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This paper uses a question-and-answer format to present the technical aspects of inter­
rupted time-series analysis (ITS A). Topics include the potential relevance of ITS A to 
behavioral researchers, serial dependency, time-series models, tests of significance, and 
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Various techniques have been proposed to aid 
in judging the significance of change in indi­
vidual subject research. These decision aids in­
clude visual analysis of graphic displays and 
rule-of-thumb, as well as formal inferential pro­
cedures applied to descriptive statistics. Perhaps 
the most suitable statistical procedure for analyz­
ing individual subject data is interrupted time- 
series analysis (ITSA). Unfortunately, however, 
ITSA is technically complex, and at present 
there are few papers that bridge the gap between 
the elementary description by Jones, Vaught, 
and Weinrott (1977) and the more complex 
mathematical presentation by Glass, Willson, 
and Gottman (1975). This paper is intended to 
help bridge that gap and hence ease the pains 
of entry into the technical ITSA literature.
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The reader should understand that he or she 
will not be able to perform an ITSA as a result 
of reading our paper. It is not intended as a 
cookbook for performing an ITSA. It is instead 
a description of the novel aspects of ITSA writ­
ten in reasonably ordinary language. W e have 
written the material that follows in a question- 
and-answer format. This format allows the reader 
the options of obtaining an answer to a spe­
cific question by turning to the relevant portion 
of the paper or obtaining a general understand­
ing of ITSA and related issues by reading the 
paper straight through.

Q: W hat is interrupted time-series analysis?
A: Interrupted time-series analysis is a statistical 
method for analyzing temporally ordered scores 
to determine if an experimental manipulation, 
a clinical intervention, or even a serendipitous 
intrusion, has produced a reliable change in the 
scores. Unlike other decision aids, such as visual 
analysis or analysis of variance, ITSA accommo­
dates serial dependency, a common property of 
single organism behavioral scores. Serial depen­
dency violates assumptions underlying traditional 
statistical models, such as the analysis of variance 
(Glass et al., 1975; Gottman & Glass, 1978),
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and appears to hinder the use of visual analysis 
as well (Jones, Weinrott, & Vaught, 1978).

Q: Why might a behavioral researcher be inter­
ested in ITSA?
A: The usual visual method for the analysis of 
experimental effects may be unreliable in two 
important cases: when the experimental effect 
is small or otherwise difficult to detect, and 
when the observations are serially dependent. 
If neither of these conditions exists in a given 
study, then visual analysis of graphic representa­
tion of data will probably produce reliable in­
ferences about the effects of a manipulation (see 
Parsonson & Baer, 1978, and Tukey, 1977, for 
a thorough discussion of graphic analysis).

In the first case, when an experimental effect 
is small or difficult to detect, one or more of 
the following tends to occur: (a) the results of 
visual analysis will be less reliable when the ef­
fects of manipulations are small; (b) baseline 
trends or cycles are hard to separate from the 
behavior changes caused by the manipulation; 
and (c) the eye has trouble distinguishing real 
behavior change from random behavioral fluctu­
ations when scores are highly variable. Of course, 
applied analysts may not be interested in any 
statistical method for analyzing data (Michael, 
1974; Baer, 1977; Parsonson & Baer, 1978; for 
other views, see Jones et al., 1977; Gottmann 
& Glass, 1978; and Kazdin’s summary, 1976). 
Opponents of statistical analysis have proposed 
several alternative remedies for the data prob­
lems described above. Some would argue that 
small behavior changes are not worthwhile, 
even if shown to be statistically reliable (Baer, 
1977), that unstable baselines should be dis­
carded or continued until trends or cycles dissi­
pate (Sidman, I960), and that highly variable 
scores should be aggregated to reduce variability 
or the study should be rerun under more con­
trolled (or controlling) conditions. But when 
these options are viewed as undesirable or im­
practicable, then ITSA should be a useful sup­
plement to visual analysis (Jones et al., 1977).

The second problem, serial dependency among

the observations, is a more subtle and, perhaps, 
more pervasive problem. Serial dependency re­
fers to the fact that most time series—that is, 
temporally ordered behavioral scores for a single 
unit such as a subject, classroom, or family—do 
not consist of statistically independent observa­
tions (Glass et al., 1975). With serially depen­
dent data, the performance of the unit at a given 
point in time can be predicted from its perfor­
mance at one or more earlier points in time. 
When scores are serially dependent, visual anal­
ysis will agree with statistical analysis (ITSA) 
less often than when scores are not serially de­
pendent (Jones et al., 1978). So visual analysis 
tends to produce less reliable and, therefore, less 
valid inferences from applied behavioral studies 
when this condition exists in the data than when 
it does not. And serial dependency is common 
in time-series data sets. Jones et al. (1977) re­
ported finding serially correlated data in 83% 
of nonrandomly selected graphs from the Jour­
nal of Applied Behavior Analysis, whereas Ken­
nedy (Note 1) reported finding only 29% of 
the graphs he analyzed from the same journal 
to have significant serial correlations. Although 
it is not clear how to account for these discrep­
ancies, it is clear that a substantial number of 
published individual subject data sets are serially 
dependent.

Q: What are time-series data?
A: Time-series data are observations on some 
variable gathered at regular intervals. The ob­
servations may be obtained on a single subject 
or on an aggregate of subjects considered as 
a functional unit such as a classroom of chil­
dren or a married couple. The set of potential 
observations is called the time-series process. 
Any real set of time-series data is properly 
called a realization of a process. Just as in ordi­
nary statistics, where a set of data is referred to 
as a sample from a population, in time-series 
analysis a set of time-ordered data is referred 
to as a realization from a particular time-series 
process. For example, if we observed a child’s 
thumb-sucking for 30 days, we would obtain
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slightly different realizations depending on such 
factors as when we began observing and when 
we observed.

