
Interprocess Communication in Java

George C. Wells
Department of Computer Science, Rhodes University

Grahamstown, 6140, South Africa
G.Wells@ru.ac.za

Abstract— This paper describes a library of classes pro-
viding support for interprocess communication in Java pro-
grams, using the mechanisms present in the native operating
system. This approach is particularly well-suited for use with
independent Java processes running on a single multicore
(or multiprocessor) computer. At this stage, a comprehensive
class library has been implemented for the Linux operating
system, allowing access to the rich set of interprocess com-
munication mechanisms provided by it. Initial testing shows
significant performance improvements over the standard
Java mechanisms available for such systems.

Keywords: Java, interprocess communication, JNI, Linux

1. Introduction
For several years we have been investigating aspects

of parallel and distributed computing in Java[1], [2], [3].
Recently this led to the observation that there seems to be
a gap in the communication mechanisms provided by the
Java language and the associated class libraries. At the level
of threads there is very good support for communication
and synchronisation through the use of the built-in monitor
mechanism, and, more recently, through the Concurrency
Utilities package. At the level of distributed programming
there is strong support for network communication, both
directly by using sockets, and through higher level abstrac-
tions, such as Remote Method Invocation (RMI). Our recent
work has focused on multicore processors, and has led to the
development of systems constructed of multiple processes,
rather than threads. The only interprocess communication
(IPC) mechanisms provided by Java in this scenario are the
distributed programming mechanisms, using the “loopback”
network connection.

While the use of the loopback network is adequate, and
allows the easy use of any of the conventional Java dis-
tributed programming mechanisms, we were concerned with
the efficiency of this approach. In particular, we questioned
whether it is appropriate or efficient to force such localised
communication to go through all the layers of a typical
network protocol stack.

Of course, communication in this scenario (multiple pro-
cesses executing on a single computer) is addressed by
a wide range of IPC mechanisms present in almost all
modern operating systems. This insight led us to develop an
experimental library allowing systems composed of separate

Java processes (executing in independent virtual machines)
to make use of the IPC facilities of the underlying operat-
ing system. For the current prototype implementation, this
support has been developed for the Linux operating system.

The next section of this paper expands on the problem
scenario and discusses the mechanisms available in Java and
in Linux for interprocess communication. This is followed
by a description of our new library of IPC mechanisms and
the presentation of the results of initial performance testing.
The final sections of the paper discuss the limitations of our
approach, present some conclusions and suggest areas for
further investigation.

2. The Communication Problem

Our previous work on tuple space systems for Java (the
eLinda project[4]) has either used a centralised approach, in
common with most of the commercial systems and other
research projects in this field, or else has used a fully-
distributed approach with the tuple space distributed over
all processing nodes. During the course of development
of a new version of the eLinda system we have been
exploring intermediate levels of data distribution, and have
started to consider its application to multicore (or, more
generally, multiprocessor) parallel architectures, rather than
distributed “network of workstations” (NOW) systems. This
investigation is partly in response to the growing trend
towards multicore processors and the consequent importance
of providing simple, but efficient, parallel programming
environments for these systems[5].

In order to separate the logic for a parallel application
from the new tuple space service it was desirable to run
these as separate processes, each using a separate Java
Virtual Machine (JVM)[6]. While developing the system
along these lines, it became apparent that Java had little
support for communication (or synchronisation) between
independent processes/JVMs. What is provided is support
for communication through the loopback network (this is ex-
panded on briefly in section 2.1 below). An initial prototype
was developed using this mechanism but, subjectively, the
performance was felt to be poor. This led to the investigation
of the use of the IPC mechanisms provided by Linux. These
mechanisms are discussed in more detail in section 2.2.



