.n of a DAG through different pointers p and q, as
shown in Fig. 6(a). The statement S3 transforms the
use (S5, q.n.n) to (S5, r.n) and S2 transforms the use
(S4, p.n.n) to (S4. r.n). Both uses match the defi-
nition r.n of S1, and hence definition-use chains are
identified. Similarly, the uses on a cyclic graph by S3
and S4 of the example shown in Fig. 6(b) are propa-
gated to the statements that define the cyclic graph, and
definition-use chains can be easily established.

In summary, the set of upward exposed uses
UPEXP [S] at statement S can be computed by the
following data flow equations:

UPEXPout [S] =
⋃

d∈succ(S)

UPEXPin [d] (3)

UPEXPin [S]
(4)

= USE [S] ∪ FS(UPEXPout [S])

where UPEXPout [S] is the set of upward exposed uses
at the exit of statement S and UPEXPin [S] is the set
of upward exposed uses at the entry of S, USE [S] is
the set of uses generated by the statement S, FS is the
transformation that will be performed by S on each
use, and succ(S) is the set of the successors of S. The
transformation FS will be called the transfer function

of the statement S and it is defined by statement type
of S.

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 9

S1: list .n = q

S2: p = new()

S3: p .n = list

S4: list = p

S5: p = list .n

S6: p = p .n

(a) Program

n n

nn

n n

n n

n

n

2list

2list

2list

list1

list1

list

list1

list1

list1

p
1

1
p

1p

p1

1
p

1

1
q

q

q

q

q

p
3

1

1

1

1

q
1

p
2

p
2

S1:

S2:

S4:

S5:

S6:

S3:

(b) Graphs

S1 :

S1 : (S6, list .n)

S2 : (S6, list .n)

S2 : (S6, list .n)

S3 : (S6, list .n)

S3 : (S5, p .n) (S6, p .n.n)

S4 : (S5, p .n) (S6, p .n.n)

S4 : (S5, list .n) (S6, list .n.n)

S5 : (S5, list .n) (S6, list .n.n)

S5 : (S6, p .n)

S6 : (S6, p .n)

(c) Upward Exposed Uses

Fig. 5. Backward propagating and transforming uses to identify definition-use chains.

S1: r.n = y

S2: p.n = r (S4, r.n) (S5, r.n)

S3: q.n = r (S4, p.n.n) (S5, r.n)

S4: (S4, p.n.n) (S5, q.n.n)

(a) Program with DAG

S1: q.n = p

S2: p.n = q (S4, q.n)

S3: t = p.n (S3, p.n) (S4, p.n.n)

S4: t = t .n (S4, t .n)

(b) Program with Cyclic Graph

Fig. 6. Programs with DAGs or cyclic graphs.

3.2.1. Transformations of access path expressions

The transformations by transfer function FS of the

statement S on each access path expression are pre-

sented as follows.

Aliasing statements S : pi = qj
For an aliasing statement, S : pi = qj , the pointer

instance pi is defined after the statement S is executed,

and furthermore it points to the same locations as qj .

Therefore, during the backward propagation process,

if the entry of an access path expression e is pi, i.e.

e ≡ pi.T where T is a path string, then entry pi will

be replaced by qj , and the new access path expression

will be qj .T . Otherwise, the access path expression

e remains unchanged. In other words, an access path

expression e will be transformed by FS: pi=qj to

FS: pi = qj (e) =

{

qj .T if e ≡ pi.T
e otherwise

Link traversing statements S : pi = qj .f
Similar to aliasing statements, the pointer instance

pi of a link traversing statement S : pi = qj .f is not

defined before S. As a result, the transformation of

link traversing statements can be formulated similarly

to that of aliasing statements: an access path expression

e will be transformed by FS: pi=qj .f to

FS: pi = qj .f (e) =

{

qj .f.T if e ≡ pi.T
e otherwise

In other words, if the entry of an access path expression

e is pi, i.e. e ≡ pi.T , the entry will be replaced by

qj .f .

Figure 7 shows an example and the access path ex-

pressions of its uses at each statement to demonstrate

the meaning of the transformations with respect to

the relative positions on pointer-linked data structures.

The use (S3, p2.n) is created at S3 and is stored in

UPEXPin[3]. The path p2.n represents the link n from

the node pointed to by p2. The use is propagated back

to S2, and then path p2.nwill be transformed by replac-

10 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Fig. 7. Transformations by link traversing statements.

ing p2 with p1.n and the new access path expression

will be p1.n.n. The new access path expression p1.n.n

at S2 represents the path from the node pointed to by

p1 to the link referenced at S3. Similarly, the access

path expression will be transformed to list.n.n.n at S1,

which means the use p2.n of S3 references the third

link of the data structure list.

Link defining statements S : pi.f = qj
In contrast to the above two types of statements, a

link defining statement S : pi.f = qj does not create

any new pointer instances. Instead, a new link defini-

tion pi.f is generated by S. However, similar transfor-

mations on access path expressions that are employed

by aliasing statements and link traversing statements

will be performed by link defining statements. The

distinction is that substitution is performed on the pat-

tern pi.f , not a pointer instance as done by the previ-

ous two types of statements. Therefore, an access path

expression e will be transformed FS: pi.f=qj to

FS: pi.f = qj (e) =

{

qj .T if e ≡ pi.f.T
e otherwise

In other words, if the prefix of an access path expression

e is pi.f , i.e. e ≡ pi.f.T , the access path expression

will be transformed to qj .T .

Figure 8 shows an example and its access path ex-

pressions to demonstrate that the transformations can

transfer access path expressions to correctly reflect the

relative positions. The example creates a list with one

edge, then inserts another edge to the list, and finally

traverses the two links of the list. The transformations

on access path expressions must reflect the change of

structure configuration. The use reference p1.n on the

list at S4 is propagated and transformed by the link

traversing statement S3, and the access path expression

will be r1.n.n, which means the second edge of the list

r1. The first edge of the list r1 is connected by state-

ment S2 and is not part of the list before statement S2,

that is, the second edge of the list r1 at S2 is in turn the

first edge of the list t1 at S1. The transformation on the

access path expression by the link defining statement

S2 reflects the situation. The access path expression

r1.n.n, which corresponds to the second edge of the

list r1, will be transformed to t1.n, which represents

the first edge of the list t1 at S1.

φ-statements S : pi = φ (pj , pk)
Statements with φ-functions are created by SSA rep-

resentation to merge values of the same pointers from

different branches of program control flow. There-

fore, the execution of φ-statements is similar to alias-

ing statements. Each statement of both types creates a

pointer instance and furthermore neither of statement

types is involved in traversal operations on pointer-

linked data structures. Consequently, the same trans-

formation employed by aliasing statements can be ap-

plied to φ-statements. However, since each φ-function

takes values from different branches, the transforma-

tion will create more than one new access path expres-

sions, one for each branch, from the original access

path expression. As a result, the transformation of a

φ-statement S : pi = φ (pj , pk) can be formulated as

follows: for an access path expression e, the following

access path expressions will be created:

FS: pi =φ (pj , pk)(e)

=

{

pj .T pk.T if e ≡ pi.T
e otherwise

3.2.2. Drawback and solution

One drawback of this approach is that the order of

link construction must match the order of link traver-

sal. Some definition-use chains will not be identified

if the orders of link construction and traversal are not

matched. For example, Fig. 9 shows the effects of dif-

ferent orders of link construction and traversal opera-

tions by switching the statements of examples in Fig. 6.

When uses in the example of Fig. 9(a) are propagated

to the statement S3, they are not identified as the uses

of S3 since their access path expressions do not match

the definition. The same situation happens when the

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 11

Fig. 8. Transformations by link defining statements.

use from S4 of the example in Fig. 9(b) reaches its

corresponding definition statement S2.
The reason is because some aliases would not be

identified when the order of link traversal is different
from the order of link construction, e.g. the aliases

q and t1 in Fig. 9(b). The situation is caused by the
fact that, after the link defining statement S1: p.n = q
of Fig. 9(b) is executed, the same destination node q

can be reached by two different paths, p.n and q. The
definition q.n of S2 references the node q through the
path q whereas t1 of the use t1.n of S4 accesses q after
traversing the path p.n. Although the pointers q and t1
point to the same node and the fact will be identified at
the statement S1, the information is not available at S2.

The solution is to propagate definitions as well. For
instance, the definition r.n of S3 in Fig. 9(a) is prop-

agated to S2, it matches the use of S5 after the use is
transformed by S2. Consequently, the definition-use
chain between S3 and S5 can be recognized. The def-

inition (S3, r.n) will be further propagated back to S1
and its definition-use relationship with S4 will be iden-
tified. Similarly, the definition-use chain between S2
and S4 of the example in Fig. 9(b) will be established if

the definition (S2, q.n) is propagated along with uses,
as shown in Fig. 10.

3.3. Data flow equations

In summary, the set of upward exposed uses of every
statement will be collected to compute the definition-
use chains of dynamic pointer-linked data structures.

The set of uses that can be reached from statement S
can be solved by the following data flow equations:

UPEXPout [S] =
⋃

d∈succ(S)

UPEXPin [d] (5)

UPDEFout [S] =
⋃

d∈succ(S)

UPDEFin [d] (6)

UPEXP [S]
(7)

= USE [S] ∪ FS(UPEXPout [S])

UPDEF [S]
(8)

= DEF [S] ∪ FS(UPDEFout [S])

UPDEFin [S] = FUPDEF [S](UPDEF [S]) (9)

UPEXPin [S] = FUPDEF [S](UPEXP [S]) (10)

where UPEXPout [S] and UPEXPin [S] are the sets

of upward exposed uses after and before statement

S respectively, USE [S] is the set of uses generated

by the statement S, FS is the transfer function of S,

succ(S) is the set of successors of S, UPDEFout [S]
and UPDEFin [S] are the sets of upward exposed def-

initions after and before S respectively, DEF [S] is

the set of definitions generated by the statement S,

and FUPDEF [S] is the transfer function of the set

UPDEF [S]. The transfer function FUPDEF [S] can be

represented by the following equation:

F〈s1, p1, f, q1〉∈UPDEF [S](〈s, p, n〉) =

(11)






















− ifs1 ≫ s ∧ p1.f ≡ p.n
〈s, q1.T, n〉 ifs1 ≫ s ∧ p ≡ p1.f.T
〈s, p, n〉 〈s, q1.T, n〉

if s1 �≫ s ∧ p ≡ p1.f.T
〈s, p, n〉 otherwise

if 〈s, p, n〉 ∈ UPEXP [s1] and Fs1 does not transform

the tuple, where s1 ≫ smeans statement s1 dominates

s.

3.4. Algorithm

The algorithm follows the iterative data flow anal-

ysis technique to compute the definition-use chains

of dynamic pointer-linked data structures. It solves

12 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

S1: p.n = r (S4, r.n) (S5, r.n)

S2: q.n = r (S4, p.n.n) (S5, r.n)

S3: r.n = y (S4, p.n.n) (S5, q.n.n)

S4: (S4, p.n.n) (S5, q.n.n)

(a) Program in Fig. 6(a)

S1: p.n = q (S4, q.n)

S2: q.n = p (S3, p.n) (S4, p.n.n)

S3: t = p.n (S3, p.n) (S4, p.n.n)

S4: t = t .n (S4, t .n)

(b) Program in Fig. 6(b)

Fig. 9. Effects of order of link construction and traversal.

S1: p .n = q

S2: q .n = y

S3: t = p .n

S4: t = t .n

(a) Program

UPDEF [S1]: (S1, p .n) (S2, q .n)

UPDEF [S1]: (S2, q .n)

UPDEF [S2]: (S2, q .n)

UPDEF [S2]:

UPDEF [S3]:

UPDEF [S3]:

UPDEF [S4]:

(b) Denitions

UPEXP [S1]: (S4, q .n)

UPEXP [S1]: (S3, p .n) (S4, p .n.n)

UPEXP [S2]: (S3, p .n) (S4, p .n.n)

UPEXP [S2]: (S3, p .n) (S4, p .n.n)

UPEXP [S3]: (S3, p .n) (S4, p .n.n)

UPEXP [S3]: (S4, t .n)

UPEXP [S4]: (S4, t .n)

(c) Upward Exposed Uses

Fig. 10. Propagating definitions to handle structural aliases.

the data flow equations of upward exposed use prob-

lem and then applies the solutions to the computation

of definition-use chains. Backward analysis is con-

ducted on the interval flow graph of the procedure, i.e.

