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Abstract

Microsatellite expansion, such as trinucleotide repeat expansion (TRE), is known to cause a number of genetic diseases.

Sanger sequencing and next-generation short-read sequencing are unable to interrogate TRE reliably. We developed a

novel algorithm called RepeatHMM to estimate repeat counts from long-read sequencing data. Evaluation on simulation

data, real amplicon sequencing data on two repeat expansion disorders, and whole-genome sequencing data

generated by PacBio and Oxford Nanopore technologies showed superior performance over competing approaches.

We concluded that long-read sequencing coupled with RepeatHMM can estimate repeat counts on microsatellites and

can interrogate the “unsequenceable” genomic trinucleotide repeat disorders.

Keywords: Trinucleotide repeats, Trinucleotide repeat disorders, Microsatellites, RepeatHMM, PacBio, Nanopore,

Long-read sequencing

Background

Trinucleotide repeat represents repetitive stretches of

three base-pair motifs in DNA sequences. For example,

the DNA sequence “CAGCAGCAGCAGCAG” contains

five CAG repeats. Trinucleotide repeat can be located in

coding and non-coding regions of the genome and is a

common type of microsatellite repeats. The expansion of

microsatellites, especially trinucleotide repeat expansion

(TRE), has been implicated in more than 40 neurological

disorders [1, 2]. For instance, the ATXN3 gene usually

contains 13–41 CAG repeats [3]; more than 55 CAG

repeats in the ATXN3 gene are pathogenic and can

cause spinocerebellar ataxia type 3 (SCA3), which is a

condition characterized by progressive problems with

movement [4]. However, individuals with “intermediate

repeat” may or may not develop SCA3. Several CAG re-

peat diseases are also known as polyglutamine diseases,

where extensive repeats of the CAG codon result in

multiple consecutive glutamines in the protein sequence.

Currently, there are at least nine polyglutamine diseases,

including Huntington’s disease, dentatorubropallidoluy-

sian atrophy, spinal and bulbar muscular atrophy [5],

and six types of spinocerebellar ataxia, where the repeat

thresholds for pathogenicity vary in these disorders. In

addition, trinucleotide expansion may also cause other

types of disorders, including fragile X syndrome [6],

Friedreich’s ataxia, myotonic dystrophy, and fragile XE

mental retardation [2, 7]. All these genetic diseases

caused by excessive expansion of trinucleotide repeats

[5, 6] are collectively referred to as trinucleotide repeat

disorders (TRDs).

TRDs and other disorders caused by microsatellite re-

peats have stimulated a large number of genetic studies.

Some studies aimed to find therapeutic approaches to

regulate expression level of affected genes or to shorten

pathogenic repeats, for example, using zinc finger nucle-

ases [8]. Other studies aimed to understand the molecu-

lar mechanisms contributing to repeat expansion, such

as replication slippage [9–12], double-strand break re-

pair [13, 14], base excision repair [15], and mismatch re-

pair [16–18]. However, how these mechanisms are

precisely responsible for repeat expansion is not fully

elucidated yet [16].

To better understand the genotype-phenotype correl-

ation of TRDs, it is important to detect repeat sizes
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accurately on personal genomes. Repeat size is critically

associated with the severity of TRDs and the age of on-

set of TRDs symptoms. Usually, when repeat count is

higher than a certain threshold, the higher the repeat

count, the more severe the disorder and the earlier the

onset of symptoms. The severity of TRDs may also in-

crease from an affected ancestor generation to each suc-

cessive offspring generation, demonstrating the property

of genetic anticipation [19]. Therefore, precise determin-

ation of repeat counts of trinucleotide repeats will lead

to an improved understanding of TRDs and the molecu-

lar mechanisms involved, and is also crucial for diagno-

sis, risk assessment, and prognosis of TRDs.

To determine the repeat counts of microsatellites,

polymerase chain reaction (PCR) is typically used to

amplify genomic regions of interest (ROIs) and then the

repeat counts are determined by various techniques,

such as capillary electrophoresis [20], gel electrophoresis

[21], southern blot analysis [22], electrochemical detec-

tion [23], melting curve analysis [24], mass spectrometry

[25], or small-molecule biosensors [26]. However, these

techniques have several limitations to analyze microsat-

ellite repeats, in that they are typically labor-intensive

and time-consuming [25]. They may be difficult to be

applied in high-throughput screening studies where hun-

dreds or thousands of patients need to be genotyped at

the same time. Sanger sequencing usually works for sub-

jects with short repeats, but has substantial difficulty to

infer long repeats in patients from the sequence traces,

even with careful manual examination. Next-generation

sequencing techniques, such as those from Illumina and

Ion Torrent, have difficulty sequencing GC-rich (or GC-

poor) repeat regions [27] and the repeat length in pa-

tients may easily exceed the length of the sequence reads

[28]. Therefore, it is extremely difficult, if not impossible,

to use these sequencing techniques to resolve longer re-

peats [29], sometimes referred to as “unsequenceable re-

gions” of the human genome [28, 30].

In contrast to short-read sequencing, the development

of long-read sequencing technologies, such as PacBio

SMRT (single molecule real-time) sequencing [31] and

Oxford Nanopore sequencing [32], enables the interro-

gation of more than 10,000 bp of genomic DNA se-

quence, thus offering the theoretical advantage to

determine repeat counts in human participants [33].

However, PacBio reads have higher error rates [34, 35]

(~15% on average) with a strong bias towards insertions

[31]; therefore, it is not straightforward to directly use

long reads to detect repeat counts, even when coupled

with circular consensus sequencing (CCS), that is, se-

quencing the same segments many times and perform-

ing self-error correction. Similar limitations exist in the

Oxford Nanopore platform, for example, a report esti-

mated the base calling error rate of an early generation

of the MinION sequencer to be 38.2% [36]. Several prior

studies have explored the technical feasibility to use

long-read sequencing for the analysis of TRE, such as

CGG repeats in the fragile X gene [28]; however, long-

read sequencing has not been routinely used in research

and clinical studies of TRDs, partly due to the lack of ac-

curate, robust, and reproducible computational tools to

estimate repeat counts. More importantly, typical long-

read alignment algorithms (such as BLASR [37] or

BWA-MEM [38] with the “–x pacbio” parameters) may

not work for reads containing long stretches of ex-

panded repeats. One example was given in Additional

file 1: Figure S1 for a patient with SCA3. This patient

had a pathogenic allele with 67 CAG repeats in the

ATXN3 gene and we sequenced the repeat region and

the immediate flanking region using PacBio SMRT se-

quencing techniques. After aligning those reads to the

human reference genome, we attempted to infer the re-

peat counts directly from the BAM file (BAMSelf in

Additional file 1: Figure S1). Clearly, this naïve method

failed in finding the pathogenic allele, suggesting that

more sophisticated algorithms need to be developed to

address these challenges.