Q: W hat is a time-series model?
A: A time-series model is an attempt to describe 
mathematically a naturally occurring time-series 
process. The time-series data at hand (a realiza­
tion of the process) are used to estimate the 
process. In ordinary statistics, we model our ob­
servations by splitting them into two compo­
nents: the experimental effects component and 
the error component. Similarly, a complete 
time-series model has two components: the de­
terministic component, which reflects effects that 
are consistent across some period of time, and 
the stochastic component, which reflects recent 
error or noise. The deterministic component 
may include the mean of the process, an effect 
that we infer to be constant throughout the time 
of the process, and treatment effects, which we 
infer to be limited to particular experimental 
phases. The deterministic component of a time- 
series model exactly parallels the experimental 
effects component of ordinary statistical models 
such as the model for the independent group 
analysis of variance. However, the error com­
ponent of ordinary analysis of variance and the 
component of time-series analysis are not en­
tirely analogous. A time-series model subdi­
vides the stochastic component into a part that 
reflects a random event occurring at the time 
of the observation and a part that reflects the 
effect of previous random event(s) on the ob­
servation. This latter systematic portion of the 
stochastic component is responsible for the 
serial dependency in the time series.

Q: W hat is serial dependency?
A: Serial dependency is the property of pre­
dictability among the stochastic or error com­
ponents of the time-series observations that 
invalidates traditional statistical assumptions. 
When we use conventional statistics, we must 
assume that the error components are inde­
pendent, and we take great pains to contrive

situations in which this assumption will be valid. 
But when we intensively study the behavior of 
an individual unit, it is clear that the successive 
observations cannot be easily isolated and made 
independent.

Consider the following illustration: A male 
subject generates data during a weight control 
program through the daily observation of his 
own scale. Let us analyze the components of 
these observations. The weight of bone and vital 
organs will be constant throughout the realiza­
tion. There may be an effect due to treatment 
or its absence during the different phases of the 
experiment. These are the deterministic compo­
nents. There will also be a stochastic component 
of random, daily fluctuations around the ex­
pected levels of the deterministic effects. Sup­
pose that on day one of the program the man’s 
weight takes a random bounce above baseline 
level. When the man observes his weight in 
the evening, the observation of this deviation 
shocks him into abstinence during the next day. 
The observation on day one has had a reactive 
effect. On day two, the stochastic deviation from 
baseline includes the random fluctuation occur­
ring on day two, plus the random event of day 
one times a negative factor reflecting the man's 
abstinence. This effect of the previous day's 
fluctuation is the systematic stochastic compo­
nent. If the net effect of both of the stochastic 
components of day two's observation is a devia­
tion below baseline, we might predict that the 
systematic component of day three's error com­
ponent will tend to push the weight back up, 
and so on. Note that this predictability or de­
pendency has nothing to do with the observa­
tions’ absolute location in time, as the relations 
between stochastic components do not depend 
upon whether the experiment is in the baseline 
or treatment phase. The serial dependency be­
tween two observations is strictly a function of 
their position with respect to each other, of 
their adjacency in this example.

Q: How is serial dependency assessed?
A: Serial dependency is assessed by calculating
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the autocorrelations between observations sep­
arated by different time intervals or lags in the 
series. A lag-1 autocorrelation is computed by 
pairing the initial with the second observation, 
the second with the third observation, and so 
on until the second from the last is paired with 
the last observation.

The lag-2 autocorrelation is calculated by 
pairing scores that are two intervals apart. For 
example, the initial is paired with the third 
score and the second with the fourth score. If 
the total number of observations is symbolized 
by n, we ordinarily compute n/A  lag correla­
tions (Box & Jenkins, 1970, chapter 6), be­
cause as the lag increases there are fewer and 
fewer pairs of observations contributing to the 
correlation. For example, with n  =  72, ris has 
54 pairs of scores contributing to the correlation.

In order for the autocorrelations to reflect the 
systematic component of the stochastic or error 
process, it is important that the observations be 
obtained at regular (equal) intervals. Observa­
tions conducted at irregular, or variable inter­
vals are likely to disguise or alter the pattern of 
autocorrelations that would otherwise be ob­
tained. This point can be illustrated with a 
simple example. The degree of wakefulness of 
many persons is predictable across 24-h cycles. 
Hourly observations of these persons’ degrees of 
wakefulness would yield substantial autocorre­
lations at lag 24. If, however, observations were 
obtained at irregular intervals, the lag-24 auto­
correlation might pair an observation on Mon­
day at 4:00 a.m. with another observation on 
Wednesday at 1:00 p.m., rather than Tuesday 
at 4:00 a.m. Thus, the irregular observations 
would disguise the regularity in the wakefulness 
series.

The general formula for the lag-k autocorre­
lation or serial correlation, abbreviated r*, is

ru =  ^ ( Z i  -  Z)(Z,+* - Z ) / X  (Zi -  Z ) \
i = 1 4 = 1

where N  is the total number of observations 
in the series, Zi is the value of the observa­

tion at time period i, Z  is the mean of the series, 
and k is the number of lags.

A substantial lag-1 autocorrelation is suf­
ficient cause for concern about serial correlation, 
but it is not a necessary cause. The researcher 
should keep in mind that some cyclic phenom­
ena can cause powerful serial dependencies at 
longer lags with or without a lag-1 correla­
tion. '’Seasonal” effects, such as might be found 
in monthly observations, are unlikely to be 
found in the relatively short series that are of 
interest to applied behavior analysts. (See Mc­
Cain and McCleary, 1979, p. 261-273 for dis­
cussion of seasonal effects in time series.) Hourly 
measurements collected over many days could 
also reveal important dependencies at lag-24.

Q: How does serial dependency affect statistical 
tests?
A: Because serial dependency concerns only the 
stochastic component of the observation, it is 
not surprising to find that it does not bias our 
estimates of the deterministic parameters of the 
process, such as the mean. But it does bias 
estimates of the error variance and hence all 
conventional tests of significance. Negative auto­
correlation, as was present in the weight ex­
ample above, reduces the error term and hence 
gives traditional tests a conservative bias. Posi­
tive autocorrelation, probably a more common 
situation, increases the error term and creates a 
liberal bias when ordinary hypothesis testing 
procedures are used (Hibbs, 1974; also, see 
Scheffe, 1959, ch. 10). That is, far too many 
interventions are found to be statistically signif­
icant when no real effect exists. Because visual 
analyses also (and appropriately) take account 
of the apparent variability in the data to esti­
mate the strength of an experimental effect, 
they too are biased in the presence of autocor­
relation (Jones et al., 1978). Although Jones 
et al. found that serial dependency affects the 
reliability and accuracy of visual analysis, It is 
not yet known whether the effects of serial de­
pendency on visual analysis parallel the effects
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of serial dependency on conventional statisti­
cal tests.

