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ABSTRACT Interrupted-sampling repeater jamming (ISRJ) is coherent jamming based on digital radio

frequency memory (DRFM) device, which repeatedly samples, stores, modulates, and retransmits part of

the radar emitted signal, and flexibly forms false targets in the victim radar with relatively low transmitting

power. It significantly interferes the radar to detect, track, and recognize targets. There are many electronic

counter-countermeasures against ISRJ, among which a series of filtering methods are promising. However,

it is not fully addressed. This study proposes a filtering method based on stacked bidirectional gated recurrent

unit network (SBiGRU) and infinite training to fulfill the ISRJ suppression for pulse compression (PC)

radar with linear frequency modulation (LFM) waveform. SBiGRU method converts signal extraction into

a temporal classification problem and accurately extracts the jamming-free signal segments to generate a

band pass filter to suppress the ISRJ and retain the real target signal components simultaneously. Comparing

with two most advanced filtering methods in the published literature, SBiGRU method has improved the

jamming-free signal extraction accuracy, leading to better performances of ISRJ suppression and real targets

detection, which are verified by Monte Carlo Simulations.

INDEX TERMS Band pass filter, digital radio frequency memory (DRFM), electronic counter-

countermeasure (ECCM), gated recurrent unit (GRU), infinite training, interrupted-sampling repeater

jamming (ISRJ), signal extraction, temporal classification.

I. INTRODUCTION

Digital radio frequency memory (DRFM) [1] technique

is widely applied in electronic countermeasure (ECM)

field [2]–[5] since it has been proposed. Due to its ability

to intercept, store and recall radio frequency signals, the sig-

nal retransmitted by a DRFM jammer is coherent with the

emitted signal. Thus, a high processing gain can be obtained

from signal processing such as pulse compression (PC) and

coherent integration [6], [7]. Therefore, a DRFM jammer can

flexibly form false targets in the victim radar with a relatively

low transmitting power [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Alma Y. Alanis.

DRFM jammers mainly work in two modes [9]–[13],

i.e.: full-pulse-repeat-back mode and interrupted-sampling-

repeating mode. When a DRFM jammer works in full-pulse-

repeat-back mode, it intercepts, stores and retransmits the

whole emitted signal pulse. While in interrupted-sampling

repeating mode, the jammer samples a part of the pulse,

retransmits it several times, and repeats the process until

the pulse ends. This jamming is called interrupted-sampling

repeater jamming (ISRJ), and a short name for this DRFM

jammer in interrupted-sampling-repeating mode is ISRJer.

ISRJers can be employed by unmanned aerial vehicles,

planes, missiles, satellites, and so on, which significantly

limits the ability of radar to detect, track and recognize those

targets.
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Due to the flexibility of ISRJ, there are many jamming

forms since it was proposed [12] in 2007, which can be

roughly categorized into 2 classes: normal and modulation.

In case of normal, the sampled signal segments are forwarded

directly, whereas in case of modulation, they are modulated

before retransmission. There is a special case of normal

ISRJ proposed by Feng et al. [5] in 2014, which uses ISRJ

to cancel linear frequency modulation (LFM) radar target

echo, provided the range synchronization, phase coherent

and amplitude matching requirements being met. It is an

approach of active echo cancellation (AEC). The normal ISRJ

forms a series of false targets which are farther than the real

target in victim radar, which might exist some risks that the

victim radar identifies the real target by range relationship.

Li et al. [13] presented a modulation ISRJ method in 2014,

which can form a train of false targets that precede the

real one.

There are tremendous electronic counter-countermeasure

(ECCM) techniques against ISRJ, which can be sorted into

2 main classes: active and passive methods.