IG = [VIG, EIG], where VIG is the set of nodes and

EIG is the set of edges, to solve the data flow equa-

tions [43]. The algorithm is shown in Fig. 11. The

outcome of the algorithm will be definition-use chains

between link defining statements and link traversing

statements.

Each use will be represented by a tuple 〈s, p, n〉,
where s is the statement that creates the use, p is the

access path expression of the pointer, and n is the field

name. Therefore, a link traversing statement S : p i =
qj .n will create a use tuple 〈S, qj , n〉. Similarly, each

definition will be represented by a tuple 〈s, p, n, q〉
where s is the statement that creates the definition, p

and q are the access path expressions, and n is the field

name. A link defining statement S : pi.n = qj will

introduce a definition tuple 〈S, pi, n, qj〉.
Each statement S stores the definitions and uses that

are created at S in DEF [S] and USE [S] respectively.

The definitions and uses of successor statements of S

will be gathered and then be stored in UPDEFout [S]
and UPEXPout [S]. The tuples in UPDEFout [S] and

UPEXPout [S] will be transformed by the transfer

function FS of statement S and then stored in tem-

porary sets UPDEF [S] and UPEXP [S] along with

the local definitions and uses in DEF [S] and USE [S].
The definitions in UPDEF [S] will be transformed by

the transfer function FUPDEF [S] and then stored in

the set UPDEFin [S]. Similarly, the uses in the set

UPEXP [S] will then be transformed by the transfer

function FUPDEF [S] and stored in UPEXPin [S].
The backward phase computes the data flow equa-

tions by traversing the nodes of the interval flow graph

in reverse topological order. At each iteration, the sets

on each statement are computed by the Eqs (5)–(10).

This iterative process terminates when none of data

flow equations produces new tuples. Definition-use

chains between link defining statements and link defin-

ing statements will be identified when the data flow

analysis converges, and the results will be stored in the

set DefUse[S], which lists the uses of the definition

defined at the statement S.

3.4.1. Normalization of access path expressions

Since loops can have unbounded numbers of itera-

tions, the access path expressions of definition and use

tuples might have unbounded numbers of fields after

being transformed by transfer functions of statements

in loops. In order to ensure the iterative data flow al-

gorithm will terminate, the length of every access path

expression must be finite. Therefore, access path ex-

pressions will be normalized at header nodes of loops.

Fig. 12 shows the algorithmFactor(p) that normalizes

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 13

algorithm ComputeDefUseChains ()

input:

: interval flow graph of the procedure

output:

DefUse : The set of statements that use the definition of

begin

initialize sets

for each node S in do UPEXP = UPDEF = DefUse =

iteratively analyze a procedure

while changed

for each node S in in reverse topological order do

Compute definition and use sets

UPEXP = UPEXP

UPDEF = UPDEF

UPEXP = USE F (UPEXP)

UPDEF = DEF F (UPDEF)

UPDEF = F (UPDEF)

UPEXP = F (UPEXP)

Factor definition and use sets at loop header

if S is the header node of a loop then

Factor(UPEXP)

Factor(UPDEF)

end

end

end

compute definition-use chains

for each node S in do

Compute definition-use chains and store results in DefUse

end

end

Fig. 11. Algorithm for computing definition-use chains within a procedure.

an access path expression p. The algorithm is a sim-

plified algorithm which is adapted from the normaliza-

tion algorithm for symbolic access paths proposed by

Deutsch [18] and the normalization algorithm for path

expressions proposed by Hendren [25].

The algorithm examines all the fields of the path

string of an access path expression p. Initially the

first field f1 will be stored in e, and then fields will

be examined from left to right. If f i is a recursively

defined type and its type is the same as the type of

e, then fi will be merged to e. Otherwise, e will be

appended to the end of path string of p ′ and then e will

be initialized as fi. The result p ′ of the normalization

Factor(p) will have the form pi.e1.fi.e2.fj . · · · .ek,

where ei = (f | · · ·)+. For example, the access path

expression pi.n.nwill be normalized to pi.(n)
+, while

hi.left.rightwill be transformed to hi.(left|right)+.

The set of all possible access path expressions is par-

titioned into finite equivalent classes after the normal-

ization function Factor is performed. It is the result

of unitary-prefix decomposition theorem developed by

Eilenberg [20], which has been applied by Deutsch to

14 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

algorithm Factor(p)

input:

: an access path expression

output:

: a normalized access path expression

begin

Let

; where

for each do

if is a recursively defined field and then

where

else

Append to

where

end

end

return

end

Fig. 12. Normalization algorithm Factor(p).

represent sets of possible alias relations [17,18]. Eilen-

berg’s unitary-prefix decomposition theorem will be re-
capped as follows [17,20]. A subset A of Σ⋆ is a uni-

tary set if either A is an empty set or A is the language
generated by a deterministic automaton with a single

terminal state that is accessible. A unitary monoid A

is a submonoid of Σ⋆ that is a unitary subset of Σ⋆. A
subset A of Σ⋆ is a prefix set if A ∩AΣ+ = ∅.

Definition 3.1 UNITARY-PREFIX MONOMIALS [20]
A unitary-prefix monomial of degree n is a recognizable

set of the form: U = MnσnMn−1σn−1 · · ·M1σ0M0

in which Mn,Mn−1, · · · ,M0 are unitary monoids,

σn, σn−1, · · · , σ0 are letters of Σ, and each of the sets

Mnσn · · ·Miσi (1 � i � n) is a prefix.

Theorem 1 UNITARY-PREFIX DECOMPOSITION [20]
Each recognizable subset L of Σ⋆ admits a disjoint

decomposition: L = U1 ∪ · · · ∪ Um where Ui (1 �

i � m) is a unitary-prefix monomial. Furthermore,

there exists a computable algorithm that determines

{U1, · · · , Um}.

3.4.2. Computing definition-use chains

The set UPEXPout [S] of each link defining state-
ment S : pi.f = qj will be examined to compute

definition-use chains. If there exists a use tuple
〈S1, pi, f〉 ∈ UPEXPout [S], then S is a definition

of S1, and consequently the definition-use information

will be stored in the set DefUse[S]:

DefUse[S] = DefUse[S] ∪ {S1}

Furthermore, the tuples in sets UPEXP [S],
UPEXPin [S], and UPDEF [S] will be compared to

identify possible definition-use chains. If a use tuple

of 〈S1, pi, n〉 is in UPEXP [S] but the tuple is not in

UPEXPin [S], i.e. the tuple 〈S1, pi, n〉 is killed by the

transfer function FUPDEF [S] at statement S, then the

tuple 〈S2, pi, n, q〉 ∈ UPDEF [S] that kills the tuple

〈S1, pi, n〉 is the definition. Therefore, the information

of definition-chain between S2 and S1 will be stored in

the set DefUse[S2]:

DefUse[S2] = DefUse[S2] ∪ {S1}

The computation of definition-use chains can be

incorporated into the backward propagation process,

since a definition-use pair will be identified when a

use tuple is killed either by FS or FUPDEF [S] at state-

ment S, i.e. when the use tuple matches the defini-

tion of a link defining statement or a definition tuple in

UPDEF [S].
If two definition tuples of two link defining state-

ments, say S1 and S2, in UPDEFin [S] are matched

and if statement S1 dominates S2, the sets DefUse[S1]
and DefUse[S2] will be compared to identify possible

definition-use chains. If s is in DefUse[S1] and if there

exists a use tuple 〈s, p, n〉 in UPEXPout [S2], then s

will be added to DefUse[S2], i.e.

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 15

Program Iteration 1 Iteration 2 Iteration 3

S1: rlist = nil S9, list , v S9, list , v S9, list .n, v S9, list , v S9, list .n , v

S5, list , n S5, list , n S5, list .n, n S5, list , n S5, list .n , n

S2: do while (list) S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n

list = (list , list) S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v

rlist = (rlist , rlist) S9, list , v S9, list , v S9, list .n, v S9, list , v S9, list .n , v

S5, list , n S5, list , n S5, list .n, n S5, list , n S5, list .n , n

S3: t = rlist S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n

S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v

S9, list , v S9, list , v S9, list .n, v S9, list , v S9, list .n , v

S5, list , n S5, list , n S5, list .n, n S5, list , n S5, list .n , n

S4: rlist = list S8, t, n S8, t.n , n S8, t, n S8, t.n , n S8, t, n S8, t.n , n

S9, t, v S9, t.n , v S9, t, v S9, t.n , v S9, t, v S9, t.n , v

S9, list , v S9, list , v S9, list .n, v S9, list , v S9, list .n , v

S5, list , n S5, list , n S5, list .n, n S5, list , n S5, list .n , n

S5: list = list .n S8, t, n S8, t.n , n S8, t, n S8, t.n , n S8, t, n S8, t.n , n

S9, t, v S9, t.n , v S9, t, v S9, t.n , v S9, t, v S9, t.n , v

S9, rlist , v S9, rlist , v S9, list .n, v S9, rlist , v S9, list .n , v

S5, list , n S5, list , n S5, list .n, n S5, list , n S5, list .n , n

S6: rlist .n = t – S8, t, n S8, t.n , n – S8, t, n S8, t.n , n – S8, t, n S8, t.n , n

S9, t, v S9, t.n , v S9, t, v S9, t.n , v S9, t, v S9, t.n , v

S9, rlist , v S9, rlist , v S9, list , v S9, rlist , v S9, list , v S9, list .n, v

S5, list , n S5, list , n S5, list .n, n

S7: end do S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n

S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v

S9, list , v S9, list , v S9, list .n, v

S5, list , n S5, list , n S5, list .n, n

S8: S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n S8, rlist , n S8, rlist .n , n

S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v S9, rlist , v S9, rlist .n , v

Fig. 13. List reverse example and its upward exposed uses.

DefUse[S2] = DefUse[S2] ∪ {s}
if s ∈ DefUse[S1] ∧ 〈s, p, n〉
∈ UPEXPout [S2]

The comparison is required to handle the case like

the following program fragment:

S1 p1 = q2

S2 p1.n =

S3 q2.n =

S4 = p1.n

S4 will be in the set DefUse[S2], but not in

DefUse[S3], though S3 is a definition of the use of S4.

3.5. Examples

Figure 13 presents the iterations to compute the

set of upward exposed uses of each statement of a

loop that reverses a linked list. The uses of state-

ments S8 and S9 enter the loop through the header

of the loop S3 and reach the end of loop body

S7. The use tuple 〈S8, rlist3, n〉 matches the def-

inition of S6 and hence is killed by the statement,

and consequently a pair of definition and use is

found. Another use tuple 〈S8, rlist3.(n)
+, n〉 is

transformed to 〈S8, t.(n)⋆, n〉, which will be repre-

sented by two tuples 〈S8, t, n〉 and 〈S8, t.(n)+, n〉,
by replacing the prefix rlist3.n by t. Similarly, the

use tuple 〈S9, rlist3.(n)
+, v〉 will be transformed to

〈S9, t, v〉 and 〈S9, t.(n)+, v〉, while the last use tu-

ple 〈S9, rlist3, v〉 is unchanged. When the new tu-

ples are propagated to S5, they will not be transformed.

However, a new use 〈S5, list2, n〉 is created. At the

statement S4, the aliasing statement changes the en-

try rlist3 of the tuple 〈S9, rlist3, v〉 to 〈S9, list2, v〉
while it leaves the others unchanged. The use tuples

will be propagated to the header of the loop after being

transformed by S3.

The tuples that are propagated to the header node S2

of the loop will be transformed by the φ statements to

two sets of use tuples, one set will be propagated out of

the loop to S1 and the other set will be passed back to

the end of the loop body. The set that is propagated to

S1 will be transformed by the aliasing statement, and

those use tuples with entry rlist1 will be removed after

transformation since their access path expressions are

empty strings. This process will repeat until no new

patterns are created.