2.1 IPC in Java
As stated already, Java has excellent support for multi-

threaded applications consisting of several threads of exe-
cution running in the context of a single JVM. This support
has been present from the inception of Java. Most current
JVM implementations make use of the thread support pro-
vided by the underlying operating system and/or processor
architecture to provide good levels of efficiency for such
applications. In turn, this strong support for threads is carried
through to the support for communication and synchroniza-
tion provided by the language. This takes the form of a
“monitor” mechanism, implemented through the provision
of “synchronized” methods or code blocks, together with the
wait and notify methods to control access to the moni-
tors. In Java 5.0, a high-level concurrency library (the Con-
currency Utilities package, java.util.concurrent)
was introduced, based largely on the work of Doug Lea[7].
This provides high-level synchronisation mechanisms, im-
proved support for creating and managing threads and a
number of concurrent data structures.

At the other end of the concurrent programming spec-
trum, Java provides an extensive set of distributed pro-
gramming mechanisms. These range from simple, direct
network communication using TCP or UDP sockets, through
to sophisticated distributed object-oriented mechanisms such
as Remote Method Invocation (RMI) and the Common
Object Request Broker Architecture (CORBA). As stated
previously, these mechanisms are all available for use by
multiple processes executing on a single computer system,
through the Internet Protocol’s loopback network (i.e. using
network addresses in the range 127.x.x.x1).

2.2 IPC in Linux
When we encountered this problem, we recalled work we

did some time ago on real-time programming in Unix[8].
This included a number of sophisticated mechanisms, rela-
tively new at the time having been introduced in Unix Sys-
tem V, including message queues, access to shared memory
blocks and semaphores. Prior to this there was only support
for the simple, but effective “pipe” mechanism familiar to
most users of the Unix command line.

2.2.1 Pipes

Pipes come in two slightly different forms. The first form
is the standard pipe. These are created by a program prior to
the creation of a child process (or processes), which is then
connected to the pipe (most commonly through the standard
input and output streams). The other form is the named pipe
(also called a “FIFO”, for the First-In First-Out nature of the
pipe), which is created using the mkfifo system call and
appears as a file within the file system (however, it should

1127.0.0.1 is almost invariably used in practice.

be noted that communication using the pipe does not involve
any disk access).

2.2.2 System V IPC
The System V IPC facilities (message queues, shared

memory and semaphore sets) have a rather complex API[8].
The first step in using any of these facilities is to generate a
numeric “key”. This should be unique to the application, but
common to all processes wishing to communicate through
the IPC facility being used. To aid in the generation of a
key, a system call (ftok) is provided which generates a key
from a file name and a single-character “project identifier”.
However the key is generated, it is then used to “get” one
of the IPC facilities. The get operations create a new IPC
facility (if necessary, and assuming there is no conflict with
existing facilities and that access permissions are correct),
and return a unique “identifier” that is then used to access
and manage the specific IPC mechanism.

a) Message Queues: As outlined above, the msgget sys-
tem call returns an integer identifier that can then be used to
send and receive messages. This is done using the msgsnd
and msgrcv system calls. Messages consist of a four-byte
“type” field and an unformatted, variable-length block of
bytes. Parameters to the msgrcv call allow messages to be
retrieved in the order that they were sent, or else to use the
type field to selectively retrieve messages from the queue. In
addition to these fundamental operations, there is a msgctl
system call used to manage the message queue. This allows
the current status of the queue to be retrieved, the access-
control permissions to be updated or the queue to be removed
from the system.

b) Semaphore Sets: The semget system call allows
for the creation of a set consisting of one or more
semaphores. Synchronisation operations specify a subset of
the semaphores. If more than one semaphore is manipulated
in a single operation, the operation is performed atomi-
cally, and the operation suspends until all the suboperations
specified can be performed. Synchronisation operations are
performed using the semop method, which takes an array of
individual operations to support this behaviour. Again, there
is a semctl method used to manage the semaphore set,
including the ability to query or set the value of a semaphore
or several semaphores, to query the number of processes
waiting on various semaphore conditions, etc.

c) Shared Memory: Again, the shmget system call is
used to create a shared memory block and to get an identifier
that can be used to access it. This identifier is used with the
shmat system call to “attach” the shared memory block
to the address space of a process. The shmat system call
returns an address/pointer for this purpose. Once a process



no longer requires access to the shared memory block it can
be “detached” using the shmdt system call. Two processes
can obviously communicate through reading and writing
data in a shared memory segment, but will usually need to
synchronise their access (for example, by using a semaphore
set).