In case of active methods, Hanbali and Kastantin [14]

presented a technique to counter AEC based on ISRJ. It intro-

duces a linear phase into the emitted signal, which not only

eliminates the effect of the self-protective ISRJ, but also

exploits the jamming signal power to augment the power of

true target. Shen et al. [15] studied the performance of ISRJ

based on intra-pulse frequency coded signal and found that

the ISRJ of random frequency coded signal can only form a

single false target in direct forwarding mode, which is differ-

ent from a group of false targets of the ISRJ of LFM signal,

and the ISRJ performance will be reduced with the increasing

of the sub-pulse number. However, this kind of waveform

cannot fully eliminate the false targets. Zhou et al. [7] pre-

sented an adaptive transmitting scheme for ISRJ suppression.

The method firstly estimates the ISRJer working parame-

ters such as slice width and beginning point of sampling

by emitting normal waveform, then modifies the transmitted

signal to make the ISRJ orthogonal to the reference signal.

The performance of this method significantly depends on

the accuracy of parameter estimation. And it will encounter

failure if the ISRJ parameters are time varying.

The passive methods against ISRJ are mainly based on

LFMwaveform, and can be divided into 2 categories: ‘‘recon-

struction and cancellation’’ approaches and filteringmethods.

The idea of ‘‘reconstruction and cancellation’’ approaches

were presented by Zhou C.’s group [16], [17]. This kind of

approaches firstly estimate the ISRJ parameters such as the

intercepted slice number and forwarding times by analyz-

ing the PC results with time-frequency (TF) analysis, and

estimate the slice width by deconvolution processing. Then,

jamming signal is reconstructed according to the estimated

parameters. Subsequently, the jamming is suppressed by

iterative cancellation. However, the performance of ‘‘recon-

struction and cancellation’’ approaches are sensitive to the

parameter estimation precision, and the computational com-

plexity is high due to the iterative processing.

The filtering methods to suppress ISRJ for LFM radar are

promising, which extract the jamming-free signal segments in

time domain, generate a band pass filter to suppress jamming

in dechirped signal [18]–[21]. Gong et al. [18] proposed a

filter generating method in 2014. The method calculates TF

representation of the dechirped signal by short time Fourier

transform (STFT), and an index function is obtained by sum-

ming the square of complex magnitude of TF representation

in the frequency axis, which makes the index function vary

with time. Then, it divides the radar receiving window into

several segments and selects the time point with the min-

imum value of the index function in each segment, where

the number of divisions is a hyper-parameter, and extracts

dechirped signal segments with a preset length around these

time points as jamming-free signal, where the segment length

is another hyper-parameter. Subsequently, the band pass filter

is generated from Fourier transform of the extracted signal

for ISRJ suppression. Wei et al. [19] proposed an iterative

approach in 2017 to exploit the method in [18] for wideband

radar. The performance of this 2 methods depend severely

on the two hyper-parameters. The optimal hyper-parameters

are closely related with the ISRJer working parameters.

Thus, the application of the method is significantly limited.

H. Yuan, et al. proposed a filtering method based on the

energy function of the dechirped signal [20] in 2017. The

method calculates the minimum and maximum envelope of

the energy function, and sets a threshold to the mean value

of the minimum envelope. Then, it calculates the mean enve-

lope of the maximum and minimum envelopes for jamming-

free signal segments extraction. When the mean envelope

is smaller than the threshold, the signal segment of the

dechirped signal is extracted as jamming-free signal. There

is no hyper-parameter for this method, making it applica-

ble under all ISRJer working modes without adjusting the

method. However, it suffers performance deterioration under

low signal to noise ratio (SNR) and high jamming to sig-

nal ratio (JSR) conditions, due to the poor extraction accu-

racy of the jamming-free signal segments. Chen et al. [21]

proposed a band pass filter design method based on the

TF analysis, which is the state-of-the-art filtering method.

The method automatically detects and extracts the jamming-

free signal segments by a function constructed from the TF

energy distribution of the de-chirped signal, named max-

TF function. A two-stage thresholds strategy is employed in

the extraction. The filter generated from the jamming-free

signal segments is smoothed to make the filtered PC results

being suitable for constant false alarm rate (CFAR) detectors.