16 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

n
list 1

v v v v v

nn n

(a) Acyclic List

v

list
n

n n n
1

v

v

v

v

(b) Cyclic List

Fig. 14. Possible shapes of list list1.

This example demonstrates that the algorithm pro-
posed in this paper can handle programs with destruc-
tive update operations [40]. It correctly identifies the
definition-use chain between S6 and S8, and does not
introduce the spurious definition-use chain between S6
and S5 even though list2 and rlist3 will be deemed
as aliases by existing aliases algorithms [13,18,21,30,
48]. The use tuples at S1 mean that the uses of S5 and
S9 are defined by the statements before the list reverse
loop. Furthermore, the use tuples of S9 show that this
approach works regardless of the shape of the linked
list list1, which can be either an acyclic list or a cyclic
list as shown in Fig. 14. The same set of tuples will be
produced by this approach even when list1 is a cyclic
list.

3.6. Complexity

For a normalized program with N statements, there
are at most N definitions and uses in total. The
pointer p of each use tuple 〈s, p, n〉 and pointers p
and q of each definition tuple 〈s, p, n, q〉 will be
represented by access path expressions and be trans-
formed by transfer functions FS and FUPDEF [S] dur-
ing backward propagation process. Since access path
expressions will be normalized (see Section 3.4.1),
each access path expression p will have the form p ≡
pi.e1.fi.e2.fj. · · · .em and consequently p has 2m pos-
sible patterns, i.e. pi.e1.fi.e2.fj . · · · .ek (1 � k � m).
The number m is determined by the hierarchical con-
figurations of data structures that are declared in pro-
grams. For example, if a linked list is declared in a
program, then m ≡ 1 since access patterns will be
factored into the forms list and list.(next)+. On the
other hand, if a list of lists is declared, then m would
be 2.

The algorithm ComputeDefUseChains follows the
iterative data flow technique, and consequently it takes
d+ 2 iterations for a tuple to reach all its destinations,
where d is the level of loop connectedness [24]. Fur-
thermore, once each tuple reaches its destinations, it
requires 3mmore iterations to compute all possible ac-
cess path expressions. Therefore, the time complexity
of the algorithm is d+ 3m+ 2.

4. Flow-sensitive interprocedural algorithm

This algorithm to compute interprocedural definition-

use chains of dynamic pointer-linked data structures is

adapted from the interprocedural algorithm of comput-

ing definition-use chains of variables proposed by Har-

rold and Soffa [23]. Individual procedure will be an-

alyzed using the algorithm presented in Section 3.4 to

abstract intraprocedural information, which is used to

construct an interprocedural flow graph (IFG). Intrapro-

cedural information will then be propagated through

the program via the IFG to obtain interprocedural in-

formation. The propagation will be performed on re-

alizable paths only, i.e. the calling context will be ob-

served. Finally, interprocedural definition-use chains

of pointer-linked data structures will be computed us-

ing the local definition at each node in the IFG along

with the propagated information.

4.1. Interprocedural flow graph (IFG)

A program will be represented by an interprocedural

flow graph (IFG), which is based on the interprocedural

flow graph [23] and the program summary graph [11].

An IFG is comprised of subgraphs, each of which ab-

stracts local information of a procedure. The connec-

tions among subgraphs are determined by the call graph

of the program [22].

There are four types of nodes in an IFG, ENTRY,

EXIT, CALL, and RETURN. An ENTRY node repre-

sents the entry of a procedure and an EXIT node rep-

resents the exit at the end of a procedure. A CALL

node represents the program point prior a procedure call

while a RETURN node represents the program point

after returning from the procedure call. Consequently,

an ENTRY node and an EXIT node are created for each

procedure, while a CALL node and a RETURN node

are created for each call site. Intraprocedural infor-

mation will be computed and annotated to appropriate

nodes in every subgraph, and will be propagated along

the IFG edges for interprocedural analysis.

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 17

A reaching edge in a subgraph indicates that def-

initions that reach the source of the edge might also

reach the sink of the edge. In other words, a reaching

edge indicates that there are flow paths from the source

of the edge to the sink of the edge. For example, a

reaching edge from an ENTRY node to a CALL node

means that definitions that reach the entry of the proce-

dure might reach the call site as well. Reaching edges

represent the intraprocedural flow information between

nodes of IFG subgraphs, and hence can be computed

by intraprocedural analysis.

Binding edges represent the interactions among pro-

cedures by connecting subgraphs of the IFG. Let the

ENTRY node and EXIT node of the procedure P be

denoted as entry P and exitP respectively, and the

CALL node and RETURN node of the procedure P to

procedureQ be denoted as call P→Q and returnP→Q

respectively. A binding edge from node call P→Q to

node entry Q represents a procedure call from P to Q

at a call site inP and the definitions of the actual param-

eters in P reach the formal parameters ofQ. Similarly,

a binding edge from node exit Q to node return P→Q

represents a return from procedure call and the last def-

initions of the formal parameters of Q reach the actual

parameters of P after the call site.

Interreaching edges from CALL nodes to RETURN

nodes represent the effects of called procedures on ac-

tual parameters at call sites [23,36]. An interreach-

ing edge indicates definitions that reach the program

point before the procedure call may reach the program

point right after the return from the called procedure.

Interreaching edges will be computed by an iterative

algorithm executing on partially constructed IFG.

In summary, an IFG is a directed graph IFG =
[VIFG ,EIFG], where VIFG is the set of nodes, which

can be further divided into CALL, RETURN, EN-

TRY, and EXIT nodes, and EIFG is the set of edges,

which can be categorized as call binding, return bind-

ing, reaching, and interreaching edges. Local defini-

tions and uses will be gathered by intraprocedural algo-

rithms and annotated to appropriate nodes in the sub-

graphs of IFG. The local information will be propagated

through edges of IFG to compute the interprocedural

definition-use chains.

4.2. Algorithm

The algorithm, ComputeIPDefUseChains, that com-

putes the interprocedural definition-use chains of dy-

namic pointer-linked data structures is given in Fig. 15.

This algorithm follows the iterative data flow tech-

nique. It first gathers the local uses and definitions at

program points right before and after procedure calls

and annotates the information on nodes of IFG sub-

graphs. It then solves data flow equations for reach-

able uses by propagating local information through the

IFG using iterative techniques. Once the global infor-

mation converges, this algorithm computes interproce-

dural definition-use chains by associating the local in-

formation with the propagated information. The algo-

rithm, shown in Fig. 15, can be broken into four steps:

– Constructing the IFG subgraphs

– Constructing the IFG

– Propagating the local information
– Computing the definition-use chains

The program in Fig. 16 will be used as an example to

demonstrate the interprocedural analysis. The example

first creates a linked list, then calls a recursive procedure

reverse to reverse the linked list, and finally traverses

the reversed list by a procedureadvance in a loop. This

example is used to demonstrate how the flow-sensitive

interprocedural algorithm handles recursive procedure

calls and procedure calls within loops.

4.2.1. Constructing the IFG subgraphs

Each procedure is represented by an IFG subgraph.

The steps to construct an IFG subgraph for a procedure

are as follows:

– Creating IFG nodes

– Computing local information

– Building reaching edges

Creating IFG nodes

A pair of nodes, an ENTRY node and an EXIT node

respectively, will be created for each procedure. The

ENTRY node corresponds to the beginning of the pro-

cedure, while the EXIT node corresponds to the end of

procedure. Similarly, a CALL node and a RETURN

node are created for each procedure call in the pro-

cedure. The CALL node corresponds to the program
point before the procedure call, and the RETURN node

corresponds to the program point after the call. Sepa-

rate CALL/RETURN pairs will be generated for pro-

cedure calls at different call sites in the procedure. Fig-

ure 17 shows the IFG nodes of the example program

listed in Fig. 16. The first procedure call at S9 inmain

is represented by the pair of nodes 1 and 2, and the

second call site at S13 is represented by nodes 3 and

4. The ENTRY nodes of the procedures reverse and

advance are node 5 and node 9 respectively and the

EXIT nodes of reverse and advance are node 6 and

18 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

algorithm ComputeIPDefUseChains ()

input:

: procedures

output:

begin

Step 1: construct subgraph for each procedure

for each in do

create and

for each call at a call site do

create and

Create dummy uses for each formal and actual parameter

Perform intraprocedural analysis on and annotate local information

Create reaching edges and compute transfer functions

end

Step 2: construct the IFG

Create call and return binding edges

Compute transfer functions and build interreaching edges

Step 3: propagate USE through IFG

Phase 1

Propagate(,)

Phase 2

Propagate(,)

Step 4: compute interprocedural DEF/USE chains

for each in

Retrieve global information from IFG

Compute interprocedural definition-use chains

end

end

Fig. 15. Interprocedural algorithm.

node 10 respectively. The procedure call within the

procedure reverse are represented by the pair of nodes

7 and 8.

Computing local information

Once nodes of IFG subgraphs are created, local in-

formation will be gathered by intraprocedural data flow

analysis and be annotated to appropriate IFG nodes.

Since during backward iterative analysis local informa-

tion of each procedure can be passed to callees through

the RETURN nodes in the IFG and to callers through

the ENTRY node, the sets of local upward exposed uses

and definitions will be annotated to appropriate EN-

TRY and RETURN nodes. Therefore, the sets of defi-

nitions and uses that can be reached from the beginning

of the regions represented by ENTRY and RETURN

nodes in the IFG will be computed. The intraprocedu-

ral algorithm presented in the previous section will be

performed to compute the sets of reachable definitions

and uses. The use sets will be annotated to appropriate

ENTRY and RETURN nodes as UPEXP sets while the

definition sets will be annotated to appropriate ENTRY

and RETURN nodes as UPDEF sets. The UPEXP or

UPDEF set of an ENTRY node of a procedure is the

set of uses or definitions that can be reached from the

beginning of the procedure, while the UPEXP or UP-

DEF set of a RETURN node at a call site represents the

set of uses or definitions that can be reached from the

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 19

main procedure reverse procedure

S1: program main S21: procedure reverse(X , Y , q)

S2: list = nil S22: if (X nil) then

S3: do i = 1, N S23: q = Y

list = (list , list) S24: else

S4: temp = new() S25: p = X .n

S5: temp.n = list S26: X .n = Y

S6: list = temp S27: call reverse(p (p), X (X), q (q))

S7: end do S28 end if

S8: rlist = nil X = (X , X); q = (q , q)

S9: call reverse(list (list), rlist (rlist), t (t)) S29: end (X , Y , q)

S10: list = t

S11: ptr = list advance procedure

S12: do while(ptr) S31: procedure advance(ptr)

ptr = (ptr , ptr) S32: ptr = ptr .n

S13: call advance(ptr (ptr)) S33: end (ptr)

S14: end do

S15: end

Fig. 16. Example program for interprocedural analysis.

return of a procedure call. The UPEXP and UPDEF

sets are defined as follows, where P and Q represent

procedures,

UPEXP [n] =






















uses in P reachable from the beginning of P

if n is entryP

uses in P reachable from the return from

P → Q if n is returnP→Q

∅ otherwise

UPDEF [n] =






















definitions in P reachable from the beginning of P

if n is entryP

definitions in P reachable from the

return from P → Q if n is returnP→Q

∅ otherwise

Building reaching edges

A reaching edge can be created between an ENTRY

node and either a CALL or an EXIT node to indicate

that there is flow path from the entry of a procedure

to the program point before a procedure call or to the

end of the procedure. Similarly, a reaching edge can

be created from an RETURN node to an EXIT node or

a CALL node to indicate there is a flow path from the

return of a procedure call to the end of the procedure

or the program point before a procedure call.

A reaching edge between two nodes in an IFG sub-

graph represents a region of code in the procedure that
is abstracted by the IFG subgraph. Furthermore, it

means definitions that reach the beginning of the code

region might reach the end of region. Similarly, the
reaching edge means uses that are reachable at the end

of region might also be reachable at the beginning of
the region. Therefore, in order to compute the reach-

ing edges between nodes in the IFG subgraphs, local
reaching definitions or reachable uses will be gathered.

