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Abstract

Background: Interrupted time series analysis is increasingly used to evaluate the impact of large-scale health
interventions. While segmented regression is a common approach, it is not always adequate, especially in the
presence of seasonality and autocorrelation. An Autoregressive Integrated Moving Average (ARIMA) model is an
alternative method that can accommodate these issues.

Methods: We describe the underlying theory behind ARIMA models and how they can be used to evaluate
population-level interventions, such as the introduction of health policies. We discuss how to select the shape of
the impact, the model selection process, transfer functions, checking model fit, and interpretation of findings. We
also provide R and SAS code to replicate our results.

Results: We illustrate ARIMA modelling using the example of a policy intervention to reduce inappropriate
prescribing. In January 2014, the Australian government eliminated prescription refills for the 25 mg tablet strength
of quetiapine, an antipsychotic, to deter its prescribing for non-approved indications. We examine the impact of
this policy intervention on dispensing of quetiapine using dispensing claims data.

Conclusions: ARIMA modelling is a useful tool to evaluate the impact of large-scale interventions when other
approaches are not suitable, as it can account for underlying trends, autocorrelation and seasonality and allows for
flexible modelling of different types of impacts.

Keywords: Interrupted time series analysis, Autoregressive integrated moving average models, Policy evaluation,
Intervention analysis

Background
Before and after study designs are often used to quantify

the impact of population-level health interventions on

processes of care and population-level health outcomes.

They rely on the “natural experiment” resulting from

implementing interventions, dividing time into “pre-

intervention” and “post-intervention” periods. However,

observational studies relying on a small number of mea-

surements pre- and post-intervention are prone to bias

as they do not account for pre-existing underlying short-

and long-term trends [1]. In contrast, interrupted time

series (ITS) analysis (also called “intervention analysis”)

is more robust as it does control for these issues by lon-

gitudinally tracking the outcome before and after an

intervention. ITS is considered one of the best designs

for establishing causality when randomised controlled
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trials (RCTs) are neither feasible nor ethical [2, 3]. In

fact, when combined with a control series, ITS designs

often generate similar results to RCTs [4].

Several published papers have addressed the topic of

using ITS approaches to evaluate health interventions

[5–9]. However, these have focussed primarily on seg-

mented regression, the simplest form of ITS analysis.

Segmented regression models use time as a predictor

variable; a simple segmented regression model can be

expressed as:

Y t ¼ αþ β1 � timeþ β2 � interventionþ β3
� time since intervention þ εt

Where Yt is the outcome at a given time point (t), the

time variable represents time since start of the study

period, the intervention variable indicates whether the

time t is before (0) or after (1) the implementation of

the intervention, and the time since intervention variable

represents time elapsed since intervention implementa-

tion, taking a value of 0 prior to the intervention. A key

assumption of linear regression is that the errors (resid-

uals) are independent and not correlated. However, this

assumption is often violated with time series.

The segmented regression approach is most appropri-

ate when a time series has a linear or otherwise easily

modelled trend and independently distributed residuals.

In practice, patterns in data can be unclear or difficult to

identify, with considerable variation. Thus, some time

series may not be amenable to segmented regression due

to the difficulty in modelling the autocorrelation struc-

ture. One alternative to segmented regression is Autore-

gressive Integrated Moving Average (ARIMA) models.

ARIMA models differ from segmented regression in that

the outcome Yt is regressed only on the outcome mea-

sured at previous time points (not on time itself). How-

ever, there is little guidance in the literature about how

to fit these models in the context of ITS analysis. Given

the quantity and complexity of health data now being

collected and made available for research, ARIMA has

become an increasingly useful tool for researchers inter-

ested in evaluating large-scale interventions.

In this paper we will describe the underlying theory

behind ARIMA models and how they can be used to

evaluate population-level interventions, such as the

introduction of health policies, illustrated using an ex-

ample of the introduction of a health policy to deter in-

appropriate prescribing of quetiapine, an antipsychotic,

in Australia.