The method has improved the extraction accuracy, leading

to a higher suppression performance and extended feasible

scope of SNR and JSR than the previous filtering methods.

However, the extraction accuracy could be further improved,

since the noise segment elimination approach used in [21] is

imprecise and may be misled by frequency shifted ISRJ.

Inspired by the powerful classification and regression abil-

ity of deep learning networks [22]–[25], especially the tem-

poral classification of recurrent neural networks, such as long
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short term memory (LSTM) network [26]–[28] and gated

recurrent unit (GRU) [28], [29], this paper proposes a more

powerful jamming-free signal segments extraction method to

generate a more powerful filter for ISRJ suppression. The

main contributions of this work can be concluded as follows:

1) This work converts the jamming-free segments extrac-

tion into a temporal classification problem, and a

stacked bidirectional gated recurrent unit (SBiGRU)

network is designed to perform the classification.

SBiGRU method extracts jamming-free signal more

accurately and has higher performances of jamming

suppression and real target detection than the method

in the published literature.

2) This work introduces a concept of ‘‘infinite training’’.

The SBiGRU network is trained by infinite samples

generated according to the signal model until the loss

function decreases no more. Since the training dataset

is infinite and can fully represent the problem, there is

no risk of overfitting, which is usually a big trouble for

finite training.

The remaining contents of this paper are organized as

follows: In section II, the signal model of LFM radar and ISRJ

working principle are introduced. In section III, the proposed

method is detailed, including the framework, preprocessing,

SBiGRU network design, and training. Section IV describes

the simulations for comparing the performance of the pro-

posed method and 2 most advanced filtering methods in the

published literature. In section V, the results and analysis are

presented. Conclusions are drawn in section VI.

II. SIGNAL MODEL

The dechirping radar transmits LFM signal pulse and receives

pulse echoed by targets. The received pulse is dechirped,

which converts every signal component echoed by a single

target to a single-frequency signal. Then the PC result is

obtained from the dechirped signal by Fourier transform,

displaying the target in relative range (frequency) domain.

If there is a target carrying an ISRJer in radar sight,

the received pulse will be contaminated by ISRJ signal com-

ponents, and ISRJ components will be converted to several

single-frequency components.

The normalized LFM signal pulse s(t) emitted by radar is

expressed as follows [30], [31]:

s (t) = rect
(

t/Tp
)

exp
(

jπKt2
)

(1)

where

rect

(

t

Tp

)

=

{

1, 0 ≤ t ≤ Tp

0, otherwise
(2)

is a rectangular window function with pulse width Tp and

initial location 0; K is the frequency modulation rate. The

carrier frequency of the signal is neglected since it has no

effect on the deductions in this paper.

Signal echoed by a target to the radar is formulated below:

star (t) = Atar s (t − τtar) (3)

where Atar is a constant, representing the amplitude of the

target signal; τtar is the time delay and τtar = 2Rtar/c, where

c denotes the speed of light and Rtar is the distance between

the target and radar, also called the range of target.

The ISRJer samples a slice of the radar emitted sig-

nal, then retransmits the slice several times. The sampling-

retransmitting process is repeated until the radar signal pulse

ends, as shown in Fig. 1.

FIGURE 1. The principle of ISRJ.

The interrupted sampling function is defined as fol-

lows [12], [17]:

p (t) =

N
∑

n=1

rect

(

t − nTS

TI

)

(4)

where TI is the slice width; TS = (M+1)TI , representing the

time interval between adjacent intercepted slices, of whichM

stands for the number of retransmissions of each slice; and

N = ⌈
(

Tp − TI
)

/TS⌉, denoting the number of slices that can

be sampled during a pulse.

Therefore, the sampled signal sI (t) can be expressed as

follows:

sI (t) = p (t − τtar) s (t − τtar) . (5)

After sampling, every sampled slice is retransmitted M

times. Thus, the jamming signal sJ (t) received by radar is

formulated as follows:

sJ (t) = AJ

M
∑

m=1

sI (t − mTI ) (6)

where AJ is the amplitude of the jamming signal.