In contrast to definitions and uses of fixed-location
variables, each of which is a read or write reference to a

single location, references to any locations that can be

accessed through the links of pointer-linked data struc-
tures constitute definitions or uses of the data struc-

tures. Consequently, definitions of p that reach an IFG
node can reach another IFG node if there are definitions

of q at the destination node and one of the following
conditions holds, where S and T are path strings:

– p = q.S
p is a child of q, as shown in Fig. 18(a). In other

words, the definitions stored in the set of locations
that are reachable from p can be accessed through

q, namely q.S.
– q = p.S
q points to a child of p, as shown in Fig. 18(b).

– p.S = q.T
Some children of p are also children of q, as shown

in Fig. 18(c).

20 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

reaching edges

main

advance

reverse

1

2

3

4

6

5

7

8

9

10

CALL/RETURN nodes

ENTRY/EXIT nodes

Fig. 17. IFG subgraphs of the example program.

Similarly, uses of q that are reachable from an IFG

node can be reachable at another IFG node if there are

uses of p and if one of the following conditions holds:

– p = q.S
– q = p.S
– p.S = q.T

In order to compute reaching edges between nodes

in the IFG subgraph of the procedure, dummy uses

will be added to the USE set for each formal pa-

rameter at the end of procedure and each actual pa-

rameter at call sites before the intraprocedural anal-

ysis is performed. Namely, for each parameter p

which has recursively defined fields f1, f2, . . . , fn,

a dummy use p.T [p], where T is call the dummy

path and T = (f1|f2| . . . |fn)
+, will be created. This

form represents all possible patterns that can be ac-

cessed through parameter p. For example, the dummy

use of the formal parameter at the end of procedure

advance in Fig. 16 is ptr5.(n)
+ [ptr5]. The dummy

uses will be propagated and transformed along with

uses in UPEXP sets. The same transformation de-

fined by the intraprocedural algorithm proposed in the

previous section will be performed on access path ex-

pressions of dummy uses. If any dummy uses reach

ENTRY nodes or RETURN nodes of the procedure,

reaching edges will be added to the IFG subgraph. Fur-

thermore, the transfer functions of the reaching edges

will be derived from the dummy uses that reach these

ENTRY or RETURN nodes. For example, reaching

edges are added between nodes 5 and 6, 5 and 7, and

8 and 6 of procedure reverse, and nodes 9 and 10 of

procedure traverse respectively, as shown in Fig. 17.

The reaching between nodes 2 and 3 and nodes 4 and

3 will be added in the main procedure.

Transfer functions

The algorithm to compute transfer functions between

IFG nodes is shown in Fig. 19. First, dummy uses will

be added to the USE set for each formal parameter at

the end of procedure and each actual parameter at call

sites before the intraprocedural analysis is performed.

These dummy uses will be propagated and transformed

along with uses in UPEXP sets. The same transforma-

tion that is applied to reachable uses by the intraproce-

dural algorithm will be applied to dummy uses as well,

except for the link defining statements since the dummy

paths can be shortened only by link defining statements

and the pattern of transformation will be stored in the

[] field of each dummy use.

When a dummy pattern p.S [v.W] reaches a link

defining statement p.f = q, if the first field of S is f ,

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 21

q

p

(a)

p

q

(b)

p

q

(c)

Fig. 18. Reaching definitions and reachable uses.

i.e. S = f.T , the pattern p.S will be transformed to

q.T . That is, the entry point p of the path p.S is replaced

by q and the first field of path string S is removed.

Furthermore, if S = f.T is a dummy path, f will be

appended to the path pattern [v.W] and the new dummy

use will be q.T [v.W.f]. For example, the dummy use

ptr5.(n)
+ [ptr5] of procedure advance of the example

in Fig. 16 will be transformed by the link traversing

statement S32 : ptr5 = ptr4.n to ptr4.n.(n)
+ [ptr5],

whereas the dummy useX1.(n)
+ [X1] of the recursive

call in procedure reverse will be transformed by the

link defining statement S26 : X1.n = Y1 to Y1 [X1.n]
and Y1.(n)

+ [X1.n], as shown in Fig. 20.

Once a dummy use p.S [v.W] reaches the entry of

the procedure or the program point at the return of a

procedure call, a reaching edge will be added from

the corresponding ENTRY or RETURN node in the

IFG graph to the IFG node where the dummy use is

originated. Furthermore, the transfer function of the

edge can be derived from the reaching dummy use

p.S[v.W]. The transfer function of the reaching edge

will be derived from the dummy use by the following

rules:

– If the reached dummy use contains a dummy path,

it means the original patterns can be preserved

by the region of code that is represented by the

reaching edge. Therefore, the dummy use will be

used as part of the transfer function of the reaching

edge. Let T be the remaining dummy path, i.e.

S ≡ S ′.T , then T will be removed fromS and the

transfer function will be p.S ′ [v.W]. Furthermore,

the unique field names in T , say (f1|f2| . . . |fn),
will be gathered and be put after the pattern in the

[] field. As a result, the transfer function will be

p.S ′ [v.W (fi)], where fi = f1|f2| . . . |fn.

– On the other hand, if the reached dummy use does

not contain any dummy path, it means the orig-

inal patterns will be killed by the reaching edge.

Therefore, the dummy use will be discarded.

For example, the dummy use (S29, Y1.(n)
+ [Y1])

will introduce Y1 [Y1 (n)] to the transfer function

of the reaching edge 〈5, 6〉, while the dummy use

(S27, Y1 [X.n]) will be discarded.

The transfer function of each reaching edge might

contain multiple patterns that are derived from dummy

uses. For example, the transfer function of the edge

〈5, 6〉 in Fig. 17 has two patterns Y1 [Y1 (n)] and

Y1 [q4 (n)], while the transfer function of the edge

〈5, 7〉 is X1 [p1 (n)], q1 [q1 (n)], and Y1 [X1.n (n)].
When a use reaches the sink node of the reaching edge,

it will be compared by every pattern of the transfer

function and be transformed if applicable. For a pat-

tern p.S [v.W (fi)], where fi = (f1|f2| . . . |fn), of the

transfer function of a reaching edge, the [v.W (f i)] part

specifies the input pattern of the transfer function and

p.S represents the output pattern. In other words, the

function will perform transformation at the sink node

of the reaching edge only on the uses that have the form

v.W.T , i.e. the prefix of the uses must be v.W . Fur-

thermore, if the first field of T is f , f must be one of

the fields of fi, i.e. f ∈ (f1|f2| . . . |fn), then the use

v.W.T will be transformed by the function to p.S.T .

On the other hand, if the first field of T is not in f i, no

output will be produced. Therefore, a transfer function

F = p.S [v.W (fi)], where fi = (f1|f2| . . . |fn), can

be represented by the follow equation:

Fp.S [v.W (fi)](v.X) = (12)
{

p.S.T if X ≡W.T ∧ (T ≡ f.Y ∧ f ∈ fi)
− otherwise

Figure 21 shows another example and its dummy

uses at each statement. The procedure of the ex-

ample swaps the branches of the actual parameter.

A reaching edge will be created from the ENTRY

22 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

procedure ComputeTransferFunction (,)

input:

: procedure

: the IFG subgraph of

begin

Initialize dummy patterns

for each formal or actual parameter of do

create a dummy use ,

where and are recursively defined fields of

add the dummy use to the set of the corresponding node

end

Propagate and transform dummy uses

while changed do

for each node of in reverse topological order do

for each dummy use in UPEXP [n], where and are sequences of fields, do

case (statement type) do

:

:

:

if then

if is a dummy path then

end

end

Union the new pattern to UPEXP [n]

end

end

end

Build reaching edges and compute transfer functions

for each dummy pattern that reaches a node that is a call site or the entry do

Identify the corresponding IFG node in of node

Identify the IFG node where the dummy use is originated

Build a reaching edge

Compute the transfer function of the reaching edge

end

end

Fig. 19. Algorithm for building reaching edges and computing transfer functions.

node to EXIT node of the swap procedure. The

patterns h [h], h.left [h.right], and h.right [h.left]
that are derived from the dummy tuples without

dummy paths can be discarded since they do not trans-

form uses. The transfer function of the reaching

edge contains two patterns: h.right [h.left (left |right)]
and h.left [h.right (left |right)], which are derived

from dummy uses (S6 , h.right .(left |right)+ [h.left])
and (S6 , h.left .(left |right)+ [h.right]). The transfer

function means if the access path expression of a use

that reaches S6 has the patternh.left.T (orh.right.T),

then it will be changed to h.right.T (or h.left.T). On

the other hand, if the use pattern is exactly h.left (or

h.right), it will be killed by the reaching edge.

4.2.2. Constructing the IFG

For each procedure call from procedure P to pro-

cedure Q, a call binding edge E
P→Q
call will be added

from the CALL node callP→Q to the corresponding

ENTRY node entryQ. Furthermore, a return binding

edgeE
P→Q
return will be added from the EXIT node exitQ

to the RETURN node returnP→Q. For example, the

edges 〈1, 5〉, 〈3, 9〉, and 〈7, 5〉 in Fig. 22 are call bind-

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 23

(a) Program (b) Dummy Uses

S21: procedure reverse(X , Y , q) (S29, Y .(n) [Y]) (S29, Y .(n) [q])

(S27, X .n.(n) [p]) (S27, q .(n) [q])

(S27, Y [X .n]) (S27, Y .(n) [X .n])

S22: if (X nil) then (S29, Y .(n) [Y]) (S29, Y .(n) [q])

S23: q = Y (S29, X .(n) [X]) (S29, Y .(n) [Y]) (S29, Y .(n) [q])

S24: else (S29, X .(n) [X]) (S29, Y .(n) [Y]) (S29, q .(n) [q])

S25: p = X .n (S29, Y .(n) [Y]) (S27, X .n.(n) [p])

(S27, Y [X .n]) (S27, Y .(n) [X .n]) (S27, q .(n) [q])

S26: X .n = Y (S29, Y .(n) [Y]) (S27, p .(n) [p])

(S27, Y [X .n]) (S27, Y .(n) [X .n]) (S27, q .(n) [q])

S27: call reverse(p (p), X (X), q (q)) (S29, Y .(n) [Y])

(S27, p .(n) [p]) (S27, X .(n) [X]) (S27, q .(n) [q])

S28 end if (S29, X .(n) [X]) (S29, Y .(n) [Y]) (S29, q .(n) [q])

X = (X , X); q = (q , q) (S29, X .(n) [X]) (S29, Y .(n) [Y]) (S29, q .(n) [q])

(S29, X .(n) [X]) (S29, q .(n) [q])

S29: end (X , Y , q) (S29, X .(n) [X]) (S29, Y .(n) [Y]) (S29, q .(n) [q])

Fig. 20. Propagation and transformation on dummy uses.

(a) Program (b) Dummy Uses

S1: procedure swap(h) (S6, h [h]) (S6, h.right [h.left]) (S6, h.right.(left right) [h.left])

(S6, h.left [h.right]) (S6, h.left.(left right) [h.right])

S2: left = h.left (S6, h [h]) (S6, h.right [h.left]) (S6, h.right.(left right) [h.left])

(S6, h.left [h.right]) (S6, h.left.(left right) [h.right])

S3: right = h.right (S6, h [h]) (S6, h.right [h.left]) (S6, h.right.(left right) [h.left])

(S6, left [h.right]) (S6, left.(left right) [h.right])

S4: h.right = left (S6, h [h]) (S6, right [h.left]) (S6, right.(left right) [h.left])

(S6, left [h.right]) (S6, left.(left right) [h.right])

S5: h.left = right (S6, h [h]) (S6, right [h.left]) (S6, right.(left right) [h.left])

(S6, h.right.(left right) [h])

S6: end (h) (S6, h [h]) (S6, h.(left right) [h])

Fig. 21. Branch swap procedure and its dummy uses.

ing edges, while 〈6, 2〉, 〈10, 4〉, and 〈6, 8〉 are return

binding edges.

An interreaching edge will be then created to con-

nect the CALL node and RETURN node of each site.