To improve the estimation of TRE from long-read se-

quencing data, we developed a novel computational tool

called RepeatHMM. RepeatHMM takes a set of reads as

input, uses a split-and-align strategy to improve align-

ments, performs error correction, and leverages a hidden

Markov model (HMM) and a peak calling algorithm based

on Gaussian mixture model to infer repeat counts.

RepeatHMM allows users to specify error parameters of

the sequencing experiments, thus automatically producing

transition and emission matrices for HMM and allowing

the analysis of both PacBio and Oxford Nanopore data.

Below, we describe our results on evaluating RepeatHMM

on simulation datasets under different sequencing scenar-

ios and on real datasets generated from amplicon sequen-

cing and whole-genome sequencing (WGS). It is worth

noting that RepeatHMM is different from several previ-

ously published tools, such as RepeatMasker [39], tandem

repeat finder (TRF) [40], and TRhist [41], which screen

for simple/intersperse repeats only for a query sequence.

RepeatHMM is also different from lobSTR [42], which in-

fers microsatellites from short-read sequencing data, or

PacmonsTR [43], which needs detail alignment and repeat

information of every long read and uses realignment to

determine repeat regions in long reads before size estima-

tion. RepeatHMM can be accessed at https://github.com/

WGLab/RepeatHMM.

Methods

Summary of RepeatHMM

RepeatHMM consists of several steps, as shown in Fig. 1.

We used trinucleotide repeat as an example below to
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illustrate the procedure, but RepeatHMM can be used

for microsatellites of any size.

(1)Identify the location of the repeat ROI in a reference

genome: first, we used a reference genome (GRCh38

was used in this study) to find the gene of interest

and determined the exact start and end location of a

trinucleotide repeat region.

(2)The alignment of a long read: then, given a set of

long reads of interests, we used two sub-processes to

detect repeat regions in long reads. First, we used TRF

[40] to detect repeats from a long read and then split

the long read into several flanking sub-sequences and

repeat regions. After that, all flanking sub-sequences

were aligned to a reference genome using BWA-

MEM with specialized parameters, because flanking

sub-sequences still have high error rates but much

shorter length. Successful alignments of ordered

flanking sub-sequences were detected and used to

determine the corresponding repeat regions in long

reads. We called this process the split-and-align

strategy. Second, all the remaining long reads, whose

repeat regions were not successfully detected by the

split-and-align strategy, were directly aligned with a

reference genome by BWA-MEM. Those long reads

were discarded if they could not be aligned to the

reference genome with long flanking sequences.

(3)Repeat regions in a long read: we next used long

reads that covered the repeat region with upstream

and downstream flanking segments for further

analysis. In RepeatHMM, the minimum length of

the upstream and downstream segments can be

specified by users (by default, 18 bp). Furthermore,

we rematched the flanking segments to a reference

genome. If the alignment had high identity, we

inserted several Ns between repeat regions and their

flanking segments to guarantee that the flanking

segments were identified as non-repeat states in

RepeatHMM.

(4)Error correction of a long read: to correct for

sequencing errors, we used a template with perfect

repeats. For example, a long read on a CTG repeat

region was “CATGCTGCTGCTGGCTTCCCGCTG

CTGGGTTTTTTTGTTAGTTAATGCTTTTTGCT

Fig. 1 A flowchart of the procedure to infer repeat counts using RepeatHMM
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TGCATGTCTG,” which contained a lot of insertions

and deletions. To perform error correction, we

designed a template with perfect CTG repeats that

is 50% longer than this region and then used

UnsymSeqAlg to align this read with the template,

then corrected for errors based on the alignment.

(5)Detection of trinucleotide repeats: each long read

was used as input to a HMM [44] to estimate the

repeat counts. The details on the HMM were given

below. For each long read, we estimated hidden

states given observed sequence and a repeat count

was then estimated from the model.

(6)Peak calling of repeat counts from all long reads: we

next generated a histogram of all estimated repeat

counts produced by HMM from all long reads. We

designed a peak calling procedure described below

to detect one peak (homozygous) or two peaks

(heterozygous), which represented the estimated

repeat counts for this participant.

HMM for repeat detection

In this study, we used first-order HMM [44] to model

the relationship between an observed sequence and a

sequence of hidden states, where the probability of a

state at each position only depends on the states at the

previous position and the probability of an observation

at each position only depends on the emission probabil-

ity of the state at that position. Our HMM consists of

several components, including a set of N hidden states

H = {h1, h2, ⋯, hN}, a set of M observed symbols S = {s1 =A,

s2 =C, s3 =G, s4 =T, s5 =N}, an emission matrix E{N,5}
= {eij}{N,5} representing the probability of hi emitting sj, a

transition matrix T{N,N} = {tij}{N,N} indicating the probability

of hi in the previous state transiting to hj in the next state,

and the starting probability P = {p1, p2, ⋯, pN} giving the

probability of each state before the first position of a

sequence. Then, the likelihood of an observation sequence

with L observed symbols O = sk_1,sk_2,sk_3,⋯, sk_L would be

P(O) =∑HP(O|H, E, T)P(H, E, T). Details on the HMM

components were described below:

Hidden states and observed symbols

Given a microsatellite with E nucleotides in each repeat

unit, H of our HMM has 3 * E + 1 hidden states, that is,

N = 3 * E + 1: one hidden state h1 =N for those nucleo-

tides which are not in microsatellites and three types of

hidden states for those nucleotides in microsatellites,

i.e. h2 = r1, h3 = r2, ⋯, hE + 1 = re, hE + 2 = Ir1, hE + 3 =

Ir2, ⋯ h2*E + 1 = Ire, h2 * E + 2 = Dr1, h2 * E + 3 = Dr2, ⋯

h3*E + 1 = Dre indicating, respectively, the k th nucleo-

tide in repeats, the insertion after the k th nucleotide,

and the deletion of the k th nucleotide, where k ranges

from 1 to E. Without loss of generality, take CAG re-

peat for example, the observed symbols S = {s1 =A, s2 =C,

s3 =G, s4 =T} and the hidden states H = {h1 =N, h2 =Cr,

h3 =Ar, h4 =Gr, h5 = ICr, h6 = IAr, h7 = IGr, h8 =DCr, h9 =

DAr, h10 =DGr} indicating, respectively, non-repeat nucle-

otides, the first, second, and third nucleotide of repeats,

the insertion after the first, second, and third nucleotide,

and the deletion of the first, second, and third nucleotide.