Therefore, the radar received signal can be expressed as:

sr (t) = star(t) + sJ (t) + n(t) (7)

where n(t) is white Gaussian noise.

The reference signal sref (t) is a time delayed version of the

transmitted signal but not rectangular windowed, i.e.:

sref (t) = exp
[

jπK (t − τref)
2
]

(8)

where the time delay τref = 2Rref/c, corresponding to a

reference range Rref, which is preset by the radar system.

The dechirped signal sd (t) is obtained by multiplying the

received signal sr (t) and the reference signal sref (t):

sd (t) = s∗r (t)sref (t)

=
[

star (t) + sJ (t) + n∗ (t)
]

sref(t)

= sd,tar (t) + sd,J (t) + v(t) (9)
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where

sd,tar(t) = Atar rect
[

(t − τtar) /Tp
]

×ejπK
[

2(τtar−τref)t+τref
2−τtar

2
]

, (10)

and

sd,J (t) = AJ

M
∑

m=1

N
∑

n=1

rect

[

t − τtar − mTI − nTS

TI

]

×ejπK
[

2(τtar+mTI−τref)t+τref
2−(τtar+mTI )

2
]

. (11)

Equations (9)-(11) indicate that the dechirped signal is

composed of single-frequency components and noise, which

means that the jamming components could be suppressed by

a well-designed filter.

III. METHOD

The basic idea of filtering methods against ISRJ is extract-

ing jamming-free segments of the dechirped signal in time

domain to generate a band pass filter to suppress the ISRJ sig-

nal components. The jamming-free segments are not contam-

inated by the jamming, therefore, the spectrum of jamming-

free signal only contains the frequency components of real

targets, which is very suitable to be used as a band pass filter

to suppress the ISRJ. The basic process flowchart of filtering

methods is shown in Fig. 2.

FIGURE 2. The basic flowchart of filtering methods.

The proposed SBiGRUmethod follows the basic flowchart

in Fig. 2, but it thoroughly innovates the jamming-free signal

extraction, that the signal extraction problem is converted

into a temporal classification task. The flowchart of SBiGRU

method’s jamming-free signal extraction is depicted in Fig. 3.

As Fig. 3 illustrated, the jamming-free signal extraction of

SBiGRU method consists of 3 main steps:

1) Preprocessing. The dechirped signal is pre-processed

to form the input of SBiGRU network.

2) Classification. SBiGRU network outputs the signal

component class ID, which is a time-varying sequence,

with the same length of the dechirped signal.

3) Extraction. The jamming-free signal is obtained by

extracting segments of dechirped signal when the

signal component class ID indicates the signal is

jamming-free.

FIGURE 3. The jamming-free signal extraction flowchart of SBiGRU
method.

After extraction, the jamming-free signal is utilized to

generate a band pass filter, i.e.:

H (f ) =
F {sc(t)}

max (|F {sc(t)}|)
(12)

where sc(t) is the jamming-free signal extracted by SBiGRU

method, F {·} stands for Fourier transform.

Then H (f ) is smoothed to make noise background of the

final PC result suitable for constant false alarm rate (CFAR)

target detection [21]. H (f ) is squared, and then detected by a

CFAR detector with a relatively high false alarm probability.

At each cell where a ‘‘target’’ is detected, the smoothed filter

Hs(f ) holds the value of H (f ), while in each interval between

two adjacently detected cells, the value of Hs(f ) is set to the

average value of H (f ) in the interval.

The final PC result r(f ) is obtained by the formula as

below:

r(f ) = F {sd (t)} |Hs(f )| . (13)

A. PREPROCESSING

The preprocessing involves two steps: amplitude normaliza-

tion and temporal real value sequences generation.

The amplitude normalization can be expressed by the

formula below:

xa(n) =
xd (n)

max
n

|xd (n)|
, n = 1, 2, . . . ,N (14)

where xd (n) denotes the discrete time representation of the

dechirped radar pulse signal sd (t), and N is the number of

sampling points of a signal pulse.