The transfer function of the interreaching edge be-

tween the CALL node callP→Q and the RETURN node

returnP→Q is the composition of the transfer func-

tions of the call binding edgeE
P→Q
call , the procedureQ,

and the return binding edge E
P→Q
return. In other words,

the transfer function of the interreaching edge can be

computed by the following equation:

F
E

P→Q
return

◦ FQ ◦ F
E

P→Q

call

(13)

The operation FE1
◦ FE2

to combine two trans-

fer functions FE1
= p.W [v.R (f1)] and FE2

=
q.T [p.S (f2)] is defined as:

p.W [v.R (f1)] ◦ q.T [p.S (f2)] = (14)






q.T.X [v.R (f1)] if W = S.X ∧ car(X) ∈ f2
q.T [v.R.Y (f2)] if S =W.Y ∧ car(Y) ∈ f1
− otherwise

where p, q, and v are pointer variables, and R, S, T ,

W , and X are path strings. Specifically, if S is a

24 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Fig. 22. IFG of the example program.

prefix of W , then the prefix S will be removed from
W and if the first field of the rest of W is in f2, i.e.
car(X) ∈ f2, then X will be inserted to q.T . On the
other hand, if W is a prefix of S, the prefix W will
be deleted from S and if the first field of the rest of
S is in f1, i.e. car(Y) ∈ f1, then Y is appended to
v.R. For example, the transfer function of the proce-
dure advance in Fig. 16(a) is ptr4.n [ptr5 (n)], and the
transfer functions of call binding edge and return bind-
ing edge are ptr2 [ptr4 (n)] and ptr5 [ptr3 (n)], respec-
tively. The transfer function of the interreaching edge
will be ptr2.n [ptr3 (n)].

In order to compute the transfer function of each in-
terreaching edge, the transfer function of its callee will
have to be computed first. The transfer function of a
procedure is the combination of transfer functions of
edges in its IFG subgraph, which in turn might contain
interreaching edges. Therefore, the process to com-
pute transfer functions of procedures in a program is
performed by a depth-first traversal through the call
graph. Once the transfer functions of all the callees
of a procedure are computed, the transfer functions of
the corresponding interreaching edges can computed
by the Eq. (13), and consequently the transfer function
of the procedure can be easily computed by iteratively

traversing the edges of its IFG subgraph to combine
the transfer functions of the edges. However, when a
program contains recursive procedure calls, cycles in
the call graph will occur. Each cycle in the call graph
can be identified by the depth-first traversal and iso-
lated to compute the transfer functions of the recursive
procedures on the corresponding IFG subgraphs.

The algorithm that computes the transfer functions
of interreaching edges of an IFG ComputeIE is shown
in Fig. 23. The call graph of a program is the input to
the algorithm and the algorithm will traverse the pro-
cedures of the program following the depth-first search
order of the call graph. The algorithm ComputeIE first
initializes the numberDFS(N) of each call graph node
to 0, and then calls the function ComputeIERecursive to
recursively compute the transfer functions of the called
procedures of the main procedure.

The function ComputeIERecursive assigns the num-
berDFS(N) of the call graph nodeN and increments
the counter count if N is visited the first time. Oth-
erwise, the function returns without performing any
computations. The function will recursively call itself
to compute the transfer functions of the callees of N .
Each recursive call to a callee of N returns the DFS
ordering of the callee. If the DFS number is greater

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 25

procedure ComputeIE ()

input:

: call graph

begin

Initialization

count = 1

for each node of do DFS(N) = 0

Traverse call graph in depth-rst-search order

for each outgoing edge of the root of do

call ComputeIERecursive(callee())

build an interreaching edge and compute the transfer function

end

end

procedure ComputeIERecursive ()

input:

: node of call graph

begin

Return if the node has been visited

if DFS(N) 0 return DFS(N)

Recursively traverse the called procedures

DFS(N) = order = count++

for each outgoing edge of do

Active(e) = true

child = ComputeIERecursive(callee())

if order child then order = child

Compute the transfer function if callee’s transfer function is computed

if child DFS(N) then Build an interreaching edge and compute the transfer function

end

Return if is part of recursive calls

if order DFS(N) then return order

Isolate and possibly its callees and compute the transfer function

for each incoming edge of do Active(e) = false

call ComputeTransferFunction()

end

Fig. 23. Algorithm for building interreaching edges and their transfer functions.

than DFS(N), it means the transfer function of the

callee is computed, and hence the transfer function of

the corresponding interreaching edge can be computed.

Otherwise, it means N and the callee are in a cycle of

the call graph that is induced by recursive calls. For

example, when ComputeIERecursive visits the node 2

of the call graph in Fig. 25, which corresponds to the

procedure reverse of the example in Fig. 16, it as-

signs DFS(2) the value 1. It then calls itself to com-

pute the transfer function of the callees of the proce-

dure reverse, and the returned DFS number is also

1. Since the returnedDFS number is not greater than
DFS(2), the procedure reverse is recursive.

After recursively visiting all the callees of N , Com-

puteIERecursive then calls the function ComputeTrans-

ferFunction to compute the transfer function ofN . The
function first identifies the IFG nodes and edges that
correspond to the active nodes and edges of the call
graph and marks the IFG nodes and edges active. The
function uses a set ReachList [s] to store the result of
transfer function composition up to each IFG node s. It
first initializes the ReachList [s] to the transfer function
of the edge e ≡ 〈s, d〉, TransFunc[e], if the sink node

26 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Fig. 24. Algorithm for computing transfer function of procedure.

d is an EXIT node, and initializes to a empty set other-
wise. The function then iteratively traverses the active
IFG nodes and edges to compose patterns of transfer
functions until no new patterns are added to any sets.

For example, when the procedure reverse is an-
alyzed, ComputeTransferFunction first identifies the
IFG nodes 5, 6, 7, and 8, reaching edges 〈5, 6〉,
〈5, 7〉, and 〈8, 6〉, and binding edges 〈7, 5〉 and
〈6, 8〉. The transfer function of edge 〈5, 6〉 will
be copied to ReachList [5], i.e. ReachList [5] =
{Y1 [Y1 (n)], Y1 [q4 (n)]}, and the transfer function of
edge 〈8, 6〉, {X2 [X3 (n)], q3 [q4 (n)]}, will be copied
to ReachList [8]. ComputeTransferFunction then tra-
verses the active IFG edges to compute the ReachList

of each node until no changes occur. Finally, it ex-
amines the ReachList [5] of the ENTRY node of the
procedure reverse and obtains the transfer function
of the procedure, Y1 [X3 (n)], Y1 [Y1 (n)], Y1 [q4 (n)],
Y1 [X3.n

+ (n)], Y1 [Y1.n
+ (n)], and Y1 [q4.n

+ (n)].
Once the transfer function of the callee is computed,

the interreaching edge that connects the CALL node

and RETURN node of the call site can be created,

and the transfer function of the interreaching edge can

be computed by the Eq. (13). Therefore, the inter-

reaching edges will be created between nodes 1 and

2, 3 and 4, and 7 and 8, as shown in Fig. 22. The

transfer function of the interreaching edge 〈1, 2〉 will

be rlist1 [list4 (n)], rlist1 [rlist2 (n)], rlist1 [t2 (n)],
rlist1 [list4.n

+ (n)], rlist1 [rlist2.n
+ (n)], and rlist1

[t2.n
+ (n)].

Take the branch swap example in Fig. 21. Its transfer

function can be computed by a single iteration since

its IFG does not have cycles, and the transfer func-

tion contains the patterns h.left [h.right (left|right)]
and h.right [h.left (left|right)]. The transfer func-

tion means if the access path expression of a use that

reaches S6 has the pattern h.left.T (or h.right.T),

then it will be changed to h.right.T (or h.left.T). On

the other hand, if the use pattern is exactly h.left (or

h.right), it will be killed by the reaching edge. The

only pattern that can pass the procedure without any

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 27

Fig. 25. Call graph of the example program.

transformations is h, but this pattern will not be propa-

gated since it is not a definition or use of any links of

pointer-linked data structures.

If the procedure swap is modified to a recur-

sive procedure, as shown in Fig. 26, its IFG (and

call graph too) contains cycles. The transfer func-

tions of reaching edges e1 and e2 from the ENTRY

to CALL nodes are h.left [left1 (left|right)] and

h.right [right1 (left|right)], respectively. Similarly,

the transfer functions of e5 and e6 from RETURN nodes

to the EXIT node are left2 [h.right (left|right)] and

right2 [h.left (left|right)], respectively. The trans-

fer function of the edge e3 is ∅ since no dummy paths

can pass the procedure. As a result, the transfer func-

tion of the procedure swap will be ∅. It means any pat-

terns, say h.T where T is a path string, that is reachable

at the end of the procedure S10 are not reachable at the

entry of the procedure S1.

4.2.3. Propagating the local information

After the IFG graph is complete and local definition

and use sets are annotated on IFG nodes, the next step

is to propagate local information throughout the IFG

to obtain interprocedural information. In other words,

local definitions and uses annotated on nodes in IFG

subgraphs will be propagated to compute the interpro-

cedural reachable definition and use sets of each node

in the IFG, which represent the definitions and uses of

nonlocal variables in other procedures. These interpro-

cedural reachable definitions and uses are computed by

propagating UPDEF[n] and UPEXP[n] sets backward

throughout the IFG, while taking into account of the

calling context of the called procedures.

Preserving the calling context of called procedures is

important, since for interprocedural data flow analysis

not all paths in the graph representation correspond to

real program executions. To preserve the call context,

only the paths that agree with call sequence should be

traversed, that is, only the realizable paths on IFG will

be traversed [30]. A realizable path is a path whenever

a procedure on this path returns, it returns to the call

site which invokes it. The propagation process will be

performed on realizable paths in IFG.

To preserve the calling context of called procedures,

a two-phase process will be performed to propagate def-

initions and uses. In the first phase, all EXIT nodes and

incoming and outgoing edges connected to any EXIT

nodes will be excluded. Information is allowed to flow

throughout the rest of the IFG. In the second phase, in-

formation that reaches EXIT nodes will be propagated

to IFG nodes through all IFG edges except for call

binding edges. Consequently, the first phase only pro-

cesses the ENTRY, CALL, and RETURN nodes, and

propagates the definitions and uses that can be reached

in called procedures over the call binding edges. In this

phase, only definitions and uses of called procedures

will be propagated to calling procedures. No defini-

tions and uses will be passed to the called procedures

since the EXIT node of every procedure is excluded

in this phase. Then the second phase propagates the

definitions and uses that can be reached in calling pro-

cedures over the return binding edges, reaching edges,

and interreaching edges. In this phase, each procedure

accepts the definitions and uses from the calling proce-

dures, and propagates the incoming definition and uses

throughout its IFG subgraph.

This two-phase propagation process preserves the

calling context of called procedures and ensures only

realizable paths in IFG are traversed. As demonstrated

by Fig. 22, the edges 〈6, 2〉 and 〈6, 8〉 will be dis-

abled during the first phase. Consequently, information

will not propagated backward through the unrealizable

paths like 7 → 3 → 6 → 2 and 1 → 3 → 6 → 8.

The following set of data flow equations are used to

compute the IPUSE set and IPDEF set before and after

node S of the IFG:

IPUSEout [S]
(15)

=
⋃

e≡〈S,D〉∈E

Fe(IPUSEin [D])

IPDEFout [S]
(16)

=
⋃

e≡〈S,D〉∈E

Fe(IPDEFin [D])

IPDEF [S] = FIPDEFout [S](IPDEFout [S]) (17)

IPUSE [S] = FIPDEFout [S](IPUSEout [S]) (18)

IPUSEin [S] = IPUSE [S] ∪ UPEXP [S] (19)

IPDEFin [S] = IPDEF [S] ∪ UPDEF [S] (20)

28 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Fig. 26. Recursive swap procedure.

where Fe is the transfer function of edge e, as defined

in Equation 13. The algorithm to propagate upward

exposed uses is shown in Fig. 27. In the first phase, the

inputs to the propagate procedure, i.e. the set of nodes

V and the set of edges E, are

V = VIFG − {n|n ∈ VIFG ∧ type(n)

= EXIT }

E = EIFG

In the second phase, the set of nodes V and the set

of edges E are

V = VIFG

E = EIFG − {e|e ∈ EIFG ∧ type(e)

= CallBinding}

Figure 28 lists the set of uses of each node af-

ter phases of propagation. Before the first phase,

the sets of local uses of the example program that

are annotated on the IFG are {〈S25, X1, n〉} at node

5 and {〈S32, ptr2, n〉} at node 9. During the first

phase, the use 〈S32, ptr2, n〉 will propagated from

the ENTRY node of the procedure advance to the

main procedure, and then be propagated and trans-

formed along the cycle that connects the IFG nodes

3 and 4. As a result, the sets of uses at nodes 3

and 4 are {〈S32, ptr2, n〉 〈S32, ptr2.(n)
+, n〉}, and

{〈S32, ptr3, n〉 〈S32, ptr3.(n)
+, n〉}, respectively.