Methods
Time series properties

A time series is a sequence of data points at equally

spaced points in time and ordered chronologically. Time

series typically exhibit three features: non-stationarity,

autocorrelation, and seasonality.

Non-stationarity

A requirement of ARIMA modelling is that the time

series is stationary. A stationary series has three proper-

ties: a constant mean; constant variance; and constant

covariance that depends only on the time interval be-

tween values. A stationary series (also called a “white

noise process”) is easier to analyse as it can be modelled

with fewer parameters. While it may fluctuate, it will al-

ways revert to a constant mean and is thus easier to pre-

dict. There are two main sources of non-stationarity: the

first is changing variance over time (heteroscedasticity)

which can often be addressed by applying a log trans-

formation; and the second is an increasing or decreasing

trend which can often be eliminated by taking the first

difference (i.e. Yt − Yt − 1). Occasionally a second differen-

cing may be required to achieve stationarity, but third-

order differencing and above is rare [10]. To be exact,

the above definition is for a weakly stationary series. A

time series is considered strictly stationary if the prob-

ability distribution of a sequence of observations is un-

changed by shifts in time. Strictly stationary series are

rare, and it is often enough to assume weak stationarity.

Autocorrelation

Time series observations are often correlated with ob-

servations at previous time points and are thus not

independently distributed. This correlation is referred

to as autocorrelation or serial correlation. As previ-

ously mentioned, time series exhibiting autocorrel-

ation do not satisfy standard regression analysis

assumptions. As autocorrelated data are typically not

stationary, differencing the data is often enough to re-

move autocorrelation and therefore any necessary

data transformations should be performed before test-

ing for autocorrelation.

Autocorrelation functions (ACFs) can be used to

check for stationarity and autocorrelation. An ACF plots

the correlation between each observation and previous

values at various lags, where a lag is the number of time

points between an observation and its previous values.

The companion to the ACF is the partial ACF (PACF),

which is the correlation between an observation and past

values that is not explained by correlations at lower

order lags. For instance, the PACF value at lag 4 is the

correlation between an observation (Yt) and the previous

observation at lag 4 (Yt − 4), after adjusting for the correl-

ation between Yt and Yt − 3, Yt − 2, and Yt − 1. For a sta-

tionary series, the autocorrelation in the ACF plot

should decay quickly; with a non-stationary series, the

ACF will decay slowly.
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Seasonality

Seasonality refers to variation of a fixed or known fre-

quency, occurring at regular time intervals, such as time

of year or day of the week. Seasonality in time series of

health data is common and can be due to natural causes,

such as weather patterns, or business/administrative pro-

cesses such as weekend or holiday effects. For instance,

antibiotic prescriptions and influenza hospitalisations are

more common in the winter months [11, 12]. Further, in

some jurisdictions medicine dispensings are highest at

the end of a calendar or financial year due to the finan-

cial incentives to stockpile medicines [13, 14]. The ex-

tent of seasonality will depend on the unit of time of the

series; for instance, seasonality is rare in time series mea-

sured at yearly intervals.

With seasonal monthly data, there will likely be signifi-

cant autocorrelation at lag 12 in the ACF plot. In

ARIMA modelling, seasonality is usually dealt with by

taking the seasonal difference. That is, with monthly

data, you take the difference between each observation

and the previous value at lag 12 (Yt − Yt − 12). For quar-

terly data, you would use lag 4. Note that when taking

the seasonal difference for monthly data, the first 12 ob-

servations are lost, since the seasonal difference cannot

be calculated for those observations. This is important

to keep in mind – if you have seasonal data, in general

you will need more time points in your series to ad-

equately control for seasonal effects.