The amplitude normalization reduces the complexity of

inputs by one degree of freedom, which helps the SBiGRU

network focus on the signal fluctuations to do classification.

Based on the normalized sequence of dechirped signal

xa(n), 4 temporal real value sequences are generated, i.e.:

x1(n) = real[xa(n)]

x2(n) = imag[xa(n)]

x3(n) = |xa(n)|

x4(n) = angle[xa(n)] (15)

where x1(n) is the real part sequence of xa(n), x2(n) the image

part sequence, x3(n) the amplitude sequence, and x4(n) the

angle sequence.
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The 4 sequences are compounded side by side to form the

input x(n) of SBiGRU network, namely, an N × 4 tensor,

which indicates that, at any temporal step n, a 4-element

vector, i.e. x(n) = [x1(n), x2(n), x3(n), x4(n)], is input into the

SBiGRU network.

B. SBIGRU NETWORK

The SBiGRU network consists of 4 stacked bidirectional

gated recurrent unit (GRU) layers and 2 dense layers,

of which the structure is descried in Table 1, where ‘‘Params.

Num.’’ stands for ‘‘number of trainable parameters’’.

TABLE 1. Structure of SBiGRU network.

FIGURE 4. Data flow of bidirectional GRU layer.

The data flow of the ith bidirectional GRU layer is illus-

trated in Fig.4. There are two standard GRUs working along

two opposite temporal directions in each bidirectional GRU

layer, as shown in Fig.4. x i(n) is the input vector of the ith

bidirectional GRU layer at the temporal step n, and x i+1(n) is

the output vector, obtained by concatenating the hidden state

vectors of the two GRUs, i.e.: 1h
i
n and 2h

i
n. The output vectors

of the ith layer are the input vectors of the (i+ 1)th layer.

According to Table 1, there are 40, 30, 20, and 15 elements

of 1h
i
n and 2h

i
n, for i = 1, 2, 3, and 4, respectively.

‘‘Dense 1’’ takes a 30-elements vector as input, and outputs

a 16-elements vector at each temporal step. Its activation

function is ReLU. ‘‘Dense 2’’ is the output layer with a

Softmax activation. It output a 3-elements vector for each

temporal step, implying the probability of the signal at this

temporal step is noise, jamming-free signal or contaminated

by ISRJ. In training phase, the 3-elements vector is used

to calculate the loss, which is detailed in Section III-C.

In prediction phase, it is utilized to do the classification, i.e.:

the index of the maximum element of the vector is the class

ID of the signal at current temporal step.

C. INFINITE TRAINING

Radar received pulses which are contaminated by ISRJ can

be generated according to Section II. For training samples

generation, the parameters’ setting rules are listed in Table 2.

TABLE 2. Infinite training samples generating parameters’ setting rules.

The parameters for radar emitter, receiver, target, ISRJer,

and noise environment are randomly generated according to

Table 2. If a parameter is set to an interval or several cases,

it obeys uniform distribution.

Since the sampling frequency is normalized to unit 1, most

situations of ISRJ contaminated echo signal pulses of narrow-

band radar can be included in the settings.

The designed loss function to be minimized is a weighted

categorical cross entropy, i.e.:

J = −

Nc
∑

i=1

N
∑

j=1

wiy
true
i,j ln(y

pred
i,j ) (16)

whereNc is the number of signal component classes;wi is the

weight for the ith class; ytruei,j is the indicator of the ith class at

the jth temporal step; and y
pred
i,j is the output value of SBiGRU

network for the ith class at the jth temporal step, implying the

probability of the signal at the jth temporal step belongs to

the ith class in the training phase. Nc = 3, and the class IDs

{1, 2, 3} indicate that the signal at a certain moment is noise,

real target echo plus noise (target), and signal contaminated

by jamming (jamming), respectively. w = [1, 1, 2]. The

weight for the 3rd class is doubled, for not mis-classifying the

jamming to be other classes. If the signal at the jth temporal
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step belong to the ith class, ytruei,j = 1; otherwise, ytruei,j = 0.
∑Nc

i=1 y
pred
i,j = 1.