Q: How does ITSA accommodate serial de­
pendency?
A: A major goal of ITSA is to model the struc­
ture of the stochastic components of the time- 
series observations. Once a model is fitted to 
the stochastic component of the data, the sys­
tematic part of the error can be subtracted from 
each observation. The resulting scores are called 
residuals, and they contain no serial dependency. 
The residual scores meet the assumption of 
independence underlying ordinary statistical pro­
cedures. Techniques like t tests can then be ap­
plied to assess changes in behavior from one 
phase to another.

HOW  TO CONDUCT AN 
INTERRUPTED TIME 

SERIES ANALYSIS

Q: W hat kinds of models are ordinarily fitted 
to the stochastic component of time-series data? 
A: The most common models fit to the error 
or stochastic component of time-series data are 
the AutoRegressive integrated Moving Average 
(ARIMA) models. These models are described 
by Box and Jenkins (1976) and by Glass et al. 
(1975). Autoregressive and moving average are 
the two elementary models for the structure of 
the stochastic component of the time-series 
process.

Q: W hat are the autoregressive and moving av­
erage models?
A: The autoregressive (AR)  and moving aver­
age (MA)  models are the two forms of depen­
dence that can be exhibited in the stochastic 
components of time-series observations. Pro­
cesses are said to contain components which 
are "autoregressive order-p” [AR(/>)3 or "mov­
ing average order-q” [MA(#)]. The order of 
these processes denotes the number of prior ob­
servations that are included as terms in the sys­
tematic portion of the observation’s stochastic

component. For instance, the AR(1) model ex­
presses each observation as a function of a 
random event and the previous (or lag-1) ob­
servation in the series. The AR(2) model ex­
presses each observation as a function of a ran­
dom event and the two previous observations.

Before further developing AR and MA mod­
els, we will examine a time series in which the 
data are serially independent. Panel A of Figure 
1 is a simulated time series consisting of 100 
independent samples from a standard normal 
distribution (generated by a computer). This 
time series has neither autoregressive nor mov­
ing average components and is commonly known 
as standard normal white noise. When we state 
that the realization in Panel A is standard nor­
mal white noise, we claim that if we carried 
the process out to a great length and drew a 
frequency distribution of the many values ob­
tained, our graph would match the normal 
curve. But in any finite realization, we can only 
obtain an approximate match.

We will use Zi to designate our observation

SESSIONS

Fig. 1. Plots of (A) a white noise process, (B) 
the same white noise observations transformed by an 
autoregressive process, and (C) the white noise ob­
servations transformed by a moving average process. 
Arrow (1) in Panel B is the first observation in base­
line of a hypothetical A-B-A experiment, Arrow (2) 
is the first point of treatment, Arrow (3) is the first 
point of the second baseline, and Arrow (4) is the 
last data point of the experiment.
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of the process at time /. Ai is an independent 
sample from the standard normal distribution 
occurring at time i. So we can model the white 
noise process quite simply with the equation

Z< =  Ai.

These uncorrelated stochastic components ex­
emplify the necessary conditions for valid con­
ventional statistical tests.

Panel B of Figure 1 represents a graph of 
the same normal samples as were exhibited in 
Panel A, but made serially dependent through 
a transformation to an AR(1) process. In an 
AR(1) process, each observation Z% again in­
cludes Ai as its random component. But Zi also 
includes a systematic component: the parameter 
<f> times the previous observation Z i - 1. That is,

Zi =  Ai +  <f>(Zi-i)9

where <f> (phi) is a number between 1 and —1. 
The larger the absolute value of the more 
powerful the effect of Z i - 1 upon Zi, and con­
sequently, the stronger the serial dependency 
within the data set. (In an AR(1) model, <£> 
functions exactly as does r, the ordinary product 
moment correlation, in a standardized bivariate 
regression equation.) In Panel B we have chosen 
a substantial value of <£> =  0.7, in order to 
illustrate the effect of serial dependency.

Suppose that a researcher had begun observ­
ing this realization at session 30, marked with 
arrow 1, in Panel B. After 11 observations have 
shown a 'declining baseline/ the experimenter 
introduced a treatment at session 41, marked 
by arrow 2. Upon introduction of treatment, 
the slope of the graph turned abruptly and 
dramatically upward. After eleven 'treatment* 
observations, the researcher instituted a reversal 
phase at session 52, marked by arrow 3. Nine 
observations were recorded, and data collection 
ceased at session 60, marked by arrow 4. It is 
easy to see how one might be tempted to infer 
a deterministic structure within this time-series 
realization. But, in fact, the sustained negative 
and positive passages of the realization in Panel 
B are simply reflections of minor sampling

fluctuations in the corresponding segments of 
the white noise realization shown in Panel A, 
"amplified” by the autoregressive process. In­
tuitively, the effect of the positive $  value in 
the Panel B series is to give the process "in­
ertia”— a tendency to retain the effects of pre­
vious observations—and hence to exaggerate 
short-run variations within the white noise reali­
zation. A negative (f> value, however, would 
give the opposite effect; that is, the series would 
oscillate rapidly around the mean.

Panel C illustrates the transformation of the 
Panel A observations into an MA(1) process. 
Once again, each observation Zi includes the 
random component Ai. Now, however, the sys­
tematic component is 0 (theta) times A i - 1,  the 
previous random event. The equation for the 
MA(1) model is:

Zi =  Ai -(- 0(Ai— l).

In Panel C, 0 =  .7. The effect of the MA(1) 
process is once again to smooth the graph and 
give it "inertia.” But here the effect is less ex­
treme than that of the AR(1) process. That is, 
Zi- 1  has more impact upon Zi in the AR(1) 
model than in the MA(1) model. This is be­
cause only the random component A i - i of ob­
servation Z i-i, not the entire observation, ap­
pears in the MA(1) equation.