Components of ARIMA models

ARIMA models have a single dependent variable (Yt)

that is a function of past values of Y and the error term

(ϵt). As ARIMA models assume that errors are normally

distributed, they can accommodate any continuous out-

come (such as rates or means), as well large counts that

are not bounded by zero. While ARIMA cannot be used

with small counts that follow a Poisson distribution, in

recent years approaches to modelling serially correlated

count data have been developed using generalised linear

models [15, 16]. Before getting into full ARIMA models,

we introduce the basic components.

1. Autoregressive (AR) model: Yt is predicted by one or

multiple lagged values of Yt. This is represented by

the equation below, where c is a constant, ϕ is the

magnitude of the autocorrelation, p is the number

of lags, and ϵt is the error.

Y t ¼ cþ ϕ1Y t − 1 þ ϕ2Y t − 2 þ…þ ϕpY t − p þ ϵt

2. Moving average (MA) model: Yt is predicted by one

or multiple lagged values of the error (ϵt). This is

not to be confused with moving average smoothing.

In the equation below, θ is the value of the

autocorrelation of the errors, and q is the number

of lags.

Y t ¼ cþ θ1ϵt − 1 þ θ2ϵt − 2 þ…þ θqϵt − q

3. Seasonal model: Yt is predicted by lagged values of

Yt at a regular interval s (the season). In the

equation below, Ф is the value of the

autocorrelation, and s is the seasonality (e.g. 52 for

weekly, 12 for monthly, 4 for quarterly). Seasonal

models will also often require differencing, as well

as autoregressive and/or moving average terms.

Y t ¼ cþФY t − s þ ϵt

4. Differencing (Integration): In an ARIMA model, the

time series being modelled must be stationary to

obtain meaningful predictions. Stationarity is

induced by differencing, which refers to calculating

the difference between adjacent observations.

Y
0

t ¼ Y t − Y t − 1

An ARIMA model is a combination of an AR model,

MA model, and differencing (Integration). If ϕ = 0 and

θ = 0 and Ф = 0 then the time series is a white noise

process expressed as Yt = c + ϵt where c is a constant.

The basic notation for describing a non-seasonal

ARIMA model is (p, d, q), where p, d, and q are positive

integers:

– p = the order of the AR part of the model;

– d = the degree of non-seasonal differencing; and

– q = the order of the MA part of the model.

For example, a white noise (stationary) model is

ARIMA (0, 0, 0). An AR model with p lags is ARIMA(p,

0, 0), and an MA model with q lags is ARIMA (0, 0, q).

If there is seasonality, the ARIMA model is expressed as:

(p, d, q) × (P, D, Q)S. Here, D is the degree of seasonal

differencing, and P and Q are the AR and MA terms for

the seasonal component.

Evaluating interventions using ARIMA

The aim of ITS analysis when used to evaluate interven-

tions is to estimate the impact of the intervention’s im-

plementation on a given outcome, or in other words the

“intervention effect”. While there is a wide variety of im-

pacts that may be observed, here we will focus on three

main types: step change, pulse and ramp. If we use T0 to

represent the starting time of the intervention, these are

summarised as:

� Step change (also called a level shift): A sudden,

sustained change where the time series is shifted
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either up or down by a given value immediately

following the intervention. The step change variable

takes the value of 0 prior to the start of the

intervention, and 1 afterwards.

St ¼
0; if t < T 0

1; if t≥T 0

�

� Pulse: A sudden, temporary change that is observed

for one or more time points immediately after the

intervention and then returns to baseline level. The

pulse variable takes the value of 1 on the date of the

intervention, and 0 otherwise.

Pt ¼
0; if t≠T 0

1; if t ¼ T 0

�

� Ramp: A change in slope that occurs immediately

after the intervention. The ramp variable takes the

value of 0 prior to the start of the intervention and

increases by 1 after the date of the intervention.