Emission matrix

Emission matrix specifies the emission probability of a

state to the four nucleotides and Ns, where each row

represents a hidden state, each column represents a nu-

cleotide, and the sum of each row is equal to 1. In an

emission matrix, we considered an emission to be ex-

pected if hk + 1 emits the k th nucleotide acid in a micro-

satellite or h2*E + k emits the (k + 1) th nucleotide acid

and h3*E + 1 emits the first nucleotide acid. For example,

for CAG repeats, we considered an emission to be

expected if h2, h3, and h4 emits C, A, and G, respectively,

and h8, h9, and h10 emits A, G, and C, respectively.

Then, assume that a random emission rate would be

0.02 (same as the substitution error rate), then all un-

expected emission probability is 0.005 (i.e. 0.02 divided

by 4) and the expected emission probability is 0.985

(i.e. 1 – 0.005*3). The emission probability of an inser-

tion state is 0.25 and of the non-repeat state is 0.2,

equally for the four nucleotides or N. An example

matrix of E{N,M} for trinucleotide repeats is given in

Additional file 1: Table S1.

Transition matrix

Transition matrix specifies the transition probabilities

between different hidden states, where each row repre-

sents a state, each column represents the state to be

transited to, and the sum of each row is equal to 1.

Transition matrix in RepeatHMM has several specific

rules based on the error profile of long reads: (1) insertion

probability: the transitions from the state rk/Irk/Dr(k − 1)

to Irk, where 1 ≤ k ≤ E and Dr(k − 1) = Dre if k = 1, indi-

cate a possible insertion; (2) deletion probability: the

transitions from h1 to Dr1 and r(k − 1)/Ir(k − 1)/Dr(k − 2)

to Drk, where 1 ≤ k ≤ E and r(k − 1) = re, Ir(k − 1) = Ire,

Dr(k − 2) =Dr(E − 1) if k = 1, indicate a possible deletion;

(3) the probability to/from repeat region: h1 to h2 indicates

a transition from non-repeat region to repeat region and

re/Ire/Dr(E − 1) to h1 indicates a transition from repeat

region to non-repeat region, and both are set to 0.02 by

default; (4) the transition probability from h1 to h1 is set to

0.96 by default; (5) all non-expected transitions to rk or to

insertion states or to deletion states have a probability

close to 0, where 1 ≤ k ≤ E; (6) each expected transition,

i.e. the transition of r(k − 1)/Ir(k − 1)/Dr(k − 2) to rk,

where 1≤ k≤ E and r(k − 1) = re, Ir(k − 1) = Ire, Dr(k − 2) =

Dr(E − 1) if k = 1, has a probability of 1 minus the sum of

other probabilities in its row. Without loss of generality,
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take trinucleotide repeats and PacBio long reads (11% in-

sertion rate and 2% deletion rate by default), for example:

(1) insertion probability: the transitions from h2/h5/h10 to

h5, h3/h6/h8 to h6 and h4/h7/h9 to h7 indicate a possible in-

sertion and their probability is thus i with default value of

0.11; (2) deletion probability: the transitions from h1/h4/

h7/h9 to h8, h2/h5/h10 to h9, and h3/h6/h8 to h10 indicate a

possible deletion, and their probability is thus d with 0.02

as the default value; (3) the probability to/from repeat re-

gion: h1 to h2 indicates a transition from non-repeat re-

gion to the first nucleotide of repeats and h4/h7/h9/h10 to

h1 indicates a transition from repeat region to non-repeat

region, and both are set to 0.02 by default; (4) the transi-

tion probability from h1 to h1 is set to n with 0.96 as the

default value; (5) all other non-expected transitions, in-

cluding the transitions from h2/h3/h5/h6/h8/h10 to h2, h3/

h4/h6/h7/h8/h9 to h3, and h2/h4/h5/h7/h9/h10 to h4, have a

probability close to 0; (6) each expected transition, i.e., the

transitions of h4/h7/h9 to h2, h2/h5/h10 to h3, and h3/h6/h8
to h4, have a probability of 1 minus the sum of other prob-

abilities in its row. The example matrix of T{N,N} for trinu-

cleotide repeats is given in Additional file 1: Table S2. The

matrix is used for all evaluations both on simulation data

and real data for trinucleotide repeats in this study.

HMM for different trinucleotide repeats

In RepeatHMM, all trinucleotide repeat patterns have

the same symbols and hidden states names and the

hidden state names do not change with different repeat

patterns (such as CTG or CCG). Different trinucleotide

repeats have different emission matrices and P (Additional

file 1: Table S3 for CAG repeats), but RepeatHMM can

automatically readjust all matrices based on a given repeat

pattern.

HMM for different microsatellite repeats

Different microsatellites have different repeat patterns

with varying lengths and various combinations of four

nucleotides. In RepeatHMM, all repeat patterns have the

same symbol names (A, C, G, T, and N), but microsatel-

lites with more nucleotides in repeat units have more

hidden states. Given a microsatellite repeat pattern,

RepeatHMM can automatically readjust hidden states and

all matrices correspondingly. Theoretically, RepeatHMM

can handle repeat patterns with any number of nucleo-

tides in repeat units.

HMM for microsatellites with mixed patterns

Microsatellite repeats may contain mixed repeat patterns

of the same length. For example, ATTCT repeats can be

mixed with ATCCC or ATCCT or ATTCC repeats, that

is, the third and fifth positions in this microsatellite re-

peat can be either C or T. For situations like this, the

hidden states are still the same because each of mixed

patterns has the same length. However, the emissions of

the third and fifth positions require adjustments in the

emission matrix. For example, suppose that the third

position has 40% probability to be C and 60% probability

to be T, then the emission probability of the third pos-

ition is 0.98 * 0.4 + 0.005 for C, 0.98 * 0.6 + 0.005 for T,

and 0.005 for both A and G. In such microsatellites, the

mixed repeat patterns are required to be position-

independent, that is, knowing the symbol in the third

position does not affect the emission probability in the

fifth position. RepeatHMM can handle simple mixed

microsatellite repeats as described here and automatic-

ally readjust the emission matrix for repeat detections

according to mixed patterns provided by users.

Hidden state estimation

With the matrices above, we used HMM with Viterbi al-

gorithms [45] to estimate hidden states of each nucleo-

tide which maximize P(O) of a given observed long read.

Based on the most likely hidden states, we estimated the

repeat count for the long read.