Q: W hat is the ARIMA (p,d,q) model?
A: Simple AR(p) and MA(^) processes are 
found in time-series realizations, but we also 
find processes that include components of both 
types. The autoregressive-integrated-moving av­
erage model therefore serves as a general model 
that includes the elementary processes as special 
cases.

ARIMA models have three parameters— usu­
ally symbolized p, d, and q—that must be esti­
mated from the data. These three parameters 
completely describe the stochastic or error com­
ponent of a time series. The parameter p indi­
cates the autoregressive order of the model. A 
pure autoregressive-order 1 process, such as 
the one in Panel B of Figure 1, would be writ­
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ten ARIMA (1,0,0). The q parameter refers to 
the moving average order of an ARIMA model. 
A pure moving average-order 1 process (Panel 
C of Figure 1) would be written ARIMA 
(0,0,1). An ARIMA process containing both an 
autoregressive and a moving average compo­
nent would be represented by the following 
equation:

Zi =  Ai +  (f>(Zi-i) +  0(A i-i).

We would write this process as ARIMA (1,0,1).
The middle parameter in the ARIMA model, 

d, refers to the order of differencing that may be 
required in order for the series to meet a 
critical assumption of interrupted time-series 
analysis, called the weak stationarity assump­
tion. Stationarity requires that the structure and 
parameters of the time-series process do not 
change as a function of time. Imagine that the 
time series has been separated into several dif­
ferent chunks. In practice, weak stationarity 
means that we must assume that the mean 
and variance and the autocorrelations are the 
same for each chunk of the series. Weak sta­
tionarity is important because whenever we do 
ITSA we are trying to say something about 
the future from the past, and we cannot do that 
unless we assume that some function of the 
time series is not changing. We must assume 
that some kind of regularity or stability with 
time exists or prediction is impossible.

Time series that are heterogeneous with re­
spect to their mean, variance, or autocorrelations 
are called nonstationary. The stationarity as­
sumption is violated, for example, by series that 
have secular trends, that is, by series that 
change in level by drifting up or down. Many 
time series in the behavioral sciences do have 
secular trends and hence are nonstationary. For­
tunately, most of these series can be changed 
to stationary time series by the differencing 
transformation.

If a series requires differencing, the first ob­
servation is subtracted from the second, the sec­
ond observation from the third, and so on. The 
parameter d, the order of differencing, denotes

the number of times we must perform the dif­
ferencing operation in order to remove all secu­
lar trends from the data. Although differencing 
may transform a series so that it is suitable 
for ITSA, it does not remove the treatment 
effects that are to be assessed. (See McCain & 
McCleary, 1979, p. 236-238, for an elementary 
discussion of differencing.)

The estimation of the ARIMA (p,d>4) model 
may appear forbiddingly complex. Fortunately, 
there appear to be upper limits on the degree 
of complexity likely to be encountered in prac­
tical time-series analyses. For instance, although 
an ARIMA process could have more than two 
autoregressive components, higher order auto­
regressive models are rare. In an empirical in­
vestigation of approximately 100 time series 
involving social and behavioral sciences data by 
Glass et al. (1975), only 2% of the time series 
had more than one autoregressive term. Simi­
larly, although higher order moving average 
models are possible, they also are rare (Glass 
et al., 1975). Furthermore, McCain and Mc­
Cleary (1979) report they have never encoun­
tered a mixed process in an actual ITSA. Fi­
nally, 51% of the series investigated by Glass 
et al. (1975) required no differencing, and only 
6% required differencing beyond the first order.

Q: How is the appropriate time-series model 
identified?
A: Model identification refers to determining 
the order of the model, that is, to determining 
the value of p, d, and q. Identification is based 
upon an examination of the autocorrelations 
and the partial autocorrelations calculated on 
the time-series data. Partial autocorrelations cal­
culated on time-series data are analogous to 
partial correlations on typical temporally un­
ordered data. For example, the lag-4 partial 
autocorrelation indexes the degree of predict­
ability from an observation four intervals in 
advance with the interviewing observations held 
constant. (See Gottman & Glass, 1978, p. 213, 
for a further elaboration of partial autocorre­
lations.) The autocorrelations and the partial
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autocorrelations are typically calculated for the 
first N /4  lags in the data set. The N /4  rule of 
thumb is used because higher order autocorre­
lations and partial autocorrelations become in­
creasingly unstable, as they are based on pro­
gressively fewer observations. (For example, 
with N  =  75 observations, the lag-50 autocor­
relation would include only 25 pairs of obser­
vations. Observations beyond Z25 would have 
no observation separated by 50 lags with which 
to be paired.) These coefficients form the auto­
correlation junction (A C F ) and the partial auto- 
correlation junction ( P A C F ) .  The ACF and the 
PACF are often displayed in graphs called 
correlo grams.

The appropriate values of the ARIMA 
(p,d,q) model are inferred from the forms of 
the correlograms. The researcher should note, 
however, that the parameters of the ARIMA 
(p,d,q) model may change as a consequence of 
the experimental interaction (Stoline, Huitema, 
& Mitchell, 1980). If so, it may not be ap­
propriate to infer values of p, d, and q from 
the correlograms computed from the entire 
time-series data set. Instead, Glass et al. (1975) 
suggested that the autocorrelation function and 
the partial autocorrelation function should be 
computed separately on the pre-intervention 
and the post-intervention data. Model identifica­
tion is then based on the ACF and the PACF 
that are obtained by taking a weighted average 
of the pre- and post-intervention ACFs and the 
PACFs. McSweeney (1977) suggests that sep­
arate models should be identified for the pre­
intervention data, the post-intervention data, 
and for the series as a whole. If inconsistent 
results are found, the model providing the most 
conservative estimate of the treatment effect 
should be chosen. McSweeney’s method may 
prove troublesome in two respects (See Stoline, 
Huitema, & Mitchell, 1980 for another possible 
alternative). First, the selection of the most con­
servative results from among three analyses 
would likely reduce the power of ITSA. Second, 
the presence of a treatment effect may produce 
the appearance of nonstationarity in the ACF

and PACF functions calculated on the entire 
series. This, in turn, may induce the investi­
gator to incorrectly difference the series or 
otherwise perform an improper analysis.