Furthermore, the uses will be propagated along the

reaching edge 〈2, 3〉 and the interreaching edge

〈1, 2〉 to reach nodes 1 and 2. Similarly, the use

〈S25, X1, n〉 will be propagated along the cycle of

nodes 5 and 7, and the sets of uses at nodes 5
and 7 are {〈S25, X1, n〉 〈S25, X1.(n)

+, n〉}, and

{〈S25, p1, n〉 〈S25, p1.(n)
+, n〉}, respectively. The

set of uses at node 5 will then be passed to node 1

through the call binding edge 〈1, 5〉.
During the second phase, the set of uses at node 4 will

be propagated back to the procedure advance via the

return binding edge 〈10, 4〉, and hence the set of uses of

node 10 is {〈S32, ptr3, n〉 〈S32, ptr3.(n)
+, n〉}. Simi-

larly, the set of uses at node 3 will be passed to the proce-
dure reverse through the edge 〈6, 3〉, and consequently

the use set of node 6 is {〈S32, q4, n〉 〈S32, q4.(n)
+,

n〉}. The set of uses of node 6 will then be propagated

along the edges of the IFG subgraph to another nodes

of the same procedures, as shown by the last column of
the table in Fig. 28.

4.2.4. Computing the definition-use chains

After the first three steps, interprocedural reachable
information is stored on CALL and EXIT nodes of

IFG. The set of definitions and uses will be retrieved

from each CALL or EXIT node and will be annotated

to the corresponding IG node, and then the final step

will be performed on IG to compute interprocedural
definition-use chains. The intraprocedural algorithm

presented in the previous section will be performed

on each procedure of IG to compute interprocedural

definition-use chains.

From the table in Fig. 28, the uses that will be re-
trieved from the IFG node 1 and included in the set

UPEXP [S9] are 〈S25, list2, n〉, 〈S25, list2.(n)
+, n〉,

〈S32, rlist1, n〉, and 〈S32, rlist1.(n)
+, n〉. These

uses will be propagated backward on the IG and trans-

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 29

procedure Propagate (V, E)

input:

: set of nodes

: set of edges

begin

while changed

for each node of type

for each node that is sink of edge in

IPUSE = IPUSE (IPUSE)

IPDEF = IPDEF (IPDEF)

end

IPDEF = (IPDEF)

IPUSE = (IPUSE)

IPUSE = IPUSE UPEXP

IPDEF = IPDEF UPDEF

end

end

end

Fig. 27. Algorithm for propagating reachable use sets.

formed by the statements. When the uses are passed to

S8, the uses 〈S32, rlist1, n〉 and 〈S32, rlist1.(n)
+, n〉

will be killed while the other two remain unchanged

and be passed to the header node S3 of the loop.

The two uses will be changed to 〈S25, temp, n〉 and

〈S25, temp.(n)+, n〉 by the statement S6. When the

use 〈S25, temp, n〉 is propagated to S5, it will be killed

since it matches the definition of S5 and consequently

a definition-use chain between S5 and S25 is identified.

The other use 〈S25, temp.(n)+, n〉will be transformed

by S5 to 〈S25, list2, n〉 and 〈S25, list2.(n)
+, n〉, and

the new patterns will be passed back to the end of loop

body for another iteration.

The set of uses that will be retrieved from the

IFG node 7 are 〈S25, p1, n〉, 〈S25, p1.(n)
+, n〉,

〈S32, X1, n〉, and 〈S32, X1.(n)
+, n〉. Figure 29 shows

the process of propagation and transformation on the

set uses by the code fragment of the procedure re-

verse. Only the UPEXPin [n] sets are shown in the

table. When the uses are propagated to the statement

S26, the first two uses are not transformed since they

do not match the definition X1.n. On the other hand,

the 〈S32, X1, n〉 is killed by S26 since it matches the

definition, and consequently S26 is the definition of the

use of S32. The last use 〈S32, X1.(n)
+, n〉 will also

be transformed by S26, and the patterns 〈S32, Y1, n〉

and 〈S32, Y1.(n)
+, n〉 are created.

4.3. Complexity

Each procedure and call site is modeled by a pair

of IFG nodes. Therefore, if a program contains P

procedures and C call sites in total, there are N ≡
2P + 2C nodes on the IFG of the program. The total

number of call binding edges and return binding edges

is 2C, and the number of interreaching edges is C.

The number of reaching edges is determined by the

number of call sites in each procedure. If the number of

call sites per procedure is denoted as c, the maximum

number of reaching edges in a procedure would be

2c+ c2 + 1, where 2c is the number of reaching edges

from the Entry node to CALL nodes and from Return

nodes to the EXIT node, c2 is the number of reaching

edges between EXIT nodes and CALL nodes, and the

last item is the reaching edge from ENTRY to EXIT.

The first step and last step of the algorithm Com-

puteIPDefUse basically perform the intraprocedural

analysis described in Section 3.4, which has the time

complexity of d + 3m + 2 iterations. In Step 2, the

computation of interreaching edges and their transfer

functions is performed by a depth-first traversal through

the call graph. The computation is linear in the number

of procedure if there are no recursive procedure calls.

The time complexity of Step 3 is O(N 2) because of the

Propagate procedure.

5. Applications

This section presents a couple of applications of

definition-use information of pointer-linked data struc-

tures.

5.1. Identifying parallelism in programs with cyclic

graphs

5.1.1. Identifying parallelism in traversal references

This application is motivated by the observation – al-

though many programs create pointer-linked data struc-

tures which appear to be cyclic overall, they usually

follow acyclic structures to access all nodes on the data

structures. For instance, graph algorithms frequently

extract acyclic structures, such as spanning trees, from

cyclic graphs and traverse the graphs following the links

of the acyclic structures, while the rest of edges are

merely used to reference values on neighboring nodes.

Furthermore, pointer-linked data structures can have

unbounded numbers of nodes and are commonly tra-

versed by loops or recursive procedures. The edges

30 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Node Before Phase 1 After Phase 1 After Phase 2

1 S25, list , n S25, list .(n) , n S25, list , n S25, list .(n) , n

S32, rlist , n S32, rlist .(n) , n S32, rlist , n S32, rlist .(n) , n

2 S32, t , n S32, t .(n) , n S32, t , n S32, t .(n) , n

3 S32, ptr , n S32, ptr .(n) , n S32, ptr , n S32, ptr .(n) , n

4 S32, ptr , n S32, ptr .(n) , n S32, ptr , n S32, ptr .(n) , n

5 S25, X , n S25, X , n S25, X .(n) , n S25, X , n S25, X .(n) , n

S32, Y , n S32, Y .(n) , n

6 S32, q , n S32, q .(n) , n

7 S25, p , n S25, p .(n) , n S25, p , n S25, p .(n) , n

S32, X , n S32, X .(n) , n

8 S32, q , n S32, q .(n) , n

9 S32, ptr , n S32, ptr , n S32, ptr , n S32, ptr .(n) , n

10 S32, ptr , n S32, ptr .(n) , n

Fig. 28. Propagation of uses on IFG.

Statements Iteration 1 Iteration 2

S25: p = X .n S25, X , n S25, X .(n) , n S25, X , n S25, X .(n) , n

S32, Y , n S32, Y .(n) , n S32, Y , n S32, Y .(n) , n

S26: X .n = Y S25, p , n S25, p .(n) , n S25, p , n S25, p .(n) , n

– S32, Y , n S32, Y .(n) , n – S32, Y , n S32, Y .(n) , n

S27: S25, p , n S25, p .(n) , n S25, p , n S25, p .(n) , n

S32, X , n S32, X .(n) , n S32, X , n S32, X .(n) , n

Fig. 29. Propagating and transforming uses in procedure reverse.

along which loops or recursive procedures traverse a

pointer-linked data structure constitute traversal pat-

terns, and can be viewed as the skeleton of the pointer-

linked data structure. On the other hand, the remaining

edges of the recursive data structure are generally used

to reference values on other nodes. Accordingly, it will

be beneficial if compilers can differentiate links of re-

cursive data structures based on the traversal patterns

when pointer analysis is performed.

The approach to identify parallelism in programs

with cyclic graphs can be broken into three steps [29].

– Gather Traversal Patterns and Compute Definition-

Use Chains of Recursive Data Structures

Definition-use chains of recursive data structures

will be computed and meanwhile traversal patterns

of iterative or recursive program constructs, such

as loops or recursive functions, will be gathered.

For each statement that references a link of a graph,

all corresponding statements that might define the

link will be identified using the information of

definition-use chains.

– Perform Traversal-Pattern-Sensitive Shape Anal-

ysis

Once the statements that construct the graphs

accessed by traversal patterns are identified,

traversal-pattern-sensitive shape analysis will be

performed to estimate possible shapes of the

traversal patterns.

– Perform Dependence Analysis

Dependence test is performed to determine if ac-

cess conflicts occur between the sets of read and

write references based on data reference patterns

and the result of shape analysis on traversal pat-

terns and overall data structures.

5.1.2. Identify parallelism in construction operations

Although the above approach can usually parallelize

the most time-consuming part of these programs (the

graph traversal operations account for over 90% of to-

tal execution times in most programs), the rest of pro-

grams that accounts for less than 10% will dominate

the execution on multiprocessor systems according to

Amdahl’s law [5]. For example, with only 10% of ex-

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 31

ecution being sequential, the maximum speedup is 10

irrespective of the number of processors. Similarly, if

20% of the computation is executed sequentially, the

maximum speedup will then be limited to 5. In or-

der to achieve good scalability, the graph construction

operations must be parallelized as well.

The requirement that iterations of a loop which con-

structs the adjacency lists can be parallelized is that all

traversal references on the adjacency lists are indepen-

dent as well. The approach can be broken into two

steps.

– Identify parallelism in traversal references on

cyclic graphs

– Identify parallelism in graph construction opera-

tions

The first step is performed by the method described

in the above section. Once the dependence analysis on

traversal references is performed, the second step can

be performed to examine the following conditions to

determine if construction operations are independent as

well:

– Every graph that is connected by the primary

traversal edges is a list of lists,

– The iterations of all loops that traverse the adja-

cency lists are independent once the graphs are

constructed,

– The adjacency lists accessed by the traversal ref-

erences are created by the construction operations,

and

– The main lists are not modified between the traver-

sal references and the construction operations.

If the conditions are met, the construction operations

of graphs can be parallelized to enhance the scalability

of programs.

5.2. Slicing on programs with dynamic recursive data

structures

Slicing is a technique that extracts from a program

statements relevant to a particular criteria [8,47]. It

has been applied to many fields, such as program de-

bugging [1,45], parallelization [16,46], and program

integration [26], etc.

The definition-use chains of dynamic recursive data

structures will be a useful information to compute slices

of program with dynamic recursive data structures.

Based on the technique to find program slices proposed

by Weiser [47], a slice of a program P that meets the

slicing criterion C = 〈i, V 〉, where i is a statement

in P and V is a subset of variables in P, can be com-

puted by the function R0
C that maps statements to sets

of variables:

R0
C = all variables v such that:

1. n ≡ i ∧ v ∈ V , or

2. n is an immediate predecessor of a nodem such

that

(a) v ∈ USE [n] and there is a w such that

w ∈ DEF [m] ∧ w ∈ R0
C(m), or

(b) v �∈ DEF [n] ∧ v ∈ R0
C(m).

If p ∈ V of a slicing criterion C = 〈i, V 〉 is a

pointer, the computation of R0
C function can follow

SSA edges, which represent the definition-use relation-

ships of pointers. On the other hand, if p.f is in V of

C = 〈i, V 〉, the sets DEF [n] and DefUse[n] of each

statement n can be used to computeR0
C(n).