Rt ¼
0; if t < T 0

t − T0 þ 1; if t ≥ T 0

�

Ideally, the potential shape of the intervention impact

should be hypothesised a priori. The shape depends on

several factors, including the nature of the intervention,

such as whether it is temporary or ongoing, and the spe-

cific outcome being assessed. For instance, in our 2015

study [17] we evaluated the impact of negative media

around use of statin medicines and found that this tem-

porary event resulted in both a temporary increase in

statin discontinuation (a “pulse”) but a sustained de-

crease in statin dispensing (a “step change”). Ongoing or

permanent interventions, such as increased restrictions

on prescribing of a medicine [18] or introduction of

plain packaging on tobacco products [19] are more likely

to have long-term effects, although these may be imme-

diate or gradual (a “ramp”). For some interventions, the

change is best represented by a combination of impact

variables; for instance, it is common for there to be both

a step change and change in slope (ramp). If there are

multiple potential models, the Akaike information criter-

ion (AIC) and/or Bayesian information criterion (BIC)

can be used to select the most appropriate combination

of impact variables.

It is also important to consider whether changes may

occur prior to the implementation of the intervention;

for example, when it was announced that there would be

increased restrictions placed on prescribing of alprazo-

lam in Australia, prescribing of this medicine started de-

clining in anticipation of this change [18]. Lastly, in

some cases, the impact may be suspected to be delayed

by one or more time units. We recommend

prespecifying a reasonable period of time in which it

would be expected for the impact to be observed based

on content knowledge or previous research to avoid

spurious associations. The most appropriate delay within

this range of options can be determined at the modelling

stage [20].

In ITS analysis, ARIMA forecasts Yt in the absence of

the intervention (the “counterfactual”) and determines

how the observed diverges from this forecast. Unlike

segmented regression, including time or seasonal

dummy variables in the ARIMA model is not necessary,

as ARIMA can eliminate trends and seasonality through

differencing. If the trend is eliminated via differencing

then the pre- and post-intervention trends cannot be es-

timated from the model. However, if estimation of the

pre- and/or post-intervention slope is desired, this can

be accommodated by including time as a covariate and

incorporating AR and MA terms to address autocorrel-

ation (e.g. ARMA models) [21, 22].

Fitting an ARIMA model

The next step is determining the parameters of the

ARIMA model. A common approach is called the Box-

Jenkins method, involving model identification and se-

lection, parameter estimation, and model checking [23].

There now exist automated algorithms in statistical

packages (such as R) that simplify the process by identi-

fying the best fitting ARIMA model based on minimising

the information criteria (AIC, BIC). However, we also

describe the manual process below, illustrated in Fig. 1.

1. Plot data to understand patterns: Before

proceeding to model fitting, plot the time series to

understand the patterns, specifically pre-existing

trends, seasonal effects, and extreme or outlier

values. If outliers are present, how to deal with will

depend on their cause and influence on the model

and the recommendations are the same for ARIMA

as for other regression models. For instance, if the

researchers are aware that these extreme values are

due to external factors, such as other interventions

or known misclassification, these should be expli-

citly modelled in the data.

2. Transform data to stabilise variance (if

necessary). If the variance is changing over time, a

log-transformation should be applied.

3. Model selection: While automated algorithms in

several statistical packages can identify candidate p

and q parameters, they can sometimes be estimated

based on the ACF/PACF plots.

a. Determine differencing order to induce

stationarity: If there is a trend, a first order

difference is required and d = 1. If there is

seasonality, a seasonal difference is required and
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D = 1. The ACF plot or unit-root tests (e.g.

Dickey-Fuller test) can also be used to help

identify whether the time series is stationary

and whether differencing will be required. Most

automated algorithms allow you to prespecify

the d and D terms in the model.

b. Plot the ACF/PACF of stationarity data to

determine potential AR/MA orders: After the

time series has been made stationary by

transformation and/or differencing, next

determine which AR (p/P) or MA (q/Q)

orders are needed to correct for remaining

autocorrelation. If the stationary series has

positive autocorrelation at lag 1, then AR

terms typically are needed. If the

autocorrelation is negative at lag 1, then the

model may need MA terms. Usually models

will require only AR terms or MA terms,

rarely both. However, it is not always

straightforward. Table 1 includes guidance on

selecting the most appropriate AR and MA

terms.

c. Estimate model and use information criteria

to find the best model: Estimate your model,

using the p, d, q, P, D, and Q terms identified

previously, and use information criteria (AIC,

BIC) to help identify the best model. If an

automated algorithm is used to select the terms,

it should be viewed as a tool only, as it does not

guarantee a well-fitting model.