The first step in analyzing a correlogram is 
to establish the stationarity of the process. For 
stationary time-series processes, we expect the 
influence of past observations to decrease rap­
idly as the lag increases. Secular trends, on the 
other hand, tend to elevate the level of the 
ACF at all lags. Consequently, if the lag-1 auto­
correlation is near ± 1 .0  and the succeeding lag 
correlations do not die out within four or five 
lags, nonstationarity should be suspected. The 
observations should be differenced and the ACF 
and PACF recomputed until a stationary pattern 
is achieved.

The reader should be warned, however, that 
it can be difficult to correctly difference a time 
series with small N  in the presence of strong 
serial dependency. Extreme care should be ex­
ercised in these circumstances because, as Padia 
(Note 2) points out, errors in differencing can 
be critical in ITSA.

When the data have been satisfactorily dif­
ferenced, the resulting ACF and PACF correlo­
grams are examined for evidence of the order 
of the MA and AR components. The first hy­
pothesis to be explored is that the process is 
white noise. Because white noise is by definition 
uncorrelated, white noise ACFs and PACFs 
should be zero for all lags. The ACF correlo­
gram for the white noise data in Figure 1, 
Panel A, is shown in Figure 2, Panel A. The 
autocorrelations fluctuate around zero, as ex­
pected. The same is true for the white noise 
PACF shown in Figure 3, Panel A. It is possible, 
however, that sampling finite realizations of 
white noise may produce some correlograms 
containing chance significant "spikes.” Conse­
quently, we protect ourselves against misidenti- 
fication by testing the ACF as a whole for 
evidence of significant serial dependency. This 
test is often made with the Box-Piece test, 
sometimes called the Q-statistic (Box & Jenkins, 
1970; McCain & McCleary, 1979). The value
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Fig. 2. Correlograms for the autocorrelation func­
tion (ACF) of (A) the white noise function, (B) the 
autoregressive process, and (C) the moving average 
process of Figure 1. Asterisk indicates that the value 
of the autocorrelation exceeds two standard deviations.
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Fig. 3. Correlograms for the partial autocorrela­
tion function (PACF) for (A) white noise process, 
(B) autoregressive process, and (C) moving average 
process of Figure 1. Asterisk indicates that the partial 
autocorrelation exceeds two standard deviations.

of Q for the ACF shown in Figure 2, Panel A, 
for the white noise process is clearly nonsignifi­
cant (Q(25) =  13.7, p >  .95).

If there is evidence of significant autocor­
relation, we proceed to identify the orders of 
the AR and MA components. W e begin with 
the simplest possible models, ARIMA (1,0,0) 
or ARIMA (0,0,1), and do not proceed to more 
complex alternatives until such models have 
been proven inadequate. Detailed discussion of 
complex ARIMA (p,d,q) model identification 
including mixed models in which both p and q 
take on nonzero values, and models involving 
differencing (e.g., where d takes on a nonzero 
value) can be found in the standard reference 
sources described in the final section of this 
paper. W e will discuss only the identification 
of AR(1) and MA(1) models for the sake of 
clarity. For order-1 processes, the ACF and 
PACF correlograms appear in two comple­
mentary forms. The correlation functions either 
show a large significant spike at lag 1, and 
then cut off to zero; or they show a large value 
at lag 1 and then decay slowly in the succeed­
ing lags.

Individual autocorrelations and partial auto­
correlations can be tested for significance by 
taking the ratio of these statistics to their stan­
dard deviations. The standard deviation of the 
lagged-^ autocorrelation is equal to

k k 

[1/N (1 +  2 J  where V  r*
y=i j=i

is the sum of the squared values of the first 
through the £th autocorrelations. The standard 
deviation for all partial autocorrelations is taken 
as (1 /N )* .

For the AR(1) process, the ACF (Panel B, 
Figure 2) shows the decay pattern and the 
PACF (Panel B, Figure 3) shows the spike. The 
evidence for the MA(1) function is the mirror 
image of the AR(1): the ACF (Panel C, Fig­
ure 2) reveals a spike at lag 1, while the PACF 
(Panel C, Figure 3) shows the decay pattern. 
The sign of the 4> or the 6 coefficients within 
these models may be inferred from the direc­
tions of spike values (— or + )  and the pres­
ence or absence of an alternation of sign in the 
decaying ACF or PACF. The positive decay 
in the ACF and positive spike in the PACF of
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the AR(1) correlograms (Panel B, Figure 2; 
Panel B, Figure 3) indicate a positive <f> value. 
The positive spike in the ACF and alternating 
decay in the PACF of the MA(1) correlograms 
(Panel C, Figure 2; Panel C, Figure 3) indi­
cate a positive 0 value. When an ARIMA 
(p,d,q) model has been tentatively identified, 
the values of the (f> and/or 0 coefficients in the 
model are estimated on a computer. The model 
is then tested for adequacy.

Q: How does one know if the appropriate 
ARIMA model has been identified?
A: There are a number of ways of determining 
whether the appropriate ARIMA model has 
been identified. If errors have been made in 
model identification, they may be discovered by 
examining the printouts of the weights of the 
autoregressive and moving average terms. These 
weights must be within certain bounds. These 
bounds, called the stationarity and invertibility 
bounds (see Glass et al., 1975), are analogous 
to the bounds of the ordinary product moment 
correlation; that is, the value of r cannot exceed 
+  1.0 or be less than —1.0. Just as an ob­
tained r outside these limits indicates the pres­
ence of an error, so too do values of (f> and 0 
that lie outside their bounds indicate an error 
in model identification. Model identification er­
rors are also disclosed when the value of <f> or 0 
required by the model are not significantly dif­
ferent from zero. For example, if an ARIMA 
(1,0,1) model has been identified, then the auto­
regressive term <f> and the moving average term 
0 must be significantly different from zero. If 
they are not, then the model has been misidenti- 
fied, and a revised model must be formulated.