Unsymmetrical sequence alignment and error correction

The idea of unsymmetrical sequence alignment algo-

rithm (UnsymSeqAlg) is similar to the well-known

Needleman–Wunsch algorithm or Smith–Waterman al-

gorithm. The main difference is that UnsymSeqAlg as-

signs different penalties for introducing a gap in the

query and the target sequence. This strategy is reason-

able, because typical sequence alignment algorithms

usually apply the same gap penalty for two aligned se-

quences and implicitly assume that two aligned se-

quences have the same error rates. The assumption does

not hold when aligning a long read with high error rate

with a template with perfect repeats (or a region in a ref-

erence genome). Thus, the penalty of a gap in long reads

should be significantly larger than that in the template.

For example, suppose that the match score is match =

1, mismatch score is mismatch = –1, the gap penalty for

template is gap_in_perf = –1 and the gap penalty for long

reads is gap_in_read = –10, the correction of a CTG re-

peat region “CATGCTGCTGCTGGCTTCCCGCTGCT

GGGTTTTTTTGTTAGTTAATGCTTTTTGCTTGCA

TGTCTG” by UnsymSeqAlg is “CTGCTGCTGCTG

CTTCCGCTGCTGGTTTTTTTGTTGTTAATGCTTT

TGCTGCTGCTG” where several insertions are removed.

In contrast, a Smith–Waterman algorithm, with match =

1, mismatch = –1, gap_in_perf = gap_in_read = –1, would

produce a corrected region as: “CATGCTGCTGCTGG

CTTCC-C-GCTGCTGG-GTTTTTT-TGTTAGTTAATG

CTTTTTGCTTGCATG-T-CTG” where more gaps (and

more insertion errors) are introduced. To speed up the

alignment in UnsymSeqAlg, banded alignment is also

applied.
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Peak calling of repeat counts

We used the Python module scikit-learn for peak call-

ing from the histogram of all repeat counts estimated

from long reads. For microsatellites located on auto-

somes of a diploid genome, we assumed that the histo-

gram was mixed by two main Gaussian models and

several minor models. We then used the following steps

to obtain the peak(s) from the histogram. First, we re-

moved the repeat counts less than a minimum thresh-

old (by default, 5) and those repeat counts with very

few supporting reads (threshold specified by users).

Second, we used N Gaussian components in Gaussian

mixture model, where N was in the range of 3–7 (by

default). For each N, we inferred the mixture model 20

times since the estimation yielded different results each

time. We used Akaike information criterion (AIC) to

select the best one and also required that the best mix-

ture model was not the first or the last. The selected

mixture model usually contains several individual

Gaussian models. Third, we filtered the models requir-

ing that a Gaussian model with a smaller mean should

have smaller standard deviation and should have a lar-

ger amount of supporting reads. After the filtering, if

there was one peak, it suggested that two alleles had

the same repeat counts. If more than one peak was

available, we chose one peak with the largest number of

reads and identified another peak using the strategy: its

supporting reads should be more than 80% (by default)

of reads associated with the first peak, if its repeat

count was less than the first peak; otherwise, a peak

with larger count was chosen.

Metrics for performance evaluation

To evaluate the performance, we used root mean square

error (RMSE) to assess the difference between estimated

repeat counts and true repeat counts. Given a set of L

subjects each with true repeat count RCk and an esti-

mated count PCk,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XL

k¼1
RCk−PCkð Þ2

L

s

RMSE is a non-negative value; and the smaller the

RMSE, the closer the estimated repeat counts are to the

true repeat counts.

Simulation datasets

To describe the simulation process clearly, we took the

ATN1 gene with CAG repeats as an example. Please

note that the effects of PCR slippage were not consid-

ered in the simulation below.

The simulation of long reads with random start and

end sites contained the following steps with user-defined

parameters such as the coverage, the number of partici-

pants to be simulated, and insertion/deletion/substitu-

tion error rates:

(1)Manually examined the ATN1 gene in UCSC Genome

Browser and identified the exact location of the CAG

repeats. We assumed that the start position of the

repeat is start_pos, and the end position is end_pos.

(2)Checked the literature to obtain the minimum and

maximum expansion size of both normal and

pathogenic repeats and denoted the expansion limits

as min_repeat and max_repeat, respectively.

(3)Set updown_size as max_repeat multiplied by 25 and

also set updown_size = 1500 bp if updown_size was

larger than 1500; then, obtained updown_size bp

upstream region of the repeat region and updown_size

bp downstream region.

(4)Randomly produced two counts, ci and cj, between

min_repeat and max_repeat. Two counts were

produced, because each gene has two alleles, one

from the father and the other from the mother. For

the CAG repeat in ATN1, ci is a random number in

the range of 6–35 and cj is a random number in the

range of 49–88.

(5)Got a random position of a CAG in repeat region of

the reference genome for each count.

(6)Inserted new CAG repeats at the position to produce

trinucleotide repeats with ci or cj counts.

(7)The lengths of upstream and downstream sequences

were independently generated from a normal

distribution with the mean of L bp and standard

deviation of 10. L was set to half of updown_size for

the smaller repeat counts and to half of updown_size

minus half of (ci − cj) × l for the larger repeat counts,

where l was the length of the repeat unit.

(8)Mutated the upstream sequence, the produced

repeat region in (6) and downstream sequence with

11% insertion rate, 2% deletion rate, and 2%

substitution rate.

(9)Concatenated the mutated upstream, repeat region,

and downstream to generate a random read.

(10)Repeated steps (5) to (9) to generate long reads with

the coverage of cov. Please note that ci repeats had
cj

ciþcj
�cov long reads and cj repeats had

ci
ciþcj

� cov long

reads. That is, longer repeats had less simulated long

reads and smaller repeats have more simulated long

reads.

(11)Repeated steps (4) to (10) to generate long reads for

different participants. In the study, we simulated 100

participants.

The PCR-based simulation of long reads with fixed

start and end site was similar to the random read simu-

lation above. The only difference was that the size of the
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upstream and downstream sequences was determined by

PCR primers rather than random simulation.