4. Check if residuals of chosen model are white

noise. This can be done by looking at residual plots

and by formally testing for the presence of

autocorrelation by using the Ljung-Box test for

white noise. If autocorrelation is still present in the

residuals or your model is otherwise a poor fit, then

choose different AR and/or MA orders. If the data

have not previously been transformed, a

Fig. 1 Flow chart for ARIMA model selection. Adapted from Hyndman and Athanasopoulos [10].

Table 1 Tips for selecting most appropriate autoregressive (p)
and moving average (q) terms from autocorrelation and partial
autocorrelation

Model type Characteristics of ACF and PACF

ACF PACF

ARIMA(p,d,0) Tails off or is sinusoidal Cuts off lag p

ARIMA(0,d,q) Cuts off lag q Tails off or is sinusoidal

ARMA(p,d,q) Tails off or is sinusoidal Tails off or is sinusoidal
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transformation may help with non-normally distrib-

uted residuals. In general, determining the AR and

MA terms is an iterative process, involving trial and

error. Importantly, there may not be one “right”

model. The aim is to select the most parsimonious

model (i.e. smallest p/P and q/Q) that has a good fit

and adequately controls for autocorrelation and sea-

sonality. Once the final ARIMA model is selected,

the intervention impact can be estimated.

Transfer functions

Another advantage of ARIMA models is the ability to

move beyond the basic intervention impact shapes and

model more complex impacts via “transfer functions”.

Transfer functions describe the relationship between the

intervention and the outcome series Yt. They modify the

relationship between the above inputs (step change,

pulse, ramp) and the time series to model more complex

relationships, such as gradual level shifts, or a pulse that

decays gradually over time, and can also incorporate

lagged effects. The general form of a transfer function is
ωðBÞ
δðBÞ, or:

Y t ¼ μþ
ω0 þ ω1Bþ ω2B

2 þ⋯þ ωhB
h

1 − δ1B − δ2B
2
−⋯− δrB

r
X t þ εt

where B is the backshift operator (i.e. BpYt = Yt − p). In

the transfer function, ω0 represents the initial value for

the impact of the intervention at the time of the inter-

vention (T), δ is the decay rate, Xt is the intervention

variable (step change, pulse, or ramp). The values of h

and r must be specified by the researcher; h describes

when the effect happens, while r represents the decay

pattern. Model fit statistics (such as AIC and BIC) can

help determine the most appropriate form for the trans-

fer function as well as the timing of the event (i.e. if the

impact was delayed and if so by how much). Table 2 de-

scribes the most common scenarios, using the interven-

tion indicator variables described above, and where h =

0, and r = 0 or r = 1. The use of transfer functions is a

Table 2 Description of transfer functions for interrupted time series analysis in ARIMA

Function Values
for h
and r

Transfer
function

Response i at times 0
through k post-intervention

Form of response Interpretation

Step function

St ¼
0; if t < T

1; if t≥T

�

h = 0,
r = 0

ω0 i0 = ω0

i1 = ω0

i2 = ω0

…

ik = ω0

The time series increases by
ω0 immediately following the
intervention, and remains at
this new level for the duration
of the study period.

h = 0,
r = 1

ω0

ð1 − δ1BÞ

(|δ1| < 1)

i0 = ω0

i1 = ω0(1 + δ1)

i2 ¼ ω0ð1þ δ1 þ δ
2
1Þ

…

ik ¼ ω0ð1þ δ1 þ δ
2
1 þ…þ δ

k
1Þ

The time series increases by
ω0 immediately following the
intervention, and increases by ω0δ

k
1

each subsequent time point until
it reaches a new level, calculated
by ω0

ð1 − δ1Þ
.