6. Implementation and experimental results

This section presents the experimental results of

the algorithms that are proposed in previous sections.

The intraprocedural and interprocedural algorithms that

compute the definition-use chains of dynamic pointer-

linked data structures have been implemented on the

ParaScope parallel programming environment devel-

oped at Rice University [14]. The compiler accepts

programs with dynamic pointer-linked data structures

that are written in Fortran 90, and computes definition-

use pairs between link defining statements and link

traversing statements.

6.1. Benchmarks

A set of programs that create and traverse various

types of pointer-linked data structures is chosen as the

benchmarks, and the data structures that are built by the

benchmark programs are listed in Table 1. The follow-

ing is a brief description of each benchmark program.

Barnes-Hut It is a hierarchical N-body program that

computes gravitational forces with asymptotic

complexity of O(N logN) [7]. It creates a hi-

erarchical octree to represent spatial locations of

N bodies in a three-dimensional space. Each leaf

node of the octree points to a body The simulation

proceeds over time steps. At each time step, the

program builds an octree, computes the net force

of every body, and then updates the positions of N

bodies.

32 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Table 1

Data structures built by benchmark programs

Program Description Data Structures

Barnes-Hut N-body simulation Leaf-linked tree

EM3D Simulation of electromagnetic waves Bipartite

Moldyn Molecular dynamics Cyclic list

Power Power system optimization Hierarchical tree

Reverse List reversal Cyclic list

TreeAdd Tree addition Binary tree

EM3D This program models the propagation of elec-

tromagnetic waves through objects in three di-
mensions [32]. It builds a bipartite graph that
contains nodes representing electric and magnetic

field values. The dependences between E nodes
(electric field) and H nodes (magnetic field) are

represented by the edges between them. At each
time step, new values of E nodes are computed

from a weighted sum of neighboring H nodes, and
then the same computation is performed for the H
nodes.

Moldyn It is a molecular dynamics simulation pro-

gram [9,34]. It computes interactions of a set
of molecules that are initially uniformly dis-

tributed over a three-dimensional space with a
Maxwellian distribution of velocities. The com-
putation of forces is limited to the interactions

between molecules within a cutoff radius. The
molecules of the system are represented by the

nodes of a linked list, and edges that represent the
interactions of neighboring molecules within cut-
off range form a cyclic list, which is updated pe-

riodically to reflect the movements of molecules.
Power This program solves the power system opti-

mization problem, which determines the prices

that will optimize the benefit to the commu-
nity [31]. The power lines from a power station to
customers are represented by a hierarchical tree:

root (power station) → lateral nodes → branch
nodes → leaf nodes (customers).

Reverse It is similar to the example shown in Fig. 16

that uses a recursive procedure to reverse a linked
list, which in turn is adapted from the destructive
list-reversal function in Deutsch [18]. The differ-

ence is that this example first creates a cyclic list
calls a recursive procedure to reverse the cyclic

list, and then traverses the reversed cyclic list.
TreeAdd The program recursively walks a tree and

computes the sum of values of tree nodes [37].
It first calls a recursive procedure to create a bal-

anced binary tree, and then calls the other recur-
sive procedure to traverse the tree and adds the

sums of subtrees.

Table 2

Characteristics of benchmark programs

Program Procedures Lines DEF/USE Pairs

Barnes-Hut 15 731 20

EM3D 5 289 16

Moldyn 6 476 10

Power 17 976 5

Reverse 3 80 5
TreeAdd 3 56 2

This set of benchmark examples is chosen because

they use different types of program constructs, e.g. re-

cursive procedures,procedures in loops,destructive op-

erations, etc., to create and traverse various types of

pointer-linked data structures, ranging from tree-like

structures to cyclic pointer-linked data structures. Ta-

ble 2 lists more detailed information of these programs.

The numbers of procedures in these programs vary from

3 to 17 and the numbers of statements range from 56 to

976 (including declaration statements and comments).

The numbers of definition-use pairs between link defin-

ing statements and link traversing statements in these

benchmark examples are from 2 to 20.

6.2. Experimental results

After intraprocedural analysis phase is performed,

the IFG subgraphs of procedures will be constructed

and local definition and use tuples will be gathered.

Table 3 presents the statistics after the intraprocedural

phase. The first section shows the numbers of IFG

nodes and IFG edges, and the maximum and average

numbers of tuples in transfer functions of IFG reaching

edges. The next section presents the maximum and

average numbers of use tuples in UPEXP sets and the

third section presents the maximum and average num-

bers of definition tuples in UPDEF sets. If the pro-

grams contain definition-use pairs between link defin-

ing statements and link traversing statements within the

same procedures, they will be identified in this phase

and the last column shows the numbers of intraproce-

dural definition-use pairs.

Interprocedural analysis phase propagates local in-

formation gathered in intraprocedural analysis phase to

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 33

Table 3

Statistics after intraprocedural analysis

Program IFG IFG TransFunc UPEXP UPDEF DEF/USE

Nodes Edges Max Avg Max Avg Max Avg Pairs

Barnes-Hut 74 33 3 1.36 4 0.80 10 1.05 5

EM3D 20 7 2 1.14 11 4.97 14 7.10 8

Moldyn 22 11 1 1.00 11 4.30 9 1.84 2

Power 94 27 1 1.00 2 0.11 2 0.03 0

Reverse 12 7 4 2.00 6 1.46 11 2.08 2

TreeAdd 18 10 1 1.00 2 0.17 2 0.17 0

Table 4

Statistics after interprocedural analysis

Program IFG IFG TransFunc UPEXP UPDEF DEF/USE

Nodes Edges Max Avg Max Avg Max Avg Pairs

Barnes-Hut 74 99 10 1.30 14 3.18 14 1.67 20

EM3D 20 22 2 0.82 25 18.00 14 7.10 16
Moldyn 22 26 1 0.96 21 12.50 11 4.78 10

Power 94 117 14 1.04 21 4.14 2 0.03 5

Reverse 12 16 18 4.06 9 4.35 11 2.08 5

TreeAdd 18 28 4 1.21 8 2.38 2 0.17 2

compute interprocedural definition-use chains. Table 4
shows measurements of the interprocedural phase. The

layout of the table is the same as Table 3. Binding

edges between IFG subgraphs and interreaching edges
between CALL nodes and RETURN nodes are created

during interprocedural, as shown in the first section of

the table. As reachable definition and use tuples that
are originated from other procedures are propagated,

interprocedural definition-use chains can be identified.
The last column shows the total numbers of (intrapro-

cedural and interprocedural) definition-use pairs that

are identified in the benchmark examples.
Figure 30 depicts the speedup ratios of EM3D and

Moldyn as the numbers of processors grow from 1 to

10 [28]. In the S version, the traversal references of
EM3D and Moldyn are parallelized and the construc-

tion operations are left to be sequential, whereas in the

P version both the traversal references and construc-
tion operations of EM3D Moldyn are both parallelized.

Both EM3D and Moldyn with graph construction par-

allelized (i.e. P version) scale very well.
The reason of less scalability for the S versions of

both EM3D and Moldyn is that the sequential execu-

tion of graph construction operations takes more and
more percentages of execution times as the number of

processors grows, as shown in Fig. 31. Figure 31(a)
shows that the sequential graph construction for 1K E

nodes and 1K H nodes takes 9% of total execution time

on 1 processor and increases to 43% on 10 processors,
while building the graph for 8K E nodes and 8K H

nodes on 1 processor occupies 30% of execution time

and grows to over 77% on 10 processors. Similarly,

the percentages of execution times spending on graph

construction for Moldyn increase from less than 5% on

1 processor to over 31% on 10 processors, as shown in

Fig. 31(b). On the other hand, Fig. 31(a) and (b) show

that after the construction operations are parallelized

(P version) the percentages of graph construction times

over execution times keep flat even as the numbers of

processors increase.

7. Related work

Definition-use chains of variables are commonly

used in optimizing and parallelizing compilers [50] and

even software engineering tools [19]. Analysis tech-

niques for computing definition-use chains for individ-

ual procedures are well known [2] and interprocedural

algorithms have also been proposed [23]. Definition-

use chains can be extended to cover heap locations and

pointer variables. Algorithms have been proposed to

compute definition-use chains for heap locations and

single level pointers in C [4,35].

Pande et al. propose an algorithm to solve the inter-

procedural definition-use chaining problem for single

level pointers in C [35]. The technique first computes

the set of interprocedural reaching definitions and then

establishes definition-use chains using the reaching def-

initions. Altucher and Landi have developed a new

naming scheme to improve definition-use information

of dynamically allocated locations [4]. The new nam-

ing scheme is used to compute extended must aliases

34 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

Processors

1 2 4 8 10

S
p
e
e
d
u
p

0

2

4

6

8

10
P(1K)

P(2K)

P(4K)

P(8K)

S(1K)

S(2K)

S(4K)

S(8K)

(a) EM3D

Processors

1 2 4 8 10

S
p

e
e

d
u

p

0

2

4

6

8

10
P(1.1C)

P(1.2C)

P(1.3C)

S(1.1C)

S(1.2C)

S(1.3C)

(b) Moldyn

Fig. 30. Speedup.

Processors

1 2 4 8 10

P
e

rc
e

n
ta

g
e

(%
)

0

20

40

60

80
P(1K)

P(2K)

P(4K)

P(8K)

S(1K)

S(2K)

S(4K)

S(8K)

(a) EM3D

Processors

1 2 4 8 10

P
e
rc

e
n
ta

g
e
(%

)

0

10

20

30

40
P(1.1C)

P(1.2C)

P(1.3C)

S(1.1C)

S(1.2C)

S(1.3C)

(b) Moldyn

Fig. 31. Percentage of build time over execution time.

of dynamically allocated locations and the information
will be applied to improve definition-use information.

The algorithm that is proposed in this paper to com-
pute definition-use chains of pointer-linked data struc-
tures is based on the computation of upward exposed
uses of simple binary access paths. The flow-sensitive
interprocedural algorithm is adapted from the inter-
procedural algorithm of computation of definition-use
chains of variables proposed by Harrold and Soffa [23].
The intraprocedural and interprocedural algorithms
presented in this paper are basically similar to tech-
niques to compute definition-use chains of variables
within individual procedures and across procedure
boundaries [2,23]. The algorithm developed by Chase
et al. to compute definitions and uses of SSGs (storage
shape graphs), each of which in turn summarizes all
pointer paths into and through allocated storage at a

statement, presents an interesting parallel [12]. How-
ever, the method is not designed to handle a program
that reverses a list in place.

Recently, the problem of identifying pointer-induced
aliases has received significant attention from re-
searchers [10,13,18,21,30,39,41,42,48]. Burke et al.
have developed a flow-insensitive algorithm [10].
Since flow-insensitive algorithms do not take intrapro-
cedural control flow into account, they are less accu-
rate than flow-sensitive approach, but more efficient.
Steensgaard has proposed an interprocedural flow-
insensitive points-to analysis based on type inference
methods with an almost linear time complexity [42].
Although Steensgaard’s algorithm has a better time
complexity, it is less precise than the flow-insensitive
algorithm proposed by Andersen [6]. Shapiro and Hor-
witz have developed a flow-insensitive points-to anal-

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 35

ysis algorithm that improves the precision of Steens-
gaard’s algorithm and is much faster than Andersen’s
algorithm [41].

Landi and Ryder propose an interprocedural flow-
sensitive analysis approach that computes the condi-
tional may alias problem and uses the result to approx-
imate the interprocedural may aliases [30]. They rep-
resent aliases with unordered pairs of object names,
each of which is k-limited. Choi et al. present a flow-
sensitive interprocedural alias analysis algorithm that
interleaves intraprocedural and interprocedural analy-
sis to compute the alias pairs [13]. In order to avoid the
unrealized path problem [30], Landi and Ryder use the
set of reaching aliases (RAs) that exist at the entry of
procedure p when p is invoked as the encoding of the
runtime stack, and the RAs can be used to determine to
which call sites aliases at the exit of a called procedure
should be propagated, whereas Choi et al. compute
at the entry node of P the set of alias instances which
hold with respect to each call site that invokes P. Fur-
thermore, the above approaches impose the k-limited
rule on name objects. Deutsch proposes a storeless
approach that can avoid such limitation [18].