Adadelta [34] optimizer is utilized in SBiGRUmethod. It’s

a more robust extension of Adagrad [35] that adapts learning

rates based on a moving window of gradient updates, instead

of accumulating all past gradients.

A training epoch has 10 batches. A batch contains 200 sam-

ples of generated signal pulses. The receiving gate width

is invariant during 50 epochs in training phase, but it is

regenerated in the next 50 epochs.

The network is trained on the infinitely generated samples

until the loss function decreases no more.

IV. SIMULATIONS

In order to show the performance advantages of the proposed

method over other filtering methods in the published litera-

ture and to demonstrated how SNR and JSR conditions affact

the performance, a series of Monte Carlo simulations were

designed.

The proposed SBiGRU method was compared with the

2 most advanced filtering methods, which were referred to

as energy [20] and max-TF [21] methods in this paper. Our

method and the 2 competitors were tested under different

ISRJer parameters, SNR, and JSR conditions.

The parameters of radar and target for generating

test-samples are listed in Table 3.

TABLE 3. Parameters of radar and target for testing samples.

TABLE 4. ISRJer parameters of 5 working mode.

The target holds an ISRJer with slice width TI = 2µs. The

ISRJer has 5 working modes, of which the parameters are

listed in Table 4, where ‘‘Jam.-free Duty Ratio’’ means the

ratio of the jamming-free signal time duration to the radar

pulse width. ISRJer shifted the frequency of the sampled

signal by 6 MHz.

In order to show how SNR and JSR affect the filtering

performance, SNR ranged from−20 to 20 dBwith an interval

of 2.5dB, and JSR ranged from 5 to 50 dB with an interval

of 5 dB.

The 5 ISRJ modes, 17 SNR and 10 JSR conditions,

made 850 condition combinations. The 3 methods were

applied to all the 850 conditions, each for a 1500 repetitions’

Monte Carlo simulation. Additionally, no-jamming case

under the 17 SNR conditions were put through the same

Monte Carlo simulation.

The jamming-free signal extraction results, the amplitudes

of real target and the maximum ones at other locations in PC

results which are not filtered and filtered by the 3 methods,

and the target detection results were recorded. First order

difference CFAR (FOD-CFAR) [36] detector was employed

for target detection due to its effectiveness and robustness.

The false alarm rate of FOD-CFAR detector was set to 10−5.

V. RESULTS AND ANALYSIS

A. EXTRACTION ACCURACY

The best situation of the extraction is that all the jamming-

free segments are extracted and no other signal segments are

mistakenly extracted.

Recall rate was employed to measure how much of the

jamming-free signal was extracted from the total jamming-

free signal. The definition is expressed as follows:

Precall =
NJFE

NJF
(17)

where NJFE stands for the point numbers of correctly

extracted jamming-free segments, and NJF is that of the total

jamming-free segments under certain conditions.

Since there were two kinds of other signal segments,

i.e., noise segments and jamming-contaminated segments,

noise rate and jamming rate were utilized to measure

how much of the extracted jamming-free signal was mis-

extracted from noise and jamming-contaminated segments,

respectively. The calculation formulas are expressed below:

Pnoise =
NNE

NE
(18)

Pjamming =
NJE

NE
(19)

where NNE and NJE are the points number of the noise

and jamming-contaminated segments which are extracted as

jamming-free signal, and NE is the total points number of the

extracted segments under certain conditions.

For recall rate, the larger value indicates higher perfor-

mance of the generated filter under all SNR and JSR con-

ditions. In the contrary, for noise rate or jamming rate,

the smaller value is better. To be more specific, lower noise

rate is more useful under low SNR conditions, and lower

jamming rate plays a more important role under high JSR

conditions.