Real datasets on patients with SCA3

Genome DNA was obtained from peripheral blood of

20 unrelated patients with SCA3 and five unaffected

participants. Target sequences of the CAG repeats frag-

ment (about 1.5 kb in ATXN3) were amplified using

two primers (f: GATTCTCGGATTTAGGATGC; r: AT

AAAGTGTGAAGGTAGCGAAC). Briefly, 50 ng DNA

template was added to a 25 μL mastermix of 5 μL 5X

PrimeSTAR GXL Buffer, 5 mM dNTP Mixture, 7.5 uM

primers, 0.625 U PrimeSTAR GXL DNA polymerase

and 15 μL ddH2O. Then, samples were amplified with

an initial denaturation step of 95 °C for 5 min, followed

by 35 cycles of 98 °C for 10 s, 56 °C for 15 s, 68 °C for

1 min 40 s, with a final extension step of 68 °C for

10 min, and then held at 4 °C. PCR products with equal

molar ratio were barcoded, pooled, and constructed as

a SMRTbell library following a standard protocol

(SMRTbell Template Prep Kit 1.0). The annealed

SMRTbell templates were bounded with DNA polymer-

ase enzymes using the DNA Polymerase Binding Kit

and incubated with 9 nM of polymerase in the presence

of phospholinked nucleotides for 6 h at 30 °C. After

that, the library was stored at 4 °C. Sequencing was per-

formed within 36 h of binding. The library was sequenced

on a PacBio Sequel sequencer using the manufacturer’s

suggested protocols. The true repeat counts for patients

were determined using capillary electrophoresis analysis.

For control participants, we also sequenced the PCR prod-

ucts by Sanger sequencing.

Real datasets on patients with SCA10

This dataset [46] contained PacBio long-read sequencing

data on three patients with spinocerebellar ataxia type

10 (SCA10). Participants A, B, and C in this dataset had

about 840, 870, and 530 repeats, respectively, as esti-

mated by gel electrophoresis of cloned expansion frag-

ment excised from plasmid backbone [46]. The three

patients had canonical ATTCT motif mixed with other

repeats and the repeat regions were in the range of

4700–6500 bp. Karen et al. sequenced ATXN10 genes of

the three participants using SMRT sequencing tech-

niques with C2 chemistry [46].

Real datasets on the NA12878 individual using three

sequencing techniques

The subject NA12878 had been sequenced by Illumina

short-read sequencing technique [47], PacBio long-read

sequencing technique [48], and Oxford Nanopore long-

read sequencing technique. The coverage for these three

platforms were ~300X, ~50X, and ~30X, respectively.

All the BAM files for Illumina short reads and PacBio

long reads were downloaded from ftp://ftp-trace.nc-

bi.nlm.nih.gov/giab/ftp/data/NA12878/ and the BAM

file for Nanopore was downloaded from https://github.-

com/nanopore-wgs-consortium/NA12878. The ground

truth of microsatellite repeat counts is not available for

NA12878, but this subject is not expected to have

pathogenic alleles. We thus used the prediction from

the Illumina data as the gold standard and then

assessed the performance of RepeatHMM on the two

other platforms.

Results

Overview of RepeatHMM

RepeatHMM aims at the estimation of repeat counts

for a given microsatellite from long-read sequencing

data. RepeatHMM can handle trinucleotide repeats as

well as other more complex repeat patterns and can be

used on technologies with different error profiles, such

as PacBio and Oxford Nanopore. A flowchart on

RepeatHMM is shown in Fig. 1 and a general overview

is described below.

First, given a specific microsatellite, RepeatHMM in-

fers the start and end position for the repeat region in a

reference genome and uses a split-and-align strategy

facilitated by TRF [40] and BWA-MEM [38] to find the

approximate locations of the repeat region in each read.

It will then use a sequence alignment algorithm Unsym-

SeqAlg to correct base errors in the read, to account for

the differences between different types of errors, such as

the much higher insertion errors (~11%) than deletion

errors (~2%) in PacBio SMRT sequencing. Next, a HMM

is used to estimate which nucleotides are within repeats,

given the transition probabilities between hidden states

and the emission probabilities from each of these states

to the four observed nucleotides. The transition/emis-

sion probabilities can be directly inferred analytically ra-

ther than empirically (i.e. estimated from data) and can

be automatically produced by RepeatHMM according to

user-specified error profiles and repeat patterns. Finally,

estimated repeat counts from all reads will be tallied and

one or two peaks are inferred from these distributions,

to estimate the repeat counts on each of the two hom-

ologous chromosomes.

Estimation of repeat counts on simulation data

To evaluate the performance of RepeatHMM, we ran-

domly simulated long reads (CAG repeats together with

neighboring sequences) on the ATN1 gene for 100 par-

ticipants with varying coverages. For each participant,

two alleles were simulated, including one normal allele

with a repeat count sampled from 6 to 35 and one

pathogenic allele with a repeat count sampled from 49

to 88. The coverage was in the range of 10–100 with a

step of 10, in the range of 100–1000 with a step of 100,
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and in the range of 1000–5000 with a step of 1000. The

read simulation used typical error models for PacBio se-

quencing data, with a 15% error rate, including 11%

insertions, 2% deletions, and 2% substitutions (see

“Methods” for details). For each coverage level, we calcu-

lated the RMSE of true repeat counts and estimated

counts for these 100 participants. Additionally, we also

evaluated whether the alignment itself (BAMself ) could

be informative for inferring repeat counts. For BAMself,

we produced the BAM files using BWA-MEM with the

recommended options for PacBio (i.e. − k17 −W40 −

r10 −A1 − B1 −O1 − E1), and –L1 and –wG where G =

Lm * 4 + hr was band width, Lm was the maximum

repeat size, and hr was half of the length of the region of

reads in a reference genome. Then, we determined the

start and end positions of the predicted repeat region in

each alignment for a long read, divided its length by 3,

and rounded to the nearest integer, as the estimated

repeat count for the read.

We found that both RepeatHMM and BAMself have

improved RMSE for normal alleles when the coverage

increased from 10 to 50 (Fig. 2a). When the coverage

continued to increase, the RMSE of RepeatHMM lev-

elled around 0.8, while the RMSE for BAMself levelled

around 2.5. For pathogenic alleles, the RMSE of both

RepeatHMM and BAMself substantially decreased when

the coverage increased from 10 to 200, but RepeatHMM

had much larger improvement than BAMself; when the

coverage was over 200, RepeatHMM had much smaller

RMSE than BAMself (1.7 versus 7). To further show the

distribution of the differences between estimated repeat

counts and true repeat counts, we categorized the pre-

diction errors into several groups, including those with

prediction errors less than –3, equal to –3, –2, –1, 0, 1,

2, and 3, and more than 3 (figure repeat counts and true

repeat counts. Given a set oc). BAMself usually overesti-

mated normal alleles by ≥ 2 repeats and overestimated

pathogenic repeats by > 3 repeats. In comparison,

RepeatHMM generated the correct repeat counts for

most normal alleles with at most one repeat difference,

while it underestimated by one or two repeats on patho-

genic alleles when the coverage was high enough. These

results suggested that the alignment itself was not able

to estimate repeat counts accurately.