The final step in troubleshooting or diagnos­
ing model identification errors occurs when the 
ACF and the PACF calculated on the residual 
scores are examined. These residual scores are 
the portion of the original scores remaining 
after the estimated autoregressive and moving 
average components have been removed. These 
residual scores should now be serially indepen­
dent, and should resemble the realization of a

white noise process. That is, the ACF and the 
PACF calculated on the residual scores should 
have no spikes at early lags and should not be 
significantly different from zero as tested by, 
for example, the Q-statistic. If the ACF and 
the PACF differ from zero, then the whole pro­
cedure of model identification, estimation, and 
diagnosis must be repeated until an acceptable 
model has been identified and the weights (i.e., 
(f> and/or 8) for the parameters of the model 
have been estimated. When this procedure has 
been completed, the residual scores from which 
serial dependency has been removed can then 
be tested for the presence of treatment effects.

Q: How are treatment effects tested?
A: After an appropriate model has been fitted 
to the stochastic component of the time-series 
data, intervention effects can be tested. The 
intervention components in ITSA are sometimes 
referred to as "transfer functions.” Some au­
thors, e.g., Anderson (1976) and Box and Jen­
kins (1970), use transfer function to describe 
what we have called the stochastic component 
of the time series model. Our usage follows 
McCain and McCleary (1979). These functions 
transfer the level, the slope, or both the level 
and slope of the series from one state during a 
time period (e.g., the baseline phase) to another 
state during a subsequent time period (e.g., the 
treatment phase). See, for example, Jones et al. 
(1977), Kazdin (1976), McCain and McCleary 
(1979), and Glass et al. (1975).

On the simplest level, one could model an 
abrupt change in level as the time series moves 
from the baseline phase to the experimental 
phase. Panel A of Figure 4 illustrates how such 
a transfer function might appear. It is often 
the case, however, that an intervention affects 
a subject gradually. One of the advantages of 
ITSA is that an asymptotic rise to a new level 
as a result of treatment can be explicitly mod­
eled and tested, as illustrated in Panel B of 
Figure 4. Conversely, an investigator could 
model an intervention that results in an in­
stantaneous improvement that is not sustained.
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Fig. 4. Plots of transfer functions that can be mod­
eled in ITSA. In each case the beginning of change 
coincides with the initiation of treatment. Panel A 
depicts an abrupt change in level. Panel B shows an 
asymptotic rise. Panel C illustrates an abrupt change 
in level which subsequently dies away. Panel D shows 
a change in slope. Panel E illustrates a change in 
both level and slope.

Panel C illustrates the transfer function that 
induces an abrupt change in the level of the 
time-series process which subsequently dies 
away. Or, the effect could be a change in the 
slope of a function with a constant level, as 
illustrated in Panel D. Finally, ITSA allows 
the researcher to model the effect of an interven­
tion with a combination of transfer functions. 
Panel E illustrates a combination of an abrupt

change in level with a change in slope. The 
statistical tests on transfer functions follow ordi­
nary statistical procedures: Model parameters 
are estimated and these estimates are tested 
(e.g., by t tests) to determine if the obtained 
values fall within or outside the boundary that 
defines statistical significance. For details on 
the procedures of transfer function modeling 
and testing, see McCain and McCleary (1979) 
or Glass et al. (1975).

It should be noted that the statistical test of 
change from pre- to post-intervention is not by 
itself a test of the causal relationship between 
a treatment manipulation and a dependent vari­
able. The extent to which "cause” can be in­
ferred is dependent upon design and measure­
ment factors as well as the results of statistical 
tests.

In summary, the modeling-testing strategy 
described here includes four steps: (a) tentative 
identification of an ARIMA (p,d>q) model from 
the ACF and PACF; (b) estimation of the val­
ues of the autoregressive and moving average 
parameters (</> and 0) for the tentatively se­
lected stochastic model; (c) diagnostic assess­
ment of the adequacy of the stochastic model 
selected in the first step (note: if the model se­
lected is improbable or otherwise inappropri­
ate, the identification/estimation/diagnostic pro­
cedure continues until an acceptable ARIMA 
model is found); and finally, (d) modeling a 
transfer function to describe the treatment ef­
fects. The transfer function can be tested using 
conventional statistical procedures.

THE INTERPRETATION AND 
PRESENTATION OF RESULTS 

FROM ITSA

Q: W hat conclusions should be drawn if the 
results of a visual analysis and the results of 
an ITSA are inconsistent?
A: Jones et al. (1978) have presented evi­
dence that visual analysis and ITSA may pro­
vide inconsistent results, particularly when treat­
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ment effects are not dramatic and when serial 
dependency is substantial (i.e., when n  >  .75). 
If these conditions are frequent in applied be­
havioral studies, then disagreement between 
these two decision aids may be common.

In discussing the relative merits of visual 
analysis and ITSA, one must be careful not to 
present ITSA as superior merely because it is 
objective. Both visual and statistical analyses 
require subjective judgments by the investigator. 
Visual analysis is subjective because the pat­
terns it finds in the data are neither measured 
nor compared against any objective criterion. 
But, as we have indicated, ITSA also requires 
the analyst to make judgments about the ap­
propriate stochastic model for the time-series 
data on the basis of patterns “seen” in the cor­
relograms. This is a procedure that has not been 
automated and certainly requires a subjective 
contribution from the researcher. This may be 
a disguised virtue. The statistical facilities avail­
able in "canned” programs on computers may 
lead us to forget that all statistical methods 
have underlying models that must be implicitly 
or explicitly fitted to the data in the course of 
analysis. ITSA requires strong assumptions that 
must be explicitly stated. Moreover, ITSA pro­
vides a diagnostic procedure for determining 
the confidence of such judgments. Visual anal­
ysis differs, in that because some of the constitu­
ent parts of the judgment based upon visual 
inspection cannot be stated, there is simply no 
way to determine the certainty with which such 
judgments are made.

There are clearly two ways in which visual 
and statistical judgmental aids may disagree. 
First, an ITSA may produce evidence of an ex­
perimental effect that is not supported by in­
spection of the graphed time-series data. Be­
cause, in this case, it seems unlikely that an 
effect of intervention would be judged to have 
immediate clinical significance, many applied 
researchers would be inclined to discount the 
results of the ITSA. However, such a result 
may suggest the presence of a treatment worthy 
of additional investigation either through rep­

lication or by means of an improved experi­
mental design.