Pulse function

Pt ¼
0; if t≠T
1; if t ¼ T

�

h = 0,
r = 0

ω0 i0 = ω0

i1 = 0
i2 = 0
…

ik = 0

The time series increases by ω0

immediately following the
intervention and returns to
baseline immediately afterwards.

h = 0,
r = 1

ω0

ð1 − δ1BÞ

(|δ1| < 1)

i0 = ω0

i1 = ω0δ1

i2 ¼ ω0δ
2
1

…

ik ¼ ω0δ
k
1

The time series increases by ω0

the time of the intervention, and
decays by (1 − δ1) each subsequent
time point.

Ramp function

Rt ¼
0; if t < T

t − T þ 1; if t≥T

�

h = 0,
r = 0

ω0 i0 = ω0

i1 = 2ω0

i2 = 3ω0

…

ik = (k + 1)ω0

The time series increases by ω0

at each time point.
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complex topic, and several texts cover them in more de-

tail [23–25].

Incorporation of a control series

Including a control series in ITS analysis improves

causal inference, as ITS cannot exclude the possibility

that any observed change was due to the intervention of

interest, or another co-intervention or event. A control

series is one that is not impacted by the intervention; se-

lection of an appropriate control is described elsewhere

[3]. As with ITS in segmented regression, including a

control series involves running an ARIMA model for the

series of interest, and separately for the control series

[17]. If a change is observed in the intervention series

but not the control series, this provides evidence that

the impact was specific to the intervention.

Sample size requirements

There is no definitive guidance on how many time

points are required to apply ARIMA modelling. The oft-

quoted value of a minimum of 50 time points is based

on a statement by Box and Jenkins, [23] but this has no

empirical basis and has not been tested formally. In real-

ity, a one-size-fits-all approach is simplistic. The more

variable and noisier the data, the more observations will

be needed to distinguish the underlying patterns from

the noise. In uncomplicated cases, ARIMA can perform

satisfactorily with short time series, as long as there are

enough time points to estimate all parameters [26]. In

the presence of seasonality, there should be enough time

points to identify the seasonal effects and to account for

seasonal differencing.

Results
Data and context

Here we demonstrate the use of ARIMA modelling to

quantify the impact of a health policy intervention, using

Australian medicine dispensing claims. The policy re-

stricted the conditions under which quetiapine, an anti-

psychotic medicine, could be subsidised (data, R code,

and SAS code are included in Additional Files 1, 2 and

3 respectively).

Prior to January 1, 2014, new prescriptions for the

lowest quetiapine tablet strength (25 mg) could include

up to 5 refills, meaning patients could have their pre-

scription refilled up to 5 times before returning to their

doctor for a new prescription. However, due to growing

concerns about inappropriate prescribing, after January

1, 2014 new prescriptions for this tablet strength could

not include refills [27]. Our primary outcome was the

number of monthly dispensings of 25 mg quetiapine, of

which we had 48months of observations (January 2011

to December 2014).

In Australia, medicine dispensing claims have signifi-

cant yearly seasonality [13]. Medicines are subsidised for

citizens and eligible residents through the Pharmaceut-

ical Benefits Scheme (PBS), with people paying an out-

of-pocket co-payment towards the cost of their medi-

cines, while the remainder is subsidised. If a person’s (or

family’s) total out-of-pocket costs reach the “Safety Net

threshold” for the calendar year, they are eligible for a

reduced co-payment for the remainder of that year.

Thus, there is an incentive for people reaching their

Safety Net to refill their medicines more frequently to-

wards the end of the year. Hence, we see an increase in

prescriptions at the end of the year, followed by a de-

crease in January.

For the change in dispensing of 25 mg quetiapine, due

to the nature of the intervention we postulated there

would be an immediate drop in dispensings post-

intervention (step change), as well as a change in slope

(ramp). Thus, we included variables representing both

types of impacts in our model. For both impacts, h = 0

and r = 0.