To further evaluate the performance of different

methods on amplicon sequencing, we also generated

simulation datasets under the constraints of predefined

PCR primers so that all reads had similar length (not

identical because of the simulation of random insertion/

deletion errors). The primers for ATN1 were designed by

Primer3 [49], as CCCACCCACTACTCCCATTT (for-

ward) and CCAGAGTTTCCGTGATGCTG (reverse).

The product size in the reference genome is 762 bp. To

approximate the real-world scenario of PCR, we used

different amplification efficiency for the shorter and longer

alleles as described in the “Methods” section. The number

of participants and the categories of coverage levels had

the same setting as the simulation data with random start

and end sites.

Despite the use of different simulation settings, the re-

sults on PCR-based simulation data were largely consist-

ent with the results on the simulation data with random

start and end positions (Fig. 2b and d). For both

RepeatHMM and BAMself, when the coverage increased

from 10 to 50, the RMSE for normal alleles dropped and

then levelled off. However, for pathogenic alleles, the

RMSE for both algorithms continued to drop with in-

creasing coverage. Compared with the previous simula-

tion dataset, higher coverage of sequencing data was

required to reach the same level of RMSE.

Examination of effects when two alleles have similar

repeat counts

The RepeatHMM pipeline used a peak-calling procedure

to identify peaks from a histogram of repeat counts from

a collection of long reads, so we next evaluated its per-

formance when the two alleles were very similar to each

other. For example, when one allele had 15 repeats and

the other allele had 17 repeats, the small difference of

two repeats may not be discernable by the peak-calling

algorithm. To assess this, we performed additional simu-

lation, where the count difference of two similar alleles

were 1, 2, 3, 4, 5 to 6, and 7 to 9. For each count differ-

ence, the coverage was simulated from 20 (=10 * 21) to

5120 (=10 * 29); for each coverage level, 100 random

pairs of similar alleles were simulated. The other settings

of the simulation experiment were similar to the simula-

tion described above. The RMSE of the prediction, to-

gether with the heterozygosity status of the prediction,

were given in Additional file 1: Figure S2. As expected,

when the two alleles were highly similar, the genotypes

tended to be called homozygous. When the repeat differ-

ence increased from 1 to 4, the fraction of heterozygotes

incorrectly called as homozygotes decreased from ~ 50%

to ~35%, ~20%, and then ~0%, suggesting that

RepeatHMM tend to over-call homozygotes when the

difference between two alleles is less than 3. Overall, the

RMSE was similar to that shown in Additional file 1:

Figure S2, suggesting that the presence of similar alleles

did not increase overall error rates but affected the calls

on heterozygosity status. It is also clear that the higher

coverage would help improve the prediction of

heterozygosity.

Estimation of repeat counts from real dataset on SCA3

To evaluate the performance of RepeatHMM on real

data, we performed amplicon sequencing on the ATXN3

gene on 25 participants using the PacBio Sequel
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Fig. 2 (See legend on next page.)
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sequencer. These participants consisted of 20 patients

affected with Spinocerebellar ataxia type 3 (SCA3)

[50, 51], with repeat counts determined by capillary

electrophoresis, as well as five controls, with repeat

counts determined by Sanger sequencing (Additional

file 1: Table S5). SCA3 is a rare autosomal dominant

disease caused by abnormally extensive duplication of

CAG repeats in the ATXN3 gene located on chromosome

14q [50, 51]. Extensive repeats in exons of ATXN3 would

affect pons and striatum, causing progressive cerebellar

ataxia and even paralysis. In general, greater number of

repeat counts is correlated with more severe phenotypic

expression and earlier age of onset.

For the 25 participants of interest, 585,646 raw long

reads with 939,895,440 bp were generated (Additional

file 1: Table S4). Our sequencing experiments le-

veraged CCS protocol, where a CCS read is a consen-

sus sequence generated from a multiple sequence

alignment on subreads generated on a single template

in a circular fashion. This set of raw data was sum-

marized into 38,058 CCS reads with 61,063,678 bp.

We therefore evaluated RepeatHMM on both raw

data and the CCS data. The coverage of raw reads for

most participants was more than 21,000, except

sam004, sam021, sam024, and sam025, whose cover-

age levels were 16,988, 7750, 6915, and 10,882, re-

spectively. In contrast, the coverage of CCS reads was

more than 1300 for most participants, except sam004,

sam021, sam024, and sam025, with a coverage of

1086, 569, 504, and 718, respectively.

Using the raw reads, the predicted repeat counts and

the differences from the gold standards were shown in

Fig. 3 and Additional file 1: Table S5. For comparison,

we also run TRhist and summarized its results into

repeat counts using a custom script (two repeat units

were merged if their distance was less than 5 bp).

RepeatHMM worked well on the raw reads (Fig. 3a and

b): The difference between repeat counts determined by

RepeatHMM and the gold standard was mostly 0 or 1

with only a few exceptions (Additional file 1: Table S5).

The predictions for ten normal alleles in five unaffected

participants and 17 normal alleles in 20 patients were

identical to the gold standard, and the three normal al-

leles in 20 patients were underestimated by one repeat.

For the pathogenic alleles of 20 patients, five predictions

are identical to the gold standard, ten were overesti-

mated by one repeat, four by two repeats, and one by

three repeats. Additionally, the estimation error was

largely random and was not correlated with true repeat

size. In comparison, BAMself and TRhist produced very

poor predictions, especially on the pathogenic alleles

(Fig. 3 and Additional file 1: Tables S5 and S6).

To evaluate whether the CCS protocol could improve

the predictive performance, we used RepeatHMM on

CCS reads, and we referred to this analysis as

RepeatCCS. The detailed results of the RepeatCCS

(See figure on previous page.)

Fig. 2 Analysis on simulation data to infer repeat counts for ATN1. a Performance on simulated long reads with random start and end sites that

cover repeats. b Performance on simulated long reads with fixed start and end sites that cover repeats. c, d The distribution of the prediction

errors (estimated repeat counts minus simulated counts) on random simulation data and PCR-based simulation data, respectively. RMSE root

mean square error between simulated repeat counts and estimated counts for 100 participants

a b c

Fig. 3 Performance of RepeatHMM, RepeatCCS, BAMself, and TRhist on estimating the repeat counts in ATXN3 for 20 patients with SCA3 and five

controls. The gold standards (x-axis) were determined by capillary electrophoresis for 20 patients or by Sanger sequencing for five controls.

a Scatterplot of estimated repeat counts and true counts. b, c The difference of estimated repeat counts and true counts by RepeatHMM, RepeatCCS,

BAMself, and TRhist. RepeatCCS refers to the use of RepeatHMM on error-corrected reads generated by the circular consensus sequencing protocol
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analysis were shown in Fig. 3 and Additional file 1:

Table S5. Although RepeatCCS worked better than

BAMself and TRhist, it had higher error rates than

RepeatHMM. Thus, in the RepeatHMM framework,

CCS reads did not confer obvious advantage to raw

reads in quantifying longer repeat counts.