3. The Java Linux IPC Library
In order to provide access to the Linux IPC facilities

for Java programs we have developed an API using the
Java Native Interface (JNI)[9]. JNI is a specification and
a set of tools that allow Java programs to interact with
code written in other programming languages (primarily C
or C++ — we used C). There is a considerable amount
of complexity required in order to do this, especially in
terms of mapping data types and structures between these
very different programming systems. JNI provides a number
of useful utilities to aid in this translation. The “native”
language components are created as a “shared library” which
can then be dynamically loaded by the JVM at runtime.

For the moment, our interprocess communication API is
simply being called LinuxIPC. It provides access to named
pipes and to the System V IPC facilities described in the
previous section, and also some useful I/O stream-based
classes using the System V IPC mechanisms. Each of these
will be discussed in the following subsections.

3.1 Direct IPC Access
3.1.1 Named Pipes

These were very simple to implement, as all that is
required is access to the mkfifo system call. This simply
takes a “file name”, locating the pipe within the file system,
and a bit mask containing the access-control permissions to
be used. Once the named pipe has been created it can be
accessed using the usual Java I/O mechanisms used for files
(however, as noted in section 2.2.1, no access is made to the
underlying hard disk when using the named pipe). This al-
lows all the usual stream-based communication mechanisms,
including serialization, to be used for communication and
coordination between processes using the pipe.

3.1.2 System V IPC

a) Message Queues: Access has been provided to the
msgget, msgsnd and msgrcv system calls. For the most
part, the Java methods provided follow the format of the
Linux system calls directly. The one exception to this is in
regard to the message format for the msgsnd call. When
using C, this makes use of a struct with a four-byte field
for the message type and a second, variable-length field for
the message content. This is difficult to emulate given the
data structures available in Java, so the type field is specified
as a separate parameter to the LinuxIPC msgsnd method.

For similar reasons, the msgctl system call presented
a number of difficulties. This multipurpose system call is
supported in C by the use of a complex data structure
(struct msqid_ds). An initial attempt was made to
provide an equivalent Java class and to map the C structure
to and from this class type, but this rapidly became very
cumbersome. As a simpler, albeit less complete, solution,
a method (called msgRmid) was provided to allow access
to the msgctl system call for the purpose of removing a
message queue from the system. This method simply calls
msgctl with the necessary parameters (the message queue
identifier and the IPC_RMID operation code). Similar issues
arose with the “control” system calls for the other IPC
mechanisms.

b) Semaphore Sets: Support has been provided to use the
semget and semop systems calls. The latter posed some
interesting problems as it expects a variable-length array of
sembuf structures as one of its parameters. The sembuf
structure is relatively simple, consisting of three integer
fields (the semaphore number, the operation to be performed,
and bit flags), so this was solved by providing an equivalent
Java class and copying the data fields between the Java and
C data structures. Two versions of the method are provided:
one that explicitly specifies the number of operations to be
performed and one that makes use of the self-describing
nature of Java arrays, assuming all elements of the array
are to be used.