The second possible disagreement, where 
treatment effects seem apparent but ITSA indi­
cates that the null hypothesis cannot be rejected, 
may place the analyst in a more difficult quan­
dary. Here, however, consideration of the prob­
able relative validity of visual inspection and 
ITSA may indicate a choice between the two 
conflicting judgments.

We know something about the conditions 
under which ITSA will produce unstable results 
and something about the conditions that will 
similarily erode the reliability of visually based 
judgments. However, because investigations of 
the trustworthiness of these two judgmental 
aids are few in number, we can only give tenta­
tive guidelines concerning how strongly to weigh 
the evidence of a time-series analysis that dis­
agrees with an investigator’s visual judgment.

A frequent difficulty in the use of ITSA is 
brevity of the time series. Short series have two 
undesirable consequences: model-fitting (partic­
ularly differencing) is performed with less con­
fidence in the adequacy of the model, and 
statistical tests of intervention effects are less 
likely to detect real changes. Obtaining the cor­
rect level of differencing is particularly impor­
tant because inappropriate differencing can lead 
to erroneous statistical test results (Padia, Note 
2). Under-differencing leaves serial dependency 
in the series and over-differencing introduces 
unwanted serial dependency into the series. 
Padia recommends that the number of observa­
tions in the baseline be not less than 50 and 
that 50 be the minimum number of postinter­
vention points as well. Padia (Note 2) states, 
“For the smaller number of points it is difficult 
to determine the degree of differencing re­
quired to obtain stationarity, since a 'wandering 
over the short run may be either highly corre­
lated stochastic fluctuations in the stationary 
series or the 'drifting* of a non-stationary series” 
(p. 144).

Typically, other recommendations have been 
50-100 observations within a single phase (Box
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& Jenkins, 1970; Gottman & Glass, 1978). Al­
though more observations are better than fewer 
observations, the question, "How many data 
points are necessary to perform an ITSA?” is 
not answerable in its most general form. Under 
some circumstances, substantially fewer than 
50 observations may be appropriate. For ex­
ample, if we can assume a simple model such as 
an ARIMA (1,0,0), and if this model is a rea­
sonable fit, the Glass et al. (1975) algorithm 
is quite powerful with as few as 20 baseline 
and 20 postintervention observations. It should 
be pointed out that nothing is known about the 
reliability of visual analysis in these circum­
stances. It is a plausible though untested hy­
pothesis that visual analysis is also less reliable 
with small numbers of observations. Never­
theless, with time series that include few ob­
servations, particularly those in which visual 
analysis indicates a treatment effect that is not 
supported by the results of ITSA, greater cre­
dence may be given to the results of the visual 
analysis. If, on the other hand, a time series 
contains many observations, and the data are 
highly serially correlated, variable, and have 
baseline trends— all conditions that seem to 
present problems for visual decision makers— 
the results of the interrupted time-series analy­
sis would be afforded greater confidence than 
would the results of the visual analysis. W hat­
ever the circumstances, when faced with un­
certain results, the investigator would likely 
replicate the study before sharing the results 
with his or her peers.

Q: Will the necessity or desirability for nu­
merous observations preclude the use of ITSA 
by applied behavior analysts?
A: Decisions about implementing and with­
drawing treatment intervention are made on 
the basis of the pattern of the data. These de­
cisions determine the length of phases, and 
hence the number of observations available. 
Fortunately, overlapping considerations lead to 
decisions to extend phases and also suggest that 
ITSA would be a useful decision aid. These

considerations include small behavioral changes, 
unstable baselines, and variable data. Thus, more 
abundant data may frequently be available when 
they are most needed.

Aside from this general consideration, spe­
cific characteristics of commonly used intrasub- 
ject-replication designs may limit the applicabil­
ity of ITSA. For example, multiple-baseline 
designs characteristically include components 
with brief baseline or treatment phases, and 
changing criterion designs may often include 
brief subphases. In these cases, sufficient obser­
vations may not be available to conduct an 
entirely adequate ITSA, even if the pattern 
of the data suggests that a judgmental aid 
other than visual analysis would be useful. Even 
here, however, a second, albeit flawed, decision 
aid may be preferable to a single flawed deci­
sion aid.

In other cases, ITSA may be of limited value 
because conclusions are drawn in ways that 
depart from straightforward comparisons of 
changes from one phase to another. For ex­
ample, time-series analysis is of unknown rele­
vance in assessing the comparative effectiveness 
of two or more concurrent treatments as these 
might be examined in a simultaneous treatment 
design or a multiple-element design. These ap­
parent incompatibilities between ITSA and indi­
vidual subject designs are not meant to discount 
the usefulness of interrupted time-series analysis, 
but to place in perspective its likely role.

Q: W hat technical information should be in­
cluded in a manuscript using ITSA?
A: Aside from the raw time-series data, the 
technical information that should be included in 
a manuscript using ITSA is of two kinds: (a) 
the information used in determining the param­
eters of the time-series model applied to the 
stochastic components of the data, and (b) the 
summary of the procedures used to test treat­
ment effects. The information used in model 
fitting should include the ARIMA (p,d,q) model 
fitted to the stochastic component of the time- 
series data. The correlograms of the ACF and
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Table 1
Selected Applied and Technical References on ITSA

References Comments

Applied
Deutsch and Alt (1977)

Gottman and McFall (1972) 

McSweeny (1978)

Schnelle, Kirchner, McNees, and 
Lawler (1975)

Technical 
Jones et al. (1977)
Kazdin (1976)

McCain and McCleary (1979) 
Gottman and Glass (1978) 
Nelson (1973)

Hibbs (1974)

McCleary and Hay (1980)

Glass et al. (1975)

Anderson (1976)
Box and Tiao (1965)

Box and Jenkins (1976)

Controversial application of ITSA to assess the effects of gun-control 
legislation on gun-related crimes in Boston. See Hay and McCleary’s 
(1979) critical evaluation and Deutsch’s (1979) vigorous reply.