Interestingly, we found that the prediction errors (the

estimated repeat counts minus the true repeat counts)

by RepeatCCS had a clear positive correlation with the

true repeat counts (Fig. 3b). This indicated that the CCS

protocol may be biased when assessing repeat counts

and that the bias was not random. One possible reason

leading to this bias may be due to the multiple sequence

alignment algorithm used to generate CCS reads. When

inferring consensus sequences from multiple subreads,

the alignment algorithm may not be able to accurately

align subreads with many repeats against each other, due

to the error profile of the sequencing data. For example,

given a repeat of 80 CAG triplets (240 bp), the generated

data were on average ~10% longer (due to the much

higher insertion rate over deletion rate), so the length of

repeat regions in the CCS reads would be on average

around 88 × 3 = 264 bp. RepeatHMM directly used raw

reads and thus was less susceptible to this problem given

appropriate adjustment of alignment parameters. There-

fore, although CCS reads offered some advantages over

raw reads and were preferably used in many applications

(such as amplicon sequencing and RNA-sequencing),

more cautions should be taken when CCS reads are used

in estimation of repeat counts.

Estimation of repeat counts from real data on SCA10

To further evaluate the performance of RepeatHMM on

regions with more complex repeat patterns than trinu-

cleotide repeats, we also analyzed another dataset on

SCA10 [46]. The intronic region of the ATXN10 gene

contains 14 ATTCT repeats in the reference genome.

However, in this dataset, many hundreds of repeat units

were present in each of the patients. Furthermore, in

addition to ATTCT, the repeat region also contained a

small fraction of other repeat units such as ATCCT,

ATTCC, and ATCCC.

Three methods were evaluated on the raw reads in the

SCA10 dataset: RepeatHMM, TRhist, and BAMself. The

results were shown in Table 1 where both BAMself and

TRhist failed to accurately detect the pathogenic allele in

ATXN3 in all three patients. We also noted that the con-

sensus sequences produced by the original authors [46]

gave larger estimation of repeats counts for both partici-

pants A (~30 repeats larger) and B (~64 repeats larger).

In contrast, repeat sizes estimated by RepeatHMM were

closer to those estimated by gel electrophoresis (Fig. 4

and Table 1) for participants A and B. For participant C,

there was a larger difference between the estimation by

RepeatHMM and the size inferred by gel electrophoresis,

which may be because participant C contained many

interrupted repeats [46]. In summary, this comparative

analysis demonstrated that RepeatHMM can also work

on complex repeat regions spanning thousands of base

pairs with mixed repeat units.

Estimation of repeat counts from WGS data

We further evaluated RepeatHMM on WGS data on

NA12878 generated on three technical platforms: PacBio

SMRT sequencing (~50X coverage), Oxford Nanopore

sequencing (~30X coverage), and Illumina short-read

sequencing (~300X coverage). We recently generated

PacBio SMRT sequencing data on a Chinese adult male

(HX1) with normal karyotype (~100X coverage) [52] and

we included this individual in the analysis as well. Unlike

amplicon sequencing experiments, whole-genome long-

read sequencing typically had much lower coverage (for

example, 100X or lower), and all reads had random start

and end sites that were distributed throughout the gen-

ome. We selected 15 trinucleotide repeats that were

known to cause inherited neurological diseases, as well

as 33 additional microsatellites with 2–5 bases as repeat

units. (We determined the repeat patterns and the start/

end positions of microsatellites based on the UCSC gen-

ome browser.) Since the Illumina data had high coverage

(~300X) and the sizes of repeat regions are expected to

be smaller than the read length (150 bp), we used the

estimation of repeat counts from the Illumina data as

the gold standard to evaluate the two long-read sequen-

cing platforms.

During the analysis, for each microsatellite, we found

that generally more than 80% of the short reads sup-

ported the exact repeat counts (either one or two

counts) calculated by RepeatHMM, indicating that

Illumina-based estimation is reliable and could be used

as gold standard for comparison. The predictions from

two long-read sequencing platforms were largely

Table 1 Estimation of repeat counts on the SCA10 dataset. The gel estimated counts were from the previous study on the

pathogenic allele [46]

BAMself TRhist RepeatHMM Gel estimated Estimation in [46]

Participant A 15 15 10 27 17 830 ~840 ~870

Participant B 15 15 5 41 17 825 ~820 ~884

Participant C 14 14 5 27 17 488 ~530 ~514
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consistent with the gold standard (Fig. 5). Therefore,

RepeatHMM could work on different sequencing plat-

forms with different error characteristics by adjusting the

model parameters. However, we also noted that there were

some prediction errors, especially on predicting homo-

zygous repeat counts (Additional file 1: Table S7). This

may be due to the fact that the coverage of long-read se-

quencing data for NA12878 was not high enough to

distinguish the alleles with similar repeat counts, as we

had discussed above. In addition, some of the repeat re-

gions cannot be confidently called by either PacBio or

Nanopore data, due to the relatively low coverage. We ac-

knowledged that this analysis focused on repeat regions

with normal alleles and relatively small number of repeat

units, so the results might not be extrapolated to patho-

genic alleles. In summary, our exploratory analysis

a

c

b

Fig. 4 The distribution of repeat counts estimated by RepeatHMM for three patients with SCA10. The estimation of the pathogenic alleles by RepeatHMM

for the three subjects A, B and C were 830 (a), 825 (b) and 488 (c), and the estimation by gel electrophoresis were ~840, ~820 and ~530, respectively

Fig. 5 Comparison of the estimation of repeat counts on NA12878 using three sequencing platforms. The sequencing platforms include Illumina

short-read sequencing, PacBio long-read sequencing (a), and Nanopore long-read sequencing (b). We examined 40 microsatellites with repeat

units in the range of 2–5 bp, which are short enough to be confidently called by the Illumina data
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confirmed that RepeatHMM worked on different long-

read sequencing platforms, with appropriate adjustment

of model parameters in HMM.

We also used RepeatHMM on HX1 [52] to analyze 15

distinct types of trinucleotide repeats that were known

to cause human diseases (Additional file 1: Table S7). All

the repeat counts were within normal ranges, consistent

with the prior knowledge that HX1 did not have a

known neurological disorder. Furthermore, we analyzed

the CAG repeats in the ATXN3 gene using three differ-

ent techniques: on whole-genome long-read sequencing

(Fig. 6a), on PCR-based long-read sequencing (Fig. 6b),

and on Sanger sequencing (Fig. 6c). Since PCR-based

long-read data had high coverage, we down-sampled the

dataset and produced three subsets of data, each with

~100X coverage. We found that WGS, PCR-based

amplicon sequencing (three down-sampled subsets), and

Sanger sequencing concordantly predicted that HX1 had

14 CAG repeats in ATXN3, further suggesting that

RepeatHMM worked on different types of data.

Discussion
Long stretches of trinucleotide repeats generally cannot

be interrogated by Sanger sequencing or next-generation

sequencing, and were traditionally regarded as “unse-

quenceable” genomic regions. In this study, we leveraged

long-read sequencing techniques and developed a novel

computational tool, RepeatHMM, to estimate repeat

counts for microsatellites. Compared to existing tech-

niques (capillary electrophoresis and southern blot) that

are labor-intensive and cannot be scaled to high-

throughput applications, the combination of long-read

sequencing and RepeatHMM may greatly facilitate rapid

and convenient estimation of repeat counts. Our results

suggested that long-read sequencing has the potential to

be routinely used in research studies on microsatellite

repeat disorders and may be extended in clinical diag-

nostic applications.

RepeatHMM has several advantages over traditional ap-

proaches to determine repeat counts. First, RepeatHMM

takes long reads as input and utilizes HMM for repeat

region detection: HMM is computationally flexible to de-

tect various types of repeats with different unit lengths

and motifs. Although we demonstrated the usefulness of

RepeatHMM on real dataset for CAG repeats and ATTCT

repeats, RepeatHMM can be used for other types of tri-

nucleotide repeats by simply specifying different sets of

parameters. Second, different error profiles from various

sequencers (such as PacBio sequencer and Oxford Nano-

pore sequencers) can also be incorporated into HMM

using different parameters. Third, RepeatHMM is compu-

tationally efficient. Based on the evaluation on the SCA3

dataset, it usually took 2–12 min to analyze raw data on

ATXN3 for a participant (~21,000X coverage). The mem-

ory usage is up to 200 Mb in a 64-bit Linux machine with

Python 2.7; however, please note that TRF requires more

time and memory, especially if the reads contain com-

plicated repeat patterns or if the reads are too long. There-

fore, RepeatHMM is a flexible, efficient, and powerful tool

to replace traditional approaches for the determination of

repeat counts.

However, there are several limitations of the

RepeatHMM approach. First, some repeat regions have

mixed repeats, such as one CTG within many CAG, or

contain interrupted repeats, such as 10 CAG repeats

plus TTTTTTG followed by another 20 CAG repeats. If

a

c

b

Fig. 6 The analysis of ATXN3 in HX1 using three different sequencing techniques. a Whole-genome long-read sequencing with ~100X coverage.

b PCR-based long-read sequencing with three randomly down-sampled datasets, each with ~100X coverage. c Sanger sequencing. All methods

concordantly predicted that there were 14 CAG repeats in ATXN3
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long reads contain non-canonical repeats, it is not

straightforward to differentiate the interruption of per-

fect repeats from insertion/substitution errors. To

address this problem, in the current version of

RepeatHMM, the former scenario (several CTG within

many CAG) can be formulated using simple mixed re-

peat patterns. For the latter case (10 CAG repeats plus

TTTTTTG followed by another 20 CAG repeats),

RepeatHMM would consider it as a combination of mul-

tiple single-base insertions and a deletion of a CAG and

the insertions did not contribute to repeat length estima-

tion (however, the results may be post-processed to

identify stretches of continuous insertions). For even

more complicated repeat patterns, the models need spe-

cialized adjustment. Second, the flanking downstream/

upstream sequences of repeat regions need to be long

enough for RepeatHMM to work reliably. If a long read

has a short flanking sequence such as 20 bp, yet the re-

peat region is too long (for example, 200 repeats with

more than 600 bp), few alignment software tools could

correctly map the long reads to a reference genome.

Thus, repeat counts in some of the long reads with short

flanking sequences cannot be calculated. Third, repeat

patterns and their location in a reference genome are

assumed to be known a priori, that is, our method did

not aim at de novo discovery of repeat patterns. Fourth,

we found that RepeatHMM tended to make mistakes

when two alleles have similar repeat counts, which con-

fused the peak calling procedure. As shown in Additional

file 1: Figure S2, when the size difference between two

alleles was more than 2, the error rates decreased sharply.

In most cases the pathogenic allele would be substantially

longer than the benign allele and this problem had limited

influence on the accuracy of repeat size estimation for

disease analysis in practice. On the other hand, in some

cases where two alleles have similar repeat counts, allele

drop-out remains a critical issue and needs to be ad-

dressed in the future to avoid false negatives for the cor-

rect identification of heterozygosity. Finally, our peaking

calling procedure always assumed one or two peaks in the

repeat counts, which did not handle cases where extensive

mosaicism is available. We may improve the peaking call-

ing procedure in the future to address this issue.

We demonstrated a few successful examples in using

RepeatHMM to quantify well-known and canonical

disease-associated repeat expansions, but it is conceiv-

able that RepeatHMM may also be useful for other

microsatellite repeats, including more complicated re-

peats that do not always conform to canonical patterns.

Microsatellites account for about 2% of human genomes

with a wide distribution throughout the genome [53]

and have a higher mutation rate than other regions of

the genome [54]. Microsatellite repeats contribute to

genetic diversity in human populations and to the

development of some human diseases by affecting

gene expression or the function of encoded proteins.

Given the success of RepeatHMM on simple micro-

satellite repeats, in the future we will explore the

modification of RepeatHMM to handle more compli-

cated microsatellite repeats with mixed patterns of

different lengths, as well as minisatellites with much

longer repeat units (10–60 bp).

Conclusions
In this study, we have developed RepeatHMM to detect

repeat counts of microsatellites from long-read sequen-

cing data. RepeatHMM was evaluated on both simula-

tion data and real data and our results suggested that

RepeatHMM was effective and efficient to quantify re-

peat counts. RepeatHMM is flexible to handle repeat

patterns of any length beyond trinucleotide repeats and

can incorporate different error profiles. With the wider

application of long-read sequencing techniques in re-

search and clinical settings, RepeatHMM is expected to

contribute to the quantification of repeat counts and to

facilitate the analysis of genotype-phenotype relation-

ships for disease-related microsatellites.

Additional file

Additional file 1: The matrices for the HMM, the results on estimating
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