Steps 1 and 2: plot data and transform if necessary

The data are plotted in Fig. 2a, where we observe that

due to the Safety Net effect discussed above, dispensings

are higher in December, and lower in January [13]. As

the variance appears stable over time, no data transform-

ation is needed.

Step 3: select model

To help induce stationarity, we determined that a first

difference (d) was needed due to the visible increasing

trend prior to the subsidy change, and that a seasonal

difference (D) was needed due to the seasonality of the

series. Figure 2b shows the series after these differences

have been applied, with the trend eliminated. As the sea-

sonal difference cannot be calculated for the first 12 ob-

servations as at least 13 observations are required to

calculate the difference between Yt and Yt − 12, the first

year of data is not represented in the figure. The ACF

and PACF plots are in Fig. 3. In this figure, bars that fall

above or below the dashed line represent statistically sig-

nificant (p < 0.05) autocorrelation. In the ACF plot of

the raw data, (Fig. 3a) we see significant autocorrelation

that gradually dies off at lag 6. However, according to

the PACF plot (Fig. 3b) the autocorrelation at higher

lags is completely explained by autocorrelation at lower

lags. We can also see that in Fig. 3c most of the autocor-

relation has been removed just by differencing when

compared with Fig. 3a.

In this case the ACF and PACF plots of the stationary

(i.e. differenced) series are not particularly helpful in

identifying the p and q parameters, as they do not fit any

of the options in Table 1. Therefore, we used an
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Fig. 2 Monthly dispensings of the 25 mg strength quetiapine (A) and the series after first order and seasonal differencing (B)

Fig. 3 Autocorrelation and partial autocorrelation function (ACF and PACF) plots, prior to differencing (A and B) and after differencing (C and D)
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automated algorithm, specifically auto.arima() in the

forecast package for R, to identify the ARIMA model

terms [28]. This algorithm iteratively searches over a

series of potential ARIMA models for the one with the

lowest AIC or BIC, with several constraints applied to

avoid convergence problems. These include setting the

maximum value of p and q to 5 and P and Q to 2, al-

though these settings can be modified by the researcher

if necessary. For our model, we pre-specified a value of

d = 1 (to induce stationarity) and D = 1 (due to the pres-

ence of seasonality) but allowed the algorithm to select

the most appropriate values for p, d, P, and Q.

The model with the lowest information criteria se-

lected by the algorithm was (2,1,0) x (0,1,1)12. In other

words, the autocorrelation order of the model (p) was 2,

the moving average order of the model (q) was 0, the

autocorrelation order of the seasonal part of the model

(P) was 0, and the moving average order of the seasonal

part of the model (Q) was 1. The model incorporates a

first-order difference (d = 1) and a first-order seasonal

difference (D = 1) to eliminate trend and induce station-

arity. Thus, we will consider this as our potential final

model.

Step 4: check residuals

The residual plots are in Fig. 4. There is no obvious pat-

tern or significant autocorrelation in the residuals, and

they are normally distributed. The p-value for the Ljung-

Box test for white noise is 0.50 at 24 lags. As the null

hypothesis for the Ljung-Box test is that there is no sig-

nificant autocorrelation, we do not reject the null and

our chosen model has a good fit.

Final model

The estimated step change was − 3285 dispensings (95%

CI − 4465 to − 2104) while the estimated change in slope

was − 1397 dispensings per month (95% CI − 1606 to −

1188). Figure 5 shows the values predicted by our

ARIMA model in absence of the intervention (counter-

factual) compared with the observed values. This means

that the change in subsidy for 25 mg quetiapine in Janu-

ary 2014 was associated with an immediate, sustained

decrease of 3285 dispensings, with a further decrease of

1397 dispensings every month. In other words, there

were 4682 (3285 + 1397) fewer dispensings in January

2014 than predicted had the subsidy changes not been

implemented. In February 2014, there were 6079 fewer

dispensings (3285 + 2*1397). Importantly, our findings

should only be considered valid for the duration of the

study period (i.e. until December 2014).