Application of ITSA to evaluate the effects of self-monitoring on the 
school-related behavior of high school dropouts.

Description of the effects of a response-cost procedure on the telephoning 
behavior of people in Cincinnati. The statistical analysis performed on 
the data are described in McCain and McCleary (1979).

Application of ITSA to assess the effectiveness of saturation patrols on 
burglary rates.

A nontechnical presentation of ITSA.
A discussion of the problems of serial dependency and several technical 

alternatives, including ITSA.
The clearest technical introduction to ITSA.
A restatement and updating of Glass et al. (1975).
A summary of the Box-Jenkins theory in practice. Should be readable 

for those with a strong background in multiple regression. Applica­
tions illustrate the use of the ESP computer package.

Contains a good discussion of the problems of serial dependency in 
statistical tests of time series data. Requires a familiarity with matrix 
algebra.

A comprehensive applied treatment of the Box-Jenkins method designed 
for behavioral and social scientists.

Summary of the Box-Tiao method and the discussion of its application 
to behavioral and evaluation research.

A well-written, but mathematically sophisticated digest of Box-Jenkins.
A difficult but fundamental article on the analysis of interventions in 

time series.
A treatise in mathematical statistics. The source for most of the other 

references.
Note. Technical articles are listed in order of difficulty. The present article is of approximately equal diffi­
culty to the articles by Kazdin (1976) and by McCain and McCleary (1979).

PACF, and the test of whether the chosen 
model generated uncorrelated residuals could 
also be provided to allow the reader the oppor­
tunity to review the basis for the investigator’s 
judgments about these model parameters. The 
details of model fitting could be elaborated 
further in manuscripts using ITSA, but much 
more detail than this may confuse readers. The 
set of technical information concerning the in­
ferential tests performed on the data to assess 
treatment effects should include the t values for 
changes in level and slope (drift) with appro­
priate reference to degrees of freedom and sig­
nificance levels.

SOURCES OF INFORMATION 
ON ITSA

Q: Where can I find out more about ITSA? 
A: As with other complex statistical techniques, 
the use of ITSA requires that the analyst get a 
working knowledge of its underlying mathe­
matics. Increasing numbers of articles, chapters, 
and books are being published that use inter­
rupted time-series analysis to answer a substan­
tive behavioral question, to describe how a 
time-series analysis can be used, or to discuss 
technical issues related to the use of ITSA. This 
material varies substantially in difficulty, and
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unless one enters this literature at an appropriate 
level of difficulty, the experience can be pun­
ishing. To promote successful avoidance of 
punishing experiences, we have prepared an 
annotated set of references (Table 1) with the 
technical references graded in approximate level 
of difficulty.

Q: W hat are some computer programs useful 
for performing ITSA?
A: Each of the four steps in ITSA is performed 
with the aid of appropriate computer programs. 
To assist the reader in locating computer soft­
ware for ITSA, we present a table of existing 
and forthcoming programs. Automatic Forecast­
ing System and TMS are available from their 
authors, and IMSL is widely supported at uni­
versity computer installations. BMDP and SPSS 
are also widely available, but their time-series 
subprograms are forthcoming or only recently 
distributed.

Two types of programs are listed in Table
2. Automatic Forecasting System, TMS, BMDP, 
and SPSS are "package” programs, designed to 
perform the entire range of ITSA functions. 
They do not require any programming by the 
user. IMSL is not a package, but rather a li­
brary of FORTRAN subroutines. IMSL pro­

vides several subroutines useful for modeling 
the stochastic process within the time-series data, 
but they must be called by a program written 
by the user. IMSL does not provide subroutines 
explicitly designed for modeling the effect of 
an intervention in ITSA.

SUMMARY AND CONCLUSION

Since the recognition that serial dependency 
(Jones et al., 1978) and other individual sub­
ject data characteristics (e.g., DeProspero, & 
Cohen, 1979) lead to unreliable, and hence in­
valid, visually based assessments of behavioral 
change, the need for alternative or supple­
mentary decision aids has become clear. In this 
paper we have attempted to familiarize applied 
behavioral researchers with one such technique, 
interrupted time-series analysis.

Although ITSA has certain clear advantages, 
we do not suggest that this technique should be 
applied uniformly to all time-series data. Some 
patterns of results are clearly detectable by 
visual inspection and do not require supplemen­
tal decision aids, e.g., a lengthy baseline phase 
in which the data are stable and have zero slope 
followed by a lengthy intervention phase in 
which the data are stable and show an abrupt

Table 2 
Computer Programs for ITSA

Name Authors Language Comments

Automatic Pack (1978) FORTRAN Originally developed under the supervision of Box
Forecasting and Jenkins. For sophisticated users.
Systems

TMS Bower, Padia, 
and Glass 
(1974)

FORTRAN Developed at the University of Colorado in conjunc­
tion with Glass et al., (1975). Requires some so­
phistication.

IMSL IMSL (1979) FORTRAN “International Mathematical Statistics Library.” So­
phisticated subroutines for the experienced FOR­
TRAN programmer.

Relevant subroutines include FTRDIF, FTAUTO, 
FTCMP, FTMPS, and FTMXL.

BMDP Forthcoming as BMDP2T. From an inspection of a 
preliminary version of the documentation, this ap­
pears to be a powerful, but user-oriented and ac­
cessible package.

SPSS Forthcoming.
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change in level with zero slope. Moreover, ITSA 
may be unwarranted because either the cost of 
making an incorrect visually based judgment 
exceeds the cost of performing the analysis, or 
because the experimental design used is unsuit­
able for ITSA. Aside from these qualifications, 
we recommend that applied behavior analysts 
strongly consider supplementing visual inspec­
tion of their data displays with ITSA. By con­
ducting interrupted time-series analyses, they will 
(a) gain information about the properties of 
their time-series data that might not otherwise 
be available, (b) improve the quality of their 
future visually based judgments, (c) assess more 
adequately certain types of treatment effects 
such as changes in slope, and (d) protect them­
selves against both the false acceptance of non­
existent effects and the false rejection of existent 
treatment effects. These advantages should com­
pensate researchers for the effort required to 
perform the analysis.
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