Recently, several context-sensitive pointer analysis
algorithms, which treat multiple calls to the same pro-
cedure independently rather than constructing a single
approximation, have been proposed [21,48]. Emami
et al. build an invocation graph that explicitly rep-
resent all invocation paths to compute interprocedu-
ral points-to relationships between accessible stack
locations [21]. They compute a separate result for
each invocation graph node, but each recursive call
is represented by a pair of recursive and approxima-
tion nodes. On the contrary, Wilson and Lam pro-
pose to compute partial transfer functions (PTFs) to
represent the effects of called procedures [48]. Al-
though context-sensitive analysis is generally more pre-
cise than context-insensitive analysis, Ruf presents a
context-insensitive algorithm and performs analysis on
pointer-intensive benchmark programs to demonstrate
that context-insensitivity exerts little to no precision
penalty [39].

The main difference of the alias analysis approach
in this paper is that it follows the backward data flow
analysis approach. It gathers the uses of pointers to
where they are defined to identify aliases. Another
feature is that this approach does not compute all pairs
of aliases, since it only identify aliases that are needed
to compute definition-use chains of pointer-linked data
structures. That is, if a use pi meets its definition at
statement S and hence is killed by S, it is redundant to
compute the aliases of pi before S.

References

[1] H. Agrawal, R.A. DeMillo and E.H. Spafford, Debugging with

dynamic slicing and backtracking, Software – Practice and

Experience 23(6) (June 1993), 589–616.

[2] A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles,

Techniques, and Tools, Addison-Wesley, 1986.

[3] B. Alpern, M.N. Wegman and F.K. Zadeck, Detecting equality

of variables in programs, in: Conference Record of the Fif-

teenth Annual ACM Symposium on Principles of Programming

Languages, San Diego, California, January 1988, pp. 1–11.

[4] R. Altucher and W. Landi, An extended form of must alias

analysis for dynamic allocation, in: Conference Record of

POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, San Fran-cisco, Cali-

fornia, January 1995, pp. 74–84.

[5] G. Amdahl, Validity of the single-processor approach to

achieving large-scale computing capabilities, in: Proceedings

of 1967 AFIPS Conference, (Vol. 30), 1967.

[6] L.O. Andersen, Program Analysis and Specialization for the

C Programming Language. PhD thesis, DIKU, University of

Copenhagen, 1994.

[7] J. Barnes and P. Hut, A hierarchical O(NlogN) force-

calculation algorithm, Nature (December 1976), 446–449.

[8] D.W. Binkley and K.B. Gallagher, Program slcing, in: Ad-

vances in Computers, (Vol. 43), M. Zelkowitz, ed., Academic

Press, San Diego, California, 1996.

[9] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S.

Swaminathan and M. Karplus, CHARMM: A program for

macromolecular energy, minimization, and dynamics calcula-

tions, Journal of Computational Chemistry 4(2) (1983), 187–

217.

[10] M. Burke, P. Carini, J.-D. Choi and M. Hind, Flow-insensitive
interprocedural alias analysis in the presence of pointers, in:

Proceedings of the 8th International Workshop on Languages

and Compilers for Parallel Computing, Columbus, Ohio, Au-

gust 1995.

[11] D. Callahan, The program summary graph and flow-sensitive

interprocedural data flow analysis, SIGPLAN Notices 23(7)

(July 1988), 47–56, Proceedings of the ACM SIGPLAN ’88

Conference on Programming Language Design and Imple-

mentation.

[12] D.R. Chase, M. Wegman and F.K. Zadeck, Analysis of pointers

and structures, SIGPLAN Notices 25(6) (June 1990), 296–

310, Proceedings of the ACM SIGPLAN ’90 Conference on

Programming Language Design and Implementation.

[13] J.-D. Choi, M. Burke and P. Carini, Efficient flow-sensitive

interprocedural computation of pointer-induced aliases and

side effects, in: Conference Record of the Twentieth Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, Charleston, South Carolina, January

1993, pp. 232–245.

[14] K.D. Cooper, M.W. Hall, R.T. Hood, K. Kennedy, K.S.

McKinley, J.M. Mellor-Crummey, L. Torczon and S.K. War-

ren, The ParaScope parallel programming environment, Pro-

ceedings of the IEEE 81(2) (February 1993), 244–263, in Spe-
cial Section on Languages and Compilers for Parallel Ma-

chines.

[15] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman and F.K.

Zadeck, Efficiently computing static single assignment form

and the control dependence graph, ACM Transactions on Pro-

gramming Languages and Systems 13(4) (October 1991), 451–

490.

36 Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures

[16] R. Das, J. Saltz and R. von Hanxleden, Slicing analysis and

indirect access to distributed arrays, in: Proceedings of the 6th

Workshop on Languages and Compilers for Parallel Comput-

ing, Springer-Verlag, August 1993, pp. 152–168. Also avail-

able as University of Maryland Technical Report CS-TR-3076

and UMIACS-TR-93-42.

[17] A. Deutsch, A storeless model of aliasing and its abstractions
using finite representations of right-regular equivalent rela-

tions, in: Proceedings of the IEEE 1992 International Con-

ference on Computer Languages, San Francisco, California,

April 1992, pp, 2–13.

[18] A. Deutsch, Interprocedural May-Alias analysis for pointers:

Beyond k-limiting, SIGPLAN Notices 29(6) (June 1994), 230–

241, Proceedings of the ACM SIGPLAN ’94 Conference on

Programming Language Design and Implementation.

[19] E. Duesterwald, R. Gupta and M.L. Soffa, A demand-driven

analyzer for data flow testing at the integration level, in: IEEE

International Conference on Software Engineering, Berlin,

Germany, March 1996, pp. 575–586.

[20] S. Eilenberg, Automata, Languages, and Machines, Academic

Press, 1974.

[21] M. Emami, R. Ghiya and L.J. Hendren, Context-sensitive in-

terprocedural Points-to analysis in the presence of function
pointers, SIGPLAN Notices 29(6) (June 1994), 242–256, Pro-

ceedings of the ACM SIGPLAN ’94 Conference on Program-

ming Language Design and Implementation.

[22] M.W. Hall and K. Kennedy, Efficient call graph analysis,

ACM Letters on Programming Languages and Systems, 1(3)

(September 1992), 227–242.

[23] M.J. Harrold and M.L. Soffa, Efficient computation of inter-

procedural definition-use chains, ACM Transactions on Pro-

gramming Languages and Systems 16(2) (March 1994), 175–

204.

[24] M.S. Hecht, Flow Analysis of Computer Programs, Elsevier

North-Holland, 1977.

[25] L.J. Hendren, Parallelizing Programs with Recursive Data

Structures, PhD thesis, Cornell University, 1990.

[26] S. Horwitz, J. Prins and T. Reps, Integrating noninterfering
versions of programs, ACM Transactions on Pro-gramming

Languages and Systems 11(3) (July 1989), 345–387.

[27] Y.-S. Hwang, Interprocedural Definition-Use Chains of Dy-

namic Recursive Data Structure, PhD thesis, University of

Maryland, 1998.

[28] Y.-S. Hwang, Parallelizing graph construction operations in

programs with cyclic graphs, in: Proceedings of the 2001 In-

ternational Conference on Parallel and Distributed Comput-

ing and Systems (PDCS 2001), Anaheim, USA, August 2001.

[29] Y.-S. Hwang and J. Saltz, Identifying parallelism in programs

with cyclic graphs, in: Proceedings of the 2000 International

Conference on Parallel Processing, Toronto, Canada, August

2000, pp. 201–208.

[30] W. Landi and B.G. Ryder, A safe approximate algorithm for

interprocedural pointer aliasing, SIGPLAN Notices 27(7) (July

1992), 235–248, Proceedings of the ACM SIGPLAN ’92 Con-

ference on Programming Language Design and Implementa-

tion.

[31] S. Lumetta, L. Murphy, X. Li, D. Culler and I. Khalil, Decen-

tralized optimal power pricing: The development of a parallel

program, in: Proceedings of Supercomputing ’93, Portland,

Oregon, November 1993, pp. 240–249.

[32] N.K. Madsen, Divergence preserving discrete surface integral

methods for maxwel l’s curl equations using non-orthogonal
grids. Technical Report 92.04, RIACS, February 1992.

[33] S.S. Muchnick, Advanced Compiler Design & Implementa-

tion, Morgen Kaufmann, 1997.

[34] S.S. Mukherjee, S.D. Sharma, M.D. Hill, J.R. Larus, A. Rogers

and J. Saltz, Efficient support for irregular applications on

distributed-memory machines, in: Proceedings of the Fifth

ACM SIGPLAN Symposium on Principles & Practice of Par-

allel Programming (PPOPP), ACM Press, ACM SIGPLAN

Notices 30(8) (July 1995), 68–79.

[35] H.D. Pande, W.A. Landi and B.G. Ryder, Interprocedural

defuse associations for c systems with single level point-

ers, IEEE Transactions on Software Engineering 20(5) (May

1994), 385–402.

[36] T. Reps, S. Horwitz and M. Sagiv, Precise interprocedu-

ral dataflow analysis via graph reachability, in: Conference

Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages,San Francisco,

California, January 1995, pp. 49–61.

[37] A. Rogers, M.C. Carlile, J.H. Reppy and L.J. Hendren, Sup-

porting dynamic data structures on distributed-memory ma-

chines, ACM Transactions on Programming Languages and

Systems 17(2) (March 1995), 233–263.

[38] B.K. Rosen, M.N. Wegman and F.K. Zadeck, Global value

numbers and redundant computations, in: Conference Record

of the Fifteenth Annual ACM Symposium on Principles of Pro-

gramming Languages, San Diego, California, January 1988,

pp. 12–27.

[39] E. Ruf, Context-insensitive alias analysis reconsidered, SIG-

PLAN Notices 30(6) (June 1995), 13–22, Proceedings of the

ACM SIGPLAN ’95 Conference on Programming Language

Design and Implementation.

[40] M. Sagiv, T. Reps and R. Wilhelm, Solving shape-analysis
problems in languages with destructive updating, in: Con-

ference Record of POPL ’96: 23nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, St. Pe-

tersburg Beach, Florida, January 1996, pp. 16–31.

[41] M. Shapiro and S. Horwitz, Fast and accurate flow-insensitive

points-to analysis, in: Conference Record of POPL ’97: 24nd

ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, Paris, France, January 1997, pp. 1–14.

[42] B. Steensgaard, Points-to analysis in almost linear time, in:

Conference Record of POPL ’96: 23nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, St. Petersburg Beach, Florida, January 1996, pp. 32–

41.

[43] R. von Hanxleden and K. Kennedy, Give-N-Take – A balanced

code placement framework, SIGPLAN Notices 29(6) (June
1994), 107–120, Proceedings of the ACM SIGPLAN ’94 Con-

ference on Programming Language Design and Implementa-

tion.

[44] M.N. Wegman and F.K. Zadeck, Constant propagation with

conditional branches, ACM Transactions on Program-ming

Languages and Systems 13(2) (April 1991), 181–210.

[45] M. Weiser, Programmers use slices when debugging, Commu-

nications of the ACM 25(7) (July 1982), 446–452.
[46] M. Weiser, Reconstructing sequential behavior from paral-

lel behavior projections, Information Processing Letter 17(5)

(October 1983), 129–135.

[47] M. Weiser, Program slicing, IEEE Transactions on Software

Engineering 10 (1984), 352–357.

[48] R.P. Wilson and M.S. Lam, Efficient context-sensitive pointer

analysis for C programs, SIGPLAN Notices 30(6) (June 1995),

1–12, Proceedings of the ACM SIGPLAN ’95 Conference on

Programming Language Design and Implementation.

Y.-S. Hwang and J. Saltz / Interprocedural definition-use chains of dynamic pointer-linked data structures 37

[49] M. Wolfe, Beyond induction variables, SIGPLAN Notices

27(7) (July 1992), 162–174, Proceedings of the ACM SIG-

PLAN ’92 Conference on Programming Language Design and

Implementation.

[50] M. Wolfe, High Performance Compilers for Parallel Comput-

ing, Addison-Wesley, 1995.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