The 3 metrics of the 3 methods vs SNR and JSR are depict

in Fig. 5, where ‘‘jam. rate’’ is short for jamming rate. The

value in each SNR-JSR grid is averaged under 5 ISRJer’s

working mode, each with 1500 repetitions, and the unit is one

thousandth. The 3 panels (a,b,c) in the 1st row are results of

recall rate; those in the 2nd row are results of noise rate; and

those in the 3rd row are results of jamming rate.
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FIGURE 5. The recall rate, noise rate, and jamming rate vs SNR & JSR of energy, max-TF, and SBiGRU methods.

From Fig. 5, we could see some facts:

1) Considering recall rate, energy and max-TF methods

performed relatively well under high SNR or high

JSR conditions, whereas relatively bad under low SNR

and low JSR conditions, and the proposed SBiGRU

method performed relatively well under nearly all the

tested SNR and JSR conditions. In general, SBiGRU

method significantly outperformed the 2 competitors

under low SNR and low JSR conditions, and is superior

to or comparable with them under other SNR and JSR

conditions.

2) Considering noise rate, SBiGRU method was signifi-

cantly better than the 2 competitors under all the tested

SNR and JSR conditions, and max-TF method per-

formed better than energy method.

3) Considering jamming rate, SBiGRUmethod performed

better than the 2 competitors under relatively high

JSR or high SNR conditions, and it was not as good

as them under low JSR and low SNR conditions.

From the facts, it seems that SBiGRU method ‘‘knows’’

how to behavior under a certain condition to achieve the

best performance, as it has a lower noise rate under low

SNR conditions and lower jamming rate under high JSR

conditions comparing with max-TF and energy methods.

We could infer that SBiGRU method will have a better

jamming suppression and detection performance than the

2 competitors.

B. JAMMING SUPPRESSION AND REAL TARGET

RETAINING PERFORMANCE

The jamming suppression and real target retaining ability

of the 3 methods are measured by the metric of ‘‘signal to

jamming ratio improvement factor (SJRIF)’’ [21]. Before

defining SJRIF, signal to jamming ratio (SJR) in a PC result
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FIGURE 6. The SJRIF vs SNR & JSR of (a) energy, (b) max-TF, and (c) SBiGRU methods.

r(f ) is defined as follows:

SJR = 20 log10
(

at/aj
)

(20)

where at = |r(ftar)| stands for the amplitude of real

target with ftar indicating the range of real target, and

aj = maxf 6=ftar (|r(f )|) is the maximum amplitude of jam-

ming or noise. Then, SJRIF can be expressed as:

SJRIF = SJRfiltered − SJRunfiltered (21)

where SJRfiltered is SJR of a filtered PC result, and SJRunfiltered

is that of the raw PC result that not filtered.

The SJRIF results vs SNR & JSR of the 3 methods are

depicted in Fig. 6.

As shown in Fig. 6, we could see that:

1) SBiGRU method had higher or equivalent SJRIF com-

paring with energy and max-TF methods under all

tested SNR and JSR conditions except for 2 SNR-JSR

girds (SNR:-20; JSR:5,10).

2) Max-TF method outperformed energy method under

most SNR-JSR grids.

3) For SBiGRU and max-TF methods, SJRIF get higher

as the SNR or JSR increases. This is a result of that

the extraction becomes more accurate as SNR or JSR

increases.

4) The SJRIF of energy method stays relatively high in

a limited SNR-JSR region (approximately, 2.5dB ≤

SNR ≤ 17.5dB, 10dB ≤ JSR ≤ 25dB ). It is a result

from the recall rate, noise rate, and jamming rate.

C. DETECTION PERFORMANCE

The detection performance of radar after employing filters is

demonstrated by detection rate, which is defined as follows:

Pd = Nd/Ntotal. (22)

where Nd is the number of detected targets, and Ntotal is the

total number of targets which exist in the PC results.