Discussion
Many health policies are implemented with a limited

evidence base supporting their rationale, and even if

well-intended can lead to unintended consequences [29,

30]. Thus, evaluation of health interventions is crucial to

identify both intended and unintended impacts, to ul-

timately provide feedback to policy-makers and

Fig. 4 Residual check for final model, ARIMA (2,1,0)(0,1,1)12
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regulators, improve health care delivery, and inform fu-

ture public health policy. However, many studies evalu-

ating large-scale interventions use methods that are

inadequate or poorly reported [31, 32]. As with all ana-

lyses, researchers interested in evaluating interventions

should use fit-for-purpose tools for a particular research

question, as relying on overly simplistic approaches can

lead to misleading or biased results [1].

We have highlighted the importance of controlling for

trends, seasonality, and autocorrelation. To a limited ex-

tent, segmented regression can also address these issues,

typically by inclusion of time and season in the model as

covariates, and often this will be enough to eliminate

simple autocorrelation. In such cases, segmented regres-

sion may be preferred due to its ease of interpretability

and implementation. However, there are circumstances

in which segmented regression is inadequate. For in-

stance, if the trend in the data is non-linear and/or had

an irregular pattern, or if the seasonality is complex,

such as weekly or daily, this can be difficult to capture in

a segmented regression model. Lastly, if there is residual

autocorrelation after running a segmented regression

model then alternate approaches will need be consid-

ered, of which ARIMA is one.

At times, selecting the most appropriate ARIMA

model can be challenging, time-consuming, and sub-

jective, as traditional approaches that rely on ACF/

PACF plots to identify model orders are often not in-

formative, as seen in our example. However, there

have been attempts over the years to automate the

model selection process and simplify the process. We

have applied one such algorithm, auto.arima() in the

forecast package for R, which we have chosen due to

its convenience and ease of use [28]. Such innova-

tions have made ARIMA modelling more accessible,

but as with all automated statistical approaches, still

require a knowledgeable user to correctly apply and

interpret the results.

It is important for researchers and analysts to have

knowledge of a range of statistical tools that can be used

as appropriate depending on the nature of the research

question and data. ARIMA is one such tool; we have

shown how ARIMA modelling can be used to evaluate

health interventions when simpler approaches are not

appropriate. While we have covered the foundations of

ITS analysis using ARIMA models and the most com-

mon types of intervention impacts, there are other topics

we have not touched on, such as use of cross correlation

functions to identify delayed effects, the incorporation of

covariates, and more complex transfer functions. These

more complex topics have been covered in detail in

other texts [23–25].

Despite the increasing use of ITS analysis, reporting of

methods is highly variable and often inadequate [32, 33].

In a 2015 review, one third of studies did not report test-

ing for autocorrelation and two thirds did not report

adjusting for seasonality [33]. To maximise reproducibil-

ity, we encourage all researchers to publish code to ensure

analyses are appropriately conducted and assist others

learning these methods, and to follow reporting guidelines

where available. While there are currently no EQUATOR

(Enhancing the QUAlity and Transparency Of health Re-

search) Network reporting guidelines specific to time

series analyses, Jandoc et al. [33] have published methodo-

logical and reporting recommendations for studies using

ITS analysis which provide a good basis.

Fig. 5 Observed values and predicted values in absence of intervention based on ARIMA model
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Conclusion
ITS analysis, especially when combined with a control

series, is a powerful study design for assessing

population-level health intervention impacts, and its use

is increasing. Segmented regression, the most common

method for ITS analysis, is not always adequate. Thus,

for researchers interested in ITS analysis, ARIMA mod-

elling is a useful tool, as it can account for underlying

trends, autocorrelation and seasonality and allows for

flexible modelling of different types of impacts.
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