The Linux operating system also includes a variant of
the semop system call, called semtimedop. This provides
the ability to have semaphore operations “time out” if
necessary. Support for this has been provided in LinuxIPC.
The semctl system call presented the same problems as
the msgctl system call. This was solved in the same way,
by providing a number of more specialised Java methods
that allow the various functions provided by semctl to
be accessed directly. These include semRmid to remove
a semaphore set, semGetVal to query the current value
of a semaphore in a set, semSetVal to set the value of
a semaphore and semGetNCnt to retrieve the number of
processes waiting on the semaphore.

c) Shared Memory: The LinuxIPC library provides meth-
ods for the shmget, shmat and shmdt system calls.
However, another interesting problem arises here in that the
shared memory mechanism works with memory addresses
as pointers. This does not map easily to the Java memory
model. The solution that has been provided is to return the
pointer returned by the shmat system call as a Java int
value. This allows the Java application to generate “pointers”
to arbitrary addresses within the shared memory block. To
support access to the shared memory itself, two additional
methods have been provided (shmWrite and shmRead)



that copy data (specified as arrays of bytes) between the
Java memory space and the shared memory block.

Detaching a shared memory block from the address space
of a process does not remove it from the system. As usual
this is done using the “control” system call, which has the
same complexities as for message queues and semaphore
sets. The same solution has been adopted, providing a
shmRmid method in the LinuxIPC library.

3.1.3 Other Utilities and Error Handling

Several other related Unix system calls have also been
provided as part of the LinuxIPC library. As mentioned
in section 2.2.2, the ftok system call is useful when
generating keys for use with the System V IPC facilities.
Accordingly, it has been included in the LinuxIPC library.

Many of the system calls included in the LinuxIPC library
return the value −1 to indicate that an error has occurred.
In this case, a system-level variable called errno is set
by the operating system to indicate the cause of the error.
Where this may occur, the LinuxIPC native functions retrieve
the error number and store it in a private field of the
LinuxIPC class. Java programs may then retrieve this using
a method of the class (getErrnum). Furthermore, access is
also provided to the standard C strerror function which
maps the error numbers used by the operating system to text
strings to aid in the interpretation of errors and the display
of suitable error messages.

3.2 Specialised I/O Streams
Given Java’s current dependence on network mechanisms

for all parallel and distributed communication and coordi-
nation purposes (except between threads) it was perhaps
obvious to consider how specialised I/O streams might be
provided based on the Linux IPC facilities described in the
previous section. This has been done using both message
queues and shared memory.

a) Message Queue Streams: Two additional Java classes
have been provided as part of the LinuxIPC library,
MessageQueueInputStream and MessageQueue-
OutputStream, which are subclasses of the standard Java
InputStream and OutputStream classes respectively.
The constructors for the new classes take a Linux IPC key as
a parameter, but otherwise these classes abstract away the de-
tails of working with the message queue. Calls to the read
and write methods of the new classes result in the data
being communicated as messages on the message queue.
From the perspective of the application using them, the new
classes may be used like any other stream class in Java. In
particular they may be composed with other stream-handling
classes such as BufferedOutputStream for buffering,
or ObjectInputStream for object serialization.

b) Shared Memory Streams: As with the message
queue streams described above, two classes Shared-
MemoryInputStream and SharedMemoryOutput-
Stream have been provided in the LinuxIPC library. These
abstract away the details of using shared memory, with
semaphores for synchronisation, from the application using
them (except for the need to specify the IPC key to be used,
and optionally to specify the size of the block of shared
memory to be used). The initial implementation of these
classes simply used the individual methods provided by the
LinuxIPC library to create and access the shared memory
block and the semaphores needed to synchronise access
to this memory. However, the performance of this solution
was found to be very poor. Investigation of the reasons for
this revealed that the JNI system introduces a considerable
overhead into the calling of native C functions (due to the
need to map between different calling conventions and data
formats). These overheads were effectively being multiplied
by the use of separate calls to the semaphore and shared
memory access methods. In order to optimise these classes,
by minimising the JNI calls, a new JNI class was devel-
oped to provide higher-level support for the shared memory
streams. Essentially, this simply migrated some of the logic
required for buffering and data transfer from the Java classes
to C code in a shared library. This approach required fewer
cross-language calls and improved the performance of the
shared memory stream classes.

4. Testing and Results
The computer used for testing was a Dell Inspiron 1525

laptop with a 2.0GHz Intel Core 2 Duo twin-core processor,
2MB of L2 cache and 4GB of memory. The version of Java
used was 1.6.0_07, and the operating system was Ubuntu
version 8.04.1 (Linux kernel 2.6.24-22).

4.1 Performance Testing
The LinuxIPC library has been tested using a simple bidi-

rectional communication benchmark. This utilises two pro-
cesses. The first gets the current system time in nanoseconds
(using the System.nanoTime() method) then sends this
as a serialized Long object to the second process. The
second process immediately returns the time object back
to the first process, which then uses the elapsed time to
measure the round-trip time for the communication. This
was done using conventional socket communication with the
loopback network as a reference, then with named pipes,
message queues and shared memory. Each test was repeated
20 times, and the average of 19 runs is reported in section 4.2
(excluding the first run to discount the start-up costs of
class-loading, etc.). Further testing was also performed using
variable-size messages in order to characterise the commu-
nication methods with differing levels of data transmission.



Fig. 1: Simple Results (minimal data)

4.2 Results
Figure 1 shows the results for the first communication test

(i.e. with minimal data transfer). As can be seen quite clearly,
all the LinuxIPC mechanisms perform better than the use of
the loopback network (labelled “Socket” in the graph). The
best result is obtained using named pipes (about 63% of
the time taken by the loopback socket version), which is not
surprising as the use of JNI is minimised in this case (all that
is required is the mkfifo system call to create the pipe).
Message queues are reasonably efficient (81% of the socket
time). As expected, the implementation of shared memory
streams using semaphores explicitly (labelled “Shm+Sem”)
does not perform very well, but is still more efficient than the
socket version. When using the specialised shared memory
support library, performance improved by about 6%.

The second communication test showed a similar pattern,
with the transmission time increasing as the amount of data
contained in the messages increased, as shown in Table 1 and
Figure 2. What is very noticeable about these results is that
the loopback socket increases in efficiency as the message
size increases, until a certain threshold when it dramatically
decreases in performance (however, at no point is it more
efficient than using named pipes). This behaviour requires
further investigation to better characterise the performance
and to isolate the inflection point in the efficiency of the
loopback socket mechanism.

5. Discussion
The results indicate the clear performance benefits to

be gained by utilising native IPC mechanisms for com-
munication between Java processes. While there are some
situations in which sockets outperform shared memory and

even message queues, the use of named pipes is substantially
more efficient under all conditions tested. This is a useful
result and provides an additional advantage, in that this
mechanism can be used on a Linux system without the need
for the JNI library, by using the mkfifo command in a
shell script or directly from the command line. The Java
program may then open a connection to the pipe using the
standard I/O library (i.e. the IPC mechanism is completely
transparent to the application).

Of course, a major drawback in using the Linux IPC
mechanisms is the loss of the “Write Once, Run Anywhere”
(WORA) cross-platform portability property of Java pro-
grams. While this is a significant problem, it is mitigated
by the very real performance benefits to be obtained by
using the IPC mechanisms provided by the host oper-
ating system. In this regard, we would again stress the
likely importance of efficient IPC for applications composed
of multiple processes running on a multicore architecture
as these systems become increasingly common (and as
the number of cores increases, requiring higher levels of
parallelism in applications). One possible solution to this
problem would be to provide an IPC library at a higher
level abstraction, providing mechanisms that are essentially
common to all widely-used operating systems. This would
require distinct native shared libraries to be developed for
all the desired operating systems, and may result in some
loss of performance due to the increased level of abstraction
required. However, it would be worth investigating further.
An initial step would be to survey the IPC facilities provided
by the major operating systems targeted by Java applications
in order to establish the common features and to design a
suitable set of abstractions.

6. Conclusion
The investigation described in this paper has been a very

interesting and potentially beneficial digression from our
main research programme in the area of tuple space systems
for parallel and distributed programming. The relative lack of
support for communication and synchronisation operations
in Java applications composed of multiple processes exe-
cuting on a multicore (or multiprocessor) system is likely
to become increasingly important as the trend to increasing
numbers of processor cores continues. The LinuxIPC library
provides an initial basis for improving the support for this
scenario in Java applications, and our experimental results
demonstrate some of the potential performance benefits to
be gained from providing improved IPC mechanisms.

6.1 Future Work
As already mentioned in section 5, an important next step

would be to address the issue of cross-platform portability by
surveying the IPC features of widely-used operating systems.
This would form the basis for the design of a higher-level,



Table 1: Detailed Results (with varying data sizes)
Data Size 40 400 4 000 40 000
(bytes) Time (ns.) % Time (ns.) % Time (ns.) % Time (ns.) %
Socket 281296.4 100 273087.9 100 297739.4 100 5457363.1 100
FIFO 169501.4 60 177989.3 65 221903.3 75 567776.4 10
Msg Queue 164101.2 58 268437.8 98 671227.0 225 877882.1 16
Shm+Sem 193932.4 69 302841.2 111 694057.1 233 1455767.2 27
Shm 166692.9 59 273473.4 100 700971.7 235 1270286.3 23

Fig. 2: Detailed Results (with varying data sizes)

more abstract IPC library that could then be implemented
across these operating systems.

The performance testing performed to date has utilised
simple, artificial communication benchmark programs, as
described in section 4.1. It would be useful to extend the
performance testing by using the LinuxIPC library in a larger
application. This would add useful information with regard
to the potential performance benefits for real applications.
We plan to use the LinuxIPC library in our current work on
tuple space systems, and use the results of this to assess the
performance in larger-scale applications.

Acknowledgments: This research was performed while vis-
iting the Department of Computer Science at the University
of California, Davis at the kind invitation of Dr. Raju Pandey.
Financial support was received from the Distributed Multi-
media Centre of Excellence (funded by Telkom, Comverse,
StorTech, Tellabs, OpenVoice, Amatole Telecommunication

Services, Mars Technologies, Bright Ideas Projects 39 and
THRIP), from Rhodes University and the South African
National Research Foundation (NRF).

References
[1] G. Wells, A. Chalmers, and P. Clayton, “Linda implementations in Java

for concurrent systems,” Concurrency and Computation: Practice and
Experience, vol. 16, pp. 1005–1022, Aug. 2004.

[2] G. Wells, “A tuple space web service for distributed programming,” in
Proc. International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’2006). CSREA Press, June
2006, pp. 444–450.

[3] G. Wells and G. Atkinson, “Grid computing in an academic environ-
ment,” in Proc. 2007 International Conference on Grid Computing and
Applications (GCA’07), Las Vegas, June 2007, pp. 49–55.

[4] G. Wells, “New and improved: Linda in Java,” Science of Computer
Programming, vol. 59, no. 1–2, pp. 82–96, Jan. 2006.

[5] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams, and
K. Yelick, “The landscape of parallel computing research: A view
from Berkeley,” EECS Department, University of California, Berkeley,



Tech. Rep. UCB/EECS-2006-183, Dec. 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

[6] T. Lindholm and F. Yellin, The Java Virtual Machine Specification,
2nd ed. Prentice Hall PTR, 1999.

[7] D. Lea, Concurrent Programming in Java: Design Principles and
Patterns, 2nd ed. Prentice Hall, 1999.

[8] G. Wells, “An evaluation of XENIX System V as a real-time operating
system,” Microprocessing and Microprogramming, vol. 33, no. 1, pp.
57–66, 1991.

[9] S. Liang, Java Native Interface: Programmer’s Guide and Specifica-
tion. Prentice Hall, June 1999.