The detection results of FOD-CFAR detector employed

on the PC results which are not filtered and filtered by the

3 methods are plotted in Fig. 7. There are 11 cures in every

panel of Fig. 7. One of the 11 cures is the detection rate cures

under no jamming conditions, and the other 10 are under

different JSR conditions from 5 dB to 50 dB.

Comparing the detection results of the 4 cases, we could

see that:

1) The detection rate cures of the 4 cases are nearly the

same under no jamming conditions, implying that the

3 filtering methods do not affect radar detection perfor-

mance under such conditions.

2) By applying any one of the 3 methods, detection rate

improved under most SNR and JSR conditions, except

for no jamming situations.

3) The detection performance of PC results filtered by

SBiGRUmethod is the highest among the 4 cases. It is a

natural result of the best jamming-free signal extraction

and the highest SJRIF.

4) The detection rates of the 4 cases decrease as JSR

increases.

In general, the detection rate increases as the SNR

increases. However, in Fig. 7 (b), the detection rate firstly

increases as the SNR increases and then decreases as the SNR

increases further, when 30 ≤ JSR ≤ 40 dB. The reason

is that, in low SNR region, the recall rate of energy method

increases as SNR becomes larger, leading to the increase of

SJRIF and detection rate, and in high SNR region, the jam-

ming rate increases as SNR increases whereas the recall rate

and noise rate are stable, resulting in the deterioration of the

SJRIF and detection rate.

The detection rate of SBiGRU and max-TF method with

low JSR under low SNR conditions is higher than that of no

jamming case. The reason is that the real targets are enhanced

by the filters generated by the 2method under such conditions

when the JSR is low whereas the filters of no jamming case

are all-pass filter

D. TIME CONSUMPTION

Since the jamming suppression algorithms are intended to

real-time applications, we recorded the time consumption

of the 3 methods for radar system designers. In order to

measure the time consumption, we applied the 3 methods

to 1000 testing pulses on a workstation with an i9-9900K

CPU and a GTX 1080Ti GPU. All the processes of Energy

and max-TF methods were executed by single thread Mat-

lab codes on CPU. The processes of SBiGRU method were

executed by the same means except that the jamming-free
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FIGURE 7. The detection rate cures. (a) Not filtered, (b) filtered by energy method, (c) filtered by max-TF method, (d) filtered by SBiGRU
method.

signal extraction of SBiGRU method was executed by Keras

codes on GPU, which significantly accelerates the computing

speed of SBiGRU network. The time consumption results are

described in Table 5.

TABLE 5. Time consumption for filtering 1000 testing pulses.

The results in Table 5 demonstrate that: the time consump-

tion of ‘‘filter generation and filtering’’ are nearly the same

for the 3 methods, since those processes are exactly the same;

the time consumption of ‘‘extraction’’ for max-TF method

is about 15 times of that for energy method, and that for

SBiGRUmethod is the shortest with help of a powerful GPU.

Theoretically, the comparison of computational complex-

ity of jamming-free signal extraction for the 3 methods is:

energy < max-TF < SBiGRU, and the computational com-

plexity of extraction for SBiGRU is approximately 5 times

of that for max-TF method. However, with the help of

GPU, the time consumption of SBiGRU is significantly

reduced, indicating that it potentially be capable for real-time

applications.

VI. CONCLUSION

We constructed a temporal classifier based on SBiGRU and

infinitely trained it for extracting jamming-free signal from

ISRJ contaminated radar received signal, achieving intelli-

gently better extraction accuracy under different SNR and

JSR conditions, leading to more powerful ISRJ suppres-

sion ability and higher real target detection performance

when compared with the 2 most advanced filtering methods

against ISRJ. The proposed method paves a way for radar to

detect and further to track and recognize real targets in ISRJ

environment.

In the near future, we will work on improving the radar

detection and tracking performance throughmulti-pulses pro-

cessing in ISRJ environment, on the foundation of single

pulse detection which is addressed by the proposed method

in this paper